KD Ubiq Summer School 2008 Behavioural Modelling of a Grid System

Michele Sebag CNRS – INRIA – Université Paris-Sud http://tao.lri.fr

March 8th, 2008

Overview of the Tutorial

Autonomic Computing

- ML & DM for Systems: Introduction, motivations, applications
- Zoom on an application: Performance management

Autonomic Grid

- ► EGEE: Enabling Grids for e-Science in Europe
- Data acquisition, Logging and Bookkeeping files
- (change of) Representation, Dimensionality reduction

Modelling Jobs

- Exploratory Analysis and Clustering
- Standard approaches, stability, affinity propagation

Part 3: Clustering

Approaches

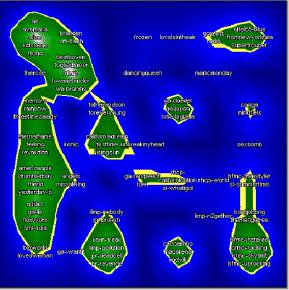
- K-Means
- ► EM
- Selecting the number of clusters
- Clustering the EGEE jobs
 - Dealing with heterogeneous data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Assessing the results

Clustering

http://www.ofai.at/ elias.pampalk/music/



▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 9 Q ()~.

Clustering Questions

Hard or soft ?

- Hard: find a partition of the data
- Soft: estimate the distribution of the data as a mixture of components.

Parametric vs non Parametric ?

- Parametric: number K of clusters is known
- Non-Parametric: find K (wrapping a parametric clustering algorithm)

Caveat:

- Complexity
- Outliers
- Validation

Formal Background

Notations

${\mathcal E}$	$\{\mathbf{x}_1, \dots \mathbf{x}_N\}$ dataset
----------------	--

- Ν number of data points
- Κ number of clusters

given or optimized

C_k	<i>k</i> -th cluster	Hard clustering
$\tau(i)$	index of cluster containing \mathbf{x}_i	

f _k	<i>k</i> -th model	Soft clustering
$\gamma_k(i)$	$Pr(\mathbf{x}_i f_k)$	

Solution

Soft Clustering

Hard Clustering Partition $\Delta = (C_1, \ldots, C_k)$ $\forall i \sum_{k} \gamma_k(i) = 1$

Formal Background, 2

Quality / Cost function

Measures how well the clusters characterize the data

- ► (log)likelihood soft clustering
- dispersion

hard clustering

$$\sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{\mathbf{x}_i, \mathbf{x}_j \text{ in } C_k} d(\mathbf{x}_i, \mathbf{x}_j)^2$$

Tradeoff

Quality increases with $K \Rightarrow$ Regularization needed

to avoid one cluster per data point

Clustering vs Classification

Marina Meila http://videolectures.net/

Classification

Clustering

K# classes (given)QualityGeneralization errorFocus onTest setGoalPredictionAnalysisdiscriminantFieldmature

clusters (unknown) many cost functions Training set Interpretation exploratory new

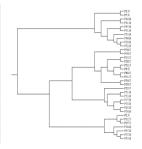
・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Non-Parametric Clustering

Hierarchical Clustering

Principle

- agglomerative (join nearest clusters)
- divisive (split most dispersed cluster)

