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Overview of the Tutorial

Autonomic Computing

I ML & DM for Systems:
Introduction, motivations, applications

I Zoom on an application: Performance management

Autonomic Grid

I EGEE: Enabling Grids for e-Science in Europe

I Data acquisition, Logging and Bookkeeping files

I (change of) Representation, Dimensionality reduction

Modelling Jobs

I Exploratory Analysis and Clustering

I Standard approaches, stability, affinity propagation



Part 2

I Grid Systems
Presentation of EGEE, Enabling Grids for e-Science in Europe

I Acquiring the data
The grid observatory

I Preparation of the data
I Functional dependencies
I Dimensionality reduction
I Propositionalization



Computing Systems: The landscape

parallel

I homogeneous soft and hard
I resources

I dedicated
I static
I controlled

I reduced software stack

I no built-in fault tolerance

distributed

I heterogeneous soft and hard
I resources

I shared
I dynamic
I aggregated

I middleware

I faults: the norm



Storage and Computation have to be distributed



EGEE: Enabling Grids for E-Science in Europe



EGEE, 2

I Infrastructure project started in 2001 → FP6 and FP7

I Large scale, production quality grid

I Core node: Lab. Accelerateur Linéaire, Université Paris-Sud

I 240 partners, 41,000 CPUs, all over the world

I 5 Peta bytes storage

I 24 × 7, 20 K concurrent jobs

I Web: www.eu-egee.org

Storage as important as CPU



Applications

I High energy physics

I Life sciences

I Astrophysics

I Computational chemistry

I Earth sciences

I Financial simulation

I Fusion

I Multimedia

I Geophysics



Autonomic Grid

Requisite: The Grid Observatory

I Cluster in the EGEE-III proposal 2008-2010

I Data collection and publication: filtering, clustering

Workload management

I Models of the grid dynamics

I Models of requirements and middleware reaction: time series and beyond

I Utility based-scheduling, local and global: MAB problem

I Policy evaluations: very large scale optimization

Fault detection and diagnosis

I Categorization of failure modes from the Logging and Bookkeeping:
feature construction, clustering,

I Abrupt changepoint detection



Autonomic Grid: The Grid Observatory

Data acquisition

I Data have not been stored with DM in mind never

I Data [partially] automatically generated here
for EGEE services

I redundant
I little expert help

It’s no longer: the expert feeds the machine with data. Rather,
machines feed machines... J. Gama

Data preprocessing

I 80% of the human cost

I Governs the quality of the output



The grid system and the data

The Workload Management System

I User Interface User submits job description
and requirements, and gets the results

I Resource Broker Decides Computing Element

I Job Submission Service Submits to CE and Checks

I Logging and Bookkeeping Service Archive the data

Job Lifecycle



The data



Data Tables

Events

Short Fields



Data Tables

Long Fields (4Gb)



Preparation of the data

1. Functional dependencies

2. Dimensionality reduction curse of dimensionality
I Principal Component Analysis
I Random Projection
I Non linear Dimensionality Reduction

3. Propositionalization



Functional dependency

Definition
Given attributes X and X ′, X ′ depends on X on E (X ′ ≺ X ) iff

∃f : dom(X ′) 7→ dom(X ) s.t. ∀i = 1 . . .N,X (xi ) = f (X ′(xi ))

Examples

I X ′ = City code, X = City name

I X ′ = Machine name, X = IP

I X ′ = Job ID, X = User ID

Why removing FD ?

I Curse of dimensionality

I Biased distance



Functional dependency, 2

Trivial cases

#dom(X ) = #dom(X ′) = N number of examples

Algorithm

I Size:
(X ′ ≺ X )⇒ #dom(X ) ≤ #dom(X ′)

I Sample
Repeat

Select v ∈ dom(X ′)
Ev = select xi where X ′(xi ) = v
Define X (Ev ) = {w ∈ dom(X ),∃x ∈ Ev / X (x) = w}
If (#X (Ev ) > 1) return false

Until stop
return true



Dimensionality Reduction − Intuition

Degrees of freedom

I Image: 4096 pixels; but not independent

I Robotics: (# camera pixels + # infra-red) × time; but not
independent

Goal
Find the (low-dimensional) structure of the data:

I Images

I Robotics

I Genes



Dimensionality Reduction

In high dimensions

I Everybody lives in the corners of the space
Volume of Sphere Vn = 2πr2

n Vn−2

I All points are far from each other

Approaches

I Linear dimensionality reduction
I Principal Component Analysis
I Random Projection

