# KD Ubiq Summer School 2008 Behavioural Modelling of a Grid System

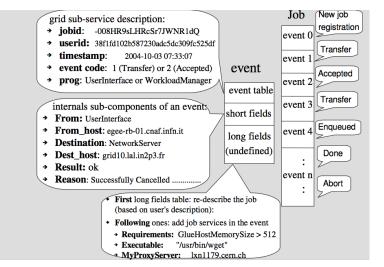
#### Michele Sebag CNRS – INRIA – Université Paris-Sud http://tao.lri.fr

March 8th, 2008

## Overview

### Autonomic Computing

- A booming field of applications
- Machine Learning and Data Mining for Systems


### Autonomic Grid

- EGEE: Enabling Grids for e-Science in Europe
- Data acquisition, Logging and Bookkeeping files
- (change of) Representation, Dimensionality reduction

### Modelling Jobs

- Exploratory Analysis and Clustering
- Clustering the jobs

### Job representation



Xiangliang Zhang et al., ICDM wshop on Data streams, 2007

## Job representation

### Challenges

- Sparse representation, e.g. "user id"
- No natural distance

#### Prior knowledge

- Coarse job classification: succeeds (SUC) or fails (FAIL)
- Many failure types: Not Available Resources (NAR); User Aborted (ABU); Generic and non-Generic Error (GNG).
- Jobs are heterogeneous
  - Due to users (advanced or naive)
  - Due to virtual organizations (jobs in physics  $\neq$  jobs in biology)
  - Due to time: grid load depends on the community activity

### Feature extraction

### Slicing data

#### to get rid of heterogeneity

- Split jobs per user:  $U_i = \{ \text{ jobs of } i\text{-th user } \}$
- Split jobs per week: W<sub>j</sub> = { jobs launched in j-th week }

### Building features

 Each data slice: a supervised learning problem (discriminating SUCC from FAIL)

$$h: \mathcal{X} \mapsto \mathbb{R}$$

- Supervised Learning Algorithms:
  - Support Vector Machine
  - Optimization of AUC

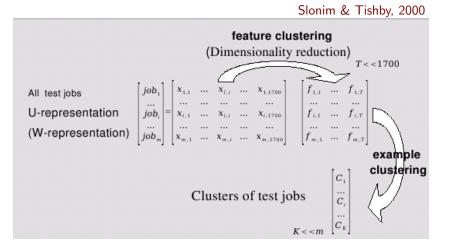
SVMLight ROGER

## Feature Extraction, 2

New features Define

 $\begin{array}{l} h_{u,i} \text{ hypothesis learned from data slice } U_i \\ U : \mathcal{X} \mapsto \mathbb{R}^{\# u} \\ U(\mathbf{x}) = (h_{u,1}(\mathbf{x}), \dots h_{u,\# u}(\mathbf{x})) \\ \text{Symmetrically} \quad h_{w,i} \text{ hypothesis learned from data slice } W_i \\ W : \mathcal{X} \mapsto \mathbb{R}^{\# w} \\ W(\mathbf{x}) = (h_{w,1}(\mathbf{x}), \dots h_{w,\# w}(\mathbf{x})) \end{array}$ 

Change of representation


$$\begin{array}{ll} \mathcal{E} & \to & \mathcal{E}_U = \{(U(\mathbf{x}_i), y_i), i = 1 \dots N\} \\ & \to & \mathcal{E}_W = \{(W(\mathbf{x}_i), y_i), i = 1 \dots N\} \end{array}$$

#### Discussion

- Natural distance
- But new attributes  $h_{u,i}$  likely to be redundant

on  $\mathbb{R}^d$ 

## Feature Extraction: Double clustering



・ロト・西ト・西ト・日・ 日・ シック

# Experimental setting

### The datasets

- ► Training set *E*: 222,500 jobs
- Test set T: 21,512 jobs

#### Hypothesis construction

- SVM: one hypothesis per slice:
- ROGER: 50 hypotheses per slice

#### Clustering

Foreach  $K = 5 \dots 30$ , Apply K-means to T

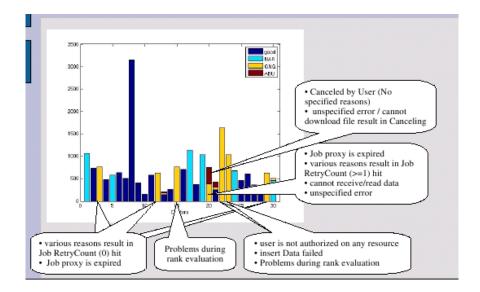
- Considering new representations U and W
- Learned after SVM and Roger.