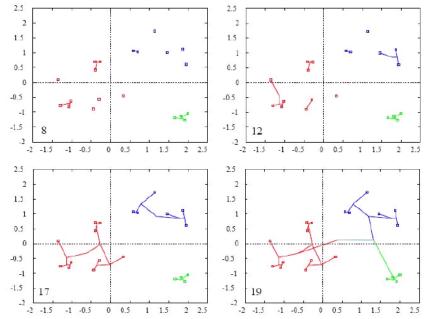


イロト イポト イヨト イヨト

э

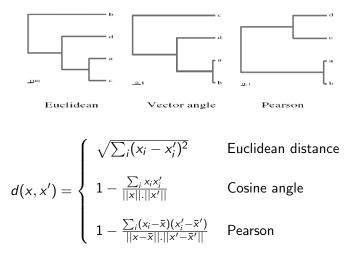
CONS: Complexity $\mathcal{O}(N^3)$

Hierarchical Clustering, example



790

Influence of distance/similarity



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Parametric Clustering

K is known

Algorithms based on distances

- ► *K*-means
- ► graph / cut

Algorithms based on models

Mixture of models: EM algorithm

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

K-Means

Algorithm

1. Init: Uniformly draw K points \mathbf{x}_{i_i} in \mathcal{E} Set $C_i = \{\mathbf{x}_{i_i}\}$ 2. Repeat Draw without replacement \mathbf{x}_i from \mathcal{E} 3. 4. $\tau(i) = \operatorname{argmin}_{k=1\dots K} \{ d(\mathbf{x}_i, C_k) \}$ find best cluster for \mathbf{x}_i $C_{\tau(i)} = C_{\tau(i)} \bigcup \mathbf{x}_i$ 5. add \mathbf{x}_i to $C_{\tau(i)}$ 6. Until all points have been drawn 7. If partition $C_1 \ldots C_K$ has changed Stabilize Define $\mathbf{x}_{i_k} = \text{best point in } C_k, C_k = \{x_{i_k}\}, \text{ goto } 2.$

Algorithm terminates

K-Means, Knobs

Knob 1 : define $d(\mathbf{x}_i, C_k)$

$$\min\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$$

- * average $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$
- $max\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$

favors

long clusters compact clusters spheric clusters

Knob 2 : define "best" in C_k

- Medoid
- * Average
 (does not belong to *E*)

$$\begin{aligned} \operatorname{argmin}_{i} \{ \sum_{\mathbf{x}_{j} \in C_{k}} d(\mathbf{x}_{i}, \mathbf{x}_{j}) \} \\ \frac{1}{|C_{k}|} \sum_{\mathbf{x}_{j} \in C_{k}} \mathbf{x}_{j} \end{aligned}$$

・ロト・西・・山・・ ・日・

No single best choice

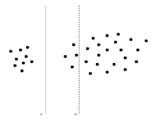


FIG. 1. Optimizing the diameter produces B while A is clearly more desirable.

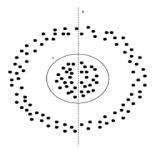


FIG. 2. The inferior clustering B is found by optimizing the 2-median measure.

K-Means, Discussion

PROS

- Complexity $\mathcal{O}(K \times N)$
- Can incorporate prior knowledge

initialization

CONS

- Sensitive to initialization
- Sensitive to outliers
- Sensitive to irrelevant attributes

K-Means, Convergence

For cost function

$$\mathcal{L}(\Delta) = \sum_{k} \sum_{i,j \neq \tau(i) = \tau(j) = k} d(\mathbf{x}_i, \mathbf{x}_j)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ for
$$d(\mathbf{x}_i, C_k) =$$
 average $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$

▶ for "best" in
$$C_k$$
 = average of $\mathbf{x}_j \in C_k$

K-means converges toward a (local) minimum of \mathcal{L} .

K-Means, Practicalities

Initialization

- Uniform sampling
- Average of \mathcal{E} + random perturbations
- Average of \mathcal{E} + orthogonal perturbations
- Extreme points: select \mathbf{x}_{i_1} uniformly in \mathcal{E} , then

Select
$$x_{i_j} = argmax\{\sum_{k=1}^{j} d(\mathbf{x}_i, x_{i_k})\}$$

Pre-processing

Mean-centering the dataset

Model-based clustering

Mixture of components

• Density
$$f = \sum_{k=1}^{K} \pi_k f_k$$

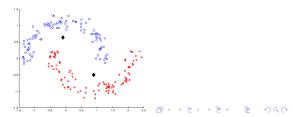
• f_k : the k-th component of the mixture

$$\blacktriangleright \gamma_k(i) = \frac{\pi_k f_k(x)}{f(x)}$$

• induces
$$C_k = \{\mathbf{x}_j \mid k = argmax\{\gamma_k(j)\}\}$$

Nature of components: prior knowledge

- Most often Gaussian: $f_k = (\mu_k, \Sigma_k)$
- Beware: clusters are not always Gaussian...



Model-based clustering, 2

Search space

• Solution :
$$(\pi_k, \mu_k, \Sigma_k)_{k=1}^K = \theta$$

Criterion: log-likelihood of dataset

$$\ell(\theta) = \log(\Pr(\mathcal{E})) = \sum_{i=1}^{N} \log \Pr(\mathbf{x}_i) \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \log(\pi_k f_k(\mathbf{x}_i))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

to be maximized.