I Non-linear dimensionality reduction

Criteria

I Complexity/Size

I Prior knowledge e.g., relevant distance



Linear Dimensionality Reduction

Training set unsupervised

E = {(xk), xk ∈ IRD , k = 1 . . .N}

Projection from IRD onto IRd

x ∈ IRD → h(x) ∈ IRd , d << D
h(x) = Ax

s.t. minimize
∑N

k=1 ||xk − h(xk)||2



Principal Component Analysis

Covariance matrix S
Mean µi = 1

N

∑N
k=1 Xi (xk)

Sij =
1

N

N∑
k=1

(Xi (xk)− µi )(Xj(xk)− µj)

symmetric ⇒ can be diagonalized

S = U∆U ′ ∆ = Diag(λ1, . . . λD)

x
x

x

x
x

x
x

x

x

x
x

x

xx

x
x

x

u

u

x

1

2

x

x

x

x

x

x

x

Thm: Optimal projection in dimension d

projection on the first d eigenvectors of S

Let ui the eigenvector associated to eigenvalue λi λi > λi+1

h : IRD 7→ IRd , h(x) =< x, u1 > u1 + . . .+ < x, ud > ud

where < v , v ′ > denote the scalar product of vectors v and v ′



Sketch of the proof

1. Maximize the variance of h(x) = Ax∑
k ||xk − h(xk)||2 =

∑
k ||xk ||2 −

∑
k ||h(xk)||2

Minimize
∑
k

||xk − h(xk)||2 ⇒ Maximize
∑
k

||h(xk)||2

Var(h(x)) =
1

N

(∑
k

||h(xk)||2 − ||
∑
k

h(xk)||2
)

As
||
∑
k

h(xk)||2 = ||A
∑
k

xk ||2 = N2||Aµ||2

where µ = (µ1, . . . .µD).
Assuming that xk are centered (µi = 0) gives the result.



Sketch of the proof, 2

2. Projection on eigenvectors ui of S

Assume h(x) = Ax =
∑d

i=1 < x, vi > vi and show vi = ui .

Var(AX ) = (AX )(AX )′ = A(XX ′)A′ = ASA′ = A(U∆U ′)A′

Consider d = 1, v1 =
∑

wiui
∑

w2
i = 1

remind λi > λi+1

Var(AX ) =
∑

λiw
2
i

maximized for w1 = 1,w2 = . . . = wN = 0
that is, v1 = ui .



Principal Component Analysis, Practicalities

Data preparation

I Mean centering the dataset

µi = 1
N

∑N
k=1 Xi (xk)

σi =
√

1
N

∑N
k=1 Xi (xk)2 − µ2

i

zk = ( 1
σi

(Xi (xk)− µi ))
D
i=1

Matrix operations

I Computing the covariance matrix

Sij =
1

N

N∑
k=1

Xi (zk)Xj(zk)

I Diagonalizing S = U ′∆U Complexity O(D3)
might be not affordable...



Random projection

Random matrix

A : IRD 7→ IRd A[d ,D] Ai ,j ∼ N (0, 1)

define

h(x) =
1√
d

Ax

Property: h preserves the norm in expectation

E [||h(x)||2] = ||x||2

With high probability 1− 2exp{−(ε2 − ε3)d
4 }

(1− ε)||x||2 ≤ ||h(x)||2 ≤ (1 + ε)||x||2



Random projection

Proof

h(x) = 1√
d
Ax

E (||h(x)||2) = 1
d E

[∑d
i=1

(∑D
j=1 Ai ,jXj(x)

)2
]

= 1
d

∑d
i=1 E

[(∑D
j=1 Ai ,jXj(x)

)2
]

= 1
d

∑d
i=1

∑D
j=1 E [A2

i ,j ]E [Xj(x)
2]

= 1
d

∑d
i=1

∑D
j=1

||x||2
D

= ||x||2



Random projection, 2

Johnson Lindenstrauss Lemma
For d > 9 lnN

ε2−ε3 , with high probability

(1− ε)||xi − xj ||2 ≤ ||h(xi )− h(xj)||2 ≤ (1 + ε)||xi − xj ||2

More:
http://www.cs.yale.edu/clique/resources/RandomProjectionMethod.pdf



Non-Linear Dimensionality Reduction

Conjecture

Examples live in a manifold of dimension d << D

Goal: consistent projection of the dataset onto IRd

Consistency:

I Preserve the structure of the data

I e.g. preserve the distances between points



Multi-Dimensional Scaling

Position of the problem

I Given {x1, . . . , xN , xi ∈ IRD}
I Given sim(xi , xj) ∈ IR+

I Find projection Φ onto IRd

x ∈ IRD → Φ(x) ∈ IRd

sim(xi , xj) ∼ sim(Φ(xi ),Φ(xj))