36% SUCC, 74% FAIL

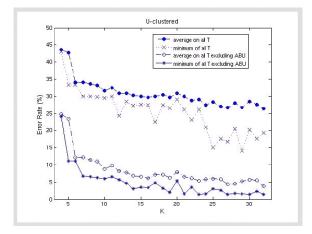
 $U: \mathcal{X} \mapsto \mathbb{R}^{34}$  $W: \mathcal{X} \mapsto \mathbb{R}^{45}$  $U: \mathcal{X} \mapsto \mathbb{R}^{1700}$  $W: \mathcal{X} \mapsto \mathbb{R}^{2250}$ 

# Goal of Experiments

#### Interpretation


Examine the clusters

#### Stability


- Compare  $\Delta_K$  and  $\Delta_{K'}$
- Compare  $\Delta_{K,U}$  and  $\Delta_{K,W}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Interpretation



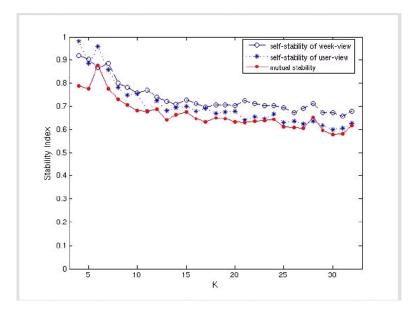
## Interpretation, 2



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

## Interpretation, 3

#### Pure clusters


- Most clusters are pure wrt sub-classes NAR, GNG which were unknown from the algorithm
- Finer-grained classes are discovered: Problem during rank evaluation; job proxy expired; insert Data failed

 ABU class (1.2%) is not properly identified: many reasons why job might be Aborted by User

#### Usage

Use prediction for user-friendly service Anticipate job failures

# Stability



▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● のへ(で)

## Stability, 2

- $\blacktriangleright$  Stability wrt initialization, for both W and U representations
- $\blacktriangleright$  Stability of clusters based on W and U-based representations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 Decreases gracefully with K (optimal value = 1)

# Grid Modelling, wrap-up

## Conclusion

- Importance of representation
- Clustering: stable wrt K and representation change re-discovers types of failures discovers finer-grained failures

#### Future work

- Cluster users (= sets of jobs)
- Cluster weeks (= sets of jobs)
- Find scenarios

   naive users gaining expertise;
   grid load & temporal regularities
- Identify communities of users.
- ▶ Use scenarios to test/optimize grid services (e.g. scheduler)

as usual

# Autonomic Computing, wrap-up

#### Huge needs

Modelling systems

Black box to calibrate, train, optimize services

Understanding systems

Hints to repair, re-design systems

#### Dealing with Complex Systems

- Findings often challenge conventional wisdom
- Theoretical vs Empirical models
- Complex systems are counter-intuitive sometimes

# Autonomic Computing, wrap-up, 2

#### Good practice

- No Magic ! I don't see anything, I'll use ML or DM
- Use all of your prior knowledge If you can measure/model it, don't guess it!
- Have conjectures
- Test them!

Beware: False Discovery Rate

### Thanks to

- Cécile Germain-Renaud
- Xiangliang Zhang
- Cal Loomis
- Nicolas Baskiotis
- Moises Goldszmidt
- The PASCAL Network of Excellence

http://www.pascal-network.org

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Borrowed slides

#### Pascal http://videolectures.net/

#### Clustering

- ► M. Meila. The uniqueness of a good optimum for K-means. ICML. 625-632,2006
- U. von Luxburg et al., Theoretical Foundations of Clustering, NIPS 2005

#### Classification

- SVMLight. T. Joachims. Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning. B. Scholkopf and C. Burges and A. Smola (ed.), MIT-Press, 41-56, 1999.
- ROGER. M. Sebag, N. Lucas, J. Azé. Impact studies and sensitivity analysis in medical data mining with ROC-based genetic learning. IEEE Int. Conf. on Data Mining, 637-640, 2003.