Model-based clustering with EM

Formalization

- Define $z_{i,k} = 1$ iff \mathbf{x}_i belongs to C_k .
- $E[z_{i,k}] = \gamma_k(i)$ prob. **x**_i generated by $\pi_k f_k$
- Expectation of log likelihood

$$E[\ell(\theta)] \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log(\pi_k f_k(\mathbf{x}_i))$$
$$= \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log \pi_k + \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log f_k(\mathbf{x}_i)$$

EM optimization

E step Given θ , compute

$$\gamma_k(i) = \frac{\pi_k f_k(\mathbf{x}_i)}{f(x)}$$

M step Given $\gamma_k(i)$, compute

$$\theta^* = (\pi_k, \mu_k, \Sigma_k)^* = \operatorname{argminE}[\ell(\theta)]$$
 is in the second se

Maximization step

 π_k : Fraction of points in C_k

$$\pi_k = \frac{1}{N} \sum_{i=1}^N \gamma_k(i)$$

 μ_k : Mean of C_k

$$\mu_k = \frac{\sum_{i=1}^N \gamma_k(i) \mathbf{x}_i}{\sum_{i=1}^N \gamma_k(i)}$$

 Σ_k : Covariance

$$\Sigma_k = \frac{\sum_{i=1}^N \gamma_k(i)(\mathbf{x}_i - \mu_k)(\mathbf{x}_i - \mu_k)'}{\sum_{i=1}^N \gamma_k(i)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Choosing the number of clusters

K-means constructs a partition whatever the K value is.

Selection of K

Bayesian approaches

Tradeoff between accuracy / richness of the model

Stability

Varying the data should not change the result

Gap statistics

Compare with null hypothesis: all data in same cluster.

Bayesian approaches

Bayesian Information Criterion

$$BIC(heta) = \ell(heta) - rac{\# heta}{2} \log N$$

Select $K = \operatorname{argmax} BIC(\theta)$ where $\#\theta = \operatorname{number}$ of free parameters in θ :

 \blacktriangleright if all components have same scalar variance σ

$$\#\theta = K - 1 + 1 + Kd$$

• if each component has a scalar variance σ_k

$$\#\theta = K - 1 + K(d+1)$$

• if each component has a full covariance matrix Σ_k

$$\#\theta = K - 1 + K(d + d(d - 1)/2)$$

Gap statistics

Principle: hypothesis testing

- 1. Consider hypothesis H_0 : there is no cluster in the data. \mathcal{E} is generated from a no-cluster distribution π .
- Estimate the distribution f_{0,K} of L(C₁,...C_K) for data generated after π. Analytically if π is simple Use Monte-Carlo methods otherwise
- 3. Reject H_0 with confidence α if the probability of generating the true value $\mathcal{L}(C_1, \ldots, C_K)$ under $f_{0,K}$ is less than α .

Beware: the test is done for all K values...

Gap statistics, 2

Algorithm

Assume $\ensuremath{\mathcal{E}}$ extracted from a no-cluster distribution, e.g. a single Gaussian.

- 1. Sample ${\mathcal E}$ according to this distribution
- 2. Apply K-means on this sample
- 3. Measure the associated loss function

Repeat : compute the average $\overline{\mathcal{L}}_0(K)$ and variance $\sigma_0(K)$ Define the gap:

$$Gap(K) = \overline{\mathcal{L}}_0(K) - \mathcal{L}(C_1, \dots C_K)$$

Rule Select min K s.t.

$$Gap(K) \geq Gap(K+1) - \sigma_0(K+1)$$

What is nice: also tells if there are no clusters in the data...