Optimisation

Define X , Xi ,j = sim(xi , xj); XΦ, XΦ
i ,j = sim(Φ(xi ),Φ(xj))

Find Φ minimizing ||X − X ′||
Rq : Linear Φ = Principal Component Analysis
But linear MDS does not work: preserves all distances, while

only local distances are meaningful



Non-linear projections

Approaches

I Reconstruct global structures from local ones Isomap
and find global projection

I Only consider local structures LLE

Intuition: locally, points live in IRd



Isomap

Tenenbaum, da Silva, Langford 2000

http://isomap.stanford.edu

Estimate d(xi , xj)

I Known if xi and xj are close

I Otherwise, compute the shortest path between xi and xj

geodesic distance (dynamic programming)

Requisite

If data points sampled in a convex subset of IRd ,
then geodesic distance ∼ Euclidean distance on IRd .

General case

I Given d(xi , xj), estimate < xi , xj >

I Project points in IRd



Isomap, 2



Locally Linear Embedding

Roweiss and Saul, 2000

http://www.cs.toronto.edu/∼roweis/lle/

Principle

I Find local description for each point: depending on its
neighbors



Local Linear Embedding, 2

Find neighbors

For each xi , find its nearest neighbors N (i)
Parameter: number of neighbors

Change of representation

Goal Characterize xi wrt its neighbors:

xi =
∑

j∈N (i)

wi ,jxj with
∑

j∈N (i)

wij = 1

Property: invariance by translation, rotation, homothety
How Compute the local covariance matrix:

Cj ,k =< xj − xi , xk − xi >

Find vector wi s.t. Cwi = 1



Local Linear Embedding, 3

Algorithm

Local description: Matrix W such that
∑

j wi ,j = 1

W = argmin{
N∑

i=1

||xi −
∑

j

wi ,jxj ||2}

Projection: Find {z1, . . . , zn} in IRd minimizing

N∑
i=1

||zi −
∑

j

wi ,jzj ||2

Minimize ((I −W )Z )′((I −W )Z ) = Z ′(I −W )′(I −W )Z

Solutions: vectors zi are eigenvectors of (I −W )′(I −W )

I Keeping the d eigenvectors with lowest eigenvalues > 0



Example, Texts



Example, Images

LLE



Propositionalization

Relational domains

Relational learning

PROS Inductive Logic Programming
Use domain knowledge

CONS Data Mining
Covering test ≡ subgraph matching exponential complexity

Getting back to propositional representation: propositionalization



West - East trains

Michalski 1983



Propositionalization

Linus (ancestor)

Lavrac et al, 94

West(a)← Engine(a, b), first wagon(a, c), roof (c), load(c , square, 3)...
West(a′)← Engine(a′, b′), first wagon(a′, c ′), load(c ′, circle, 1)...

West Engine(X) First Wagon(X,Y) Roof(Y) Load1 (Y) Load2 (Y)
a b c yes square 3
a’ b’ c’ no circle 1

Each column: a role predicate, where the predicate is determinate
linked to former predicates (left columns) with a single instantiation in

every example



Propositionalization

Stochastic propositionalization

Kramer, 98

Construct random formulas ≡ boolean features

SINUS − RDS
http://www.cs.bris.ac.uk/home/rawles/sinus

http://labe.felk.cvut.cz/∼zelezny/rsd

I Use modes (user-declared) modeb(2,hasCar(+train,-car))

I Thresholds on number of variables, depth of predicates...

I Pre-processing (feature selection)



Propositionalization

DB Schema Propositionalization

RELAGGS
Database aggregates

I average, min, max, of numerical attributes

I number of values of categorical attributes



Going ubiquitous in Data Preparation

Principles: same as usual

I Act locally

I Think globally

The local level

I An ideal feature ≡ a good hypothesis
I What is a promising hypothesis ?

I Behaves well on (part of) the data
I Is not trivial



Going ubiquitous in Data Preparation, 2

What is a good behaviour?

I Showing regularities

I Locally constant

How to test triviality?

I Syntactical analysis:
xy − yx = 0

I Statistical triviality:
I Test on random data
I Test on permutations of

the data

0 1000 2000 3000500 1500 2500

0

41. 10

35. 10



Going ubiquitous in Data Preparation, 3

Internally: an optimization problem

I Define bins

I Compute histogram, associated quantity of information

I Compare histograms on real data / on random data

Externally: an optimization problem

I Upon receiving a new feature

I Check whether this is relevant to your data

I Check whether this brings new information