Stability

Principle

- Consider \mathcal{E}' perturbed from \mathcal{E}
- Construct $C'_1, \ldots C'_K$ from \mathcal{E}'
- Evaluate the "distance" between (C_1, \ldots, C_K) and (C'_1, \ldots, C'_K)
- ▶ If small distance (stability), K is OK

Distortion $D(\Delta)$

Define
$$S$$
 $S_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$
 (λ_i, v_i) i-th (eigenvalue, eigenvector) of S
 X $X_{i,j} = 1$ iff $\mathbf{x}_i \in C_j$
 $D(\Delta) = \sum_i ||\mathbf{x}_i - \mu_{\tau(i)}||^2 = tr(S) - tr(X'SX)$

Minimal distortion $D^* = tr(S) - \sum_{k=1}^{K-1} \lambda_k$

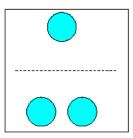
Stability, 2

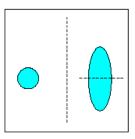
Results

- Δ has low distortion $\Rightarrow (\mu_1, \dots \mu_K)$ close to space $(v_1, \dots v_K)$.
- Δ_1 , and Δ_2 have low distortion \Rightarrow "close"
- (and close to "optimal" clustering)

```
Meila ICML 06
```

Counter-example





From K-Means to K-Centers

Assumptions for K-Means

- A distance or dissimilarity
- Possibility to create artefacts
- Not applicable in some domains

barycenters average molecule? average sentence?

K-Centers, position of the problem

A combinatorial optimization problem. Find σ: {1,..., N} ↦ {1,..., N} minimizing:

$$E[\sigma] = \sum_{i=1}^{N} d(\mathbf{x}_i, \mathbf{x}_{\sigma(i)})$$

(What is missing here ?)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Affinity Propagation

Frey and Dueck 2007

Find σ maximizing:

$$E[\sigma] = \sum_{i=1}^{N} S(\mathbf{x}_i, \mathbf{x}_{\sigma(i)}) - \sum_{i=1}^{N} \chi_i[\sigma]$$

Where

$$S(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} -d(\mathbf{x}_i, \mathbf{x}_j) & \text{if } i \neq j \\ -s^* & \text{otherwise} \end{cases}$$

$$\chi_i[\sigma] = \begin{cases} \infty & \text{if } \sigma(\sigma(i)) \neq \sigma(i) \\ 0 & \text{otherwise} \end{cases}$$

Remark: K is not fixed. Instead, fix s^*

usual: median $\{d(\mathbf{x}_i, \mathbf{x}_j)\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

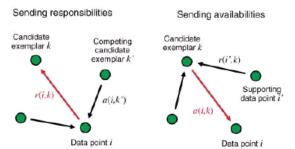
Affinity Propagation, Principle

Algorithm: Message propagation

- Responsibility r(i, k)
- Availability a(i, k).

could \mathbf{x}_k be examplar for \mathbf{x}_i

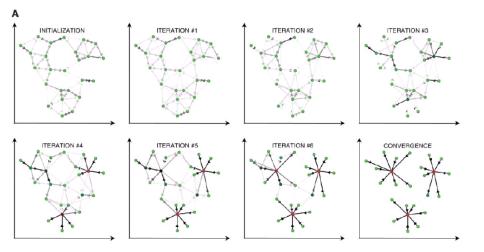
в



С

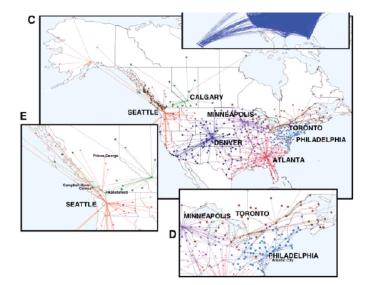
う ク ク ・ 川 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Affinity Propagation, cont'd



▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

Affinity Propagation, cont'd



Algorithm

Iterate

$$r(i, k) = S(i, k) - \max_{k', k' \neq k} \{a(i, k') + S(i, k')\}$$

$$r(k, k) = S(k, k) - \max_{k', k' \neq k} \{S(k, k')\}$$

$$a(i, k) = \min\{0, r(k, k) + \sum_{i', i' \neq i, k} \max\{0, r(i', k)\}\}$$

$$a(k, k) = \sum_{i', i' \neq k} \max\{0, r(i', k)\}$$

Solution

$$\sigma(i) = \operatorname{argmax}\{r(i,k) + a(i,k), k = 1 \dots N\}$$

Stop criterion

- After a maximal number of iterations
- After a maximal number of iterations with no change.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?