Apprentissage par Renforcement: Plan du cours

Contexte

Algorithms

- Value functions
- Optimal policy
- Temporal differences and eligibility traces
- Q-learning
- Playing Go: MoGo

Feature Selection as a Game

Position du problème Monte-Carlo Tree Search Feature Selection: the FUSE algorithm Experimental Validation

Active Learning as a Game

Position du problème Algorithme BAAL Validation expérimentale

Constructive Induction

Active Learning, position of the problem

Supervised learning, the setting

- Target hypothesis h^{*}
- Training set $\mathcal{E} = \{(x_i, y_i), i = 1 \dots n\}$
- Learn h_n from \mathcal{E}

Criteria

- Consistency: $h_n \rightarrow h^*$ when $n \rightarrow \infty$.
- ► Sample complexity: number of examples needed to reach the target with precision e

$$\epsilon \to n_{\epsilon} \text{ s.t. } ||h_n - h^*|| < \epsilon$$

Motivations

- Given x, obtaining h*(x) is costly
- Goal: reduce <u>sample complexity</u> while keeping <u>generalization error</u> low
- Motivating application: numerical engineering

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

=> Learn simplified models with only ~ 100 examples

Active Learning, definition

Passive learning

iid examples

$$\mathcal{E} = \{(x_i, y_i), i = 1 \dots n\}$$

Active learning

 x_{n+1} selected depending on $\{(x_i, y_i), i = 1 \dots n\}$ In the best case, exponential improvement:

State of the art

Let H be the hypothesis space.

Realizable assumption: $h^* \in H$

Then, exponential improvements. Freund et al. 1997; Dasgupta 2005; Balcan et al. 2010.

Noisy case: improvement depends on noise model Balcan et al. 2006; Hanneke 2007; Dasgupta et al. 2008.

Realizable batch case PhD Philippe Rolet, 23 dec. 2010.

How it works

Principle

- Design a measure of the information brought by an instance
- Iteratively select the best instance

Example: query by committee

Seung et al. 92

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Active Learning

Optimization problem

- ► *T*: time horizon (number of instances to select)
- States $s_t = \{(x_i, h^*(x_i)), i = 1 \dots t\}$
- Action: select x_{t+1}
- A: Machine Learning algorithm
- Err: Generalization error

Find Sampling strategy S minimizing $\mathbb{E}\mathbf{Err}(\mathcal{A}(S_T(h^*), h^*))$

Bottlenecks

- Combinatorial optimization problem in a continuous space
- Generalization error unknown

Optimal Strategy for AL

- Learning algorithm *A*
- Finite Horizon T

- Sampling strategy S_{τ}
- Target concept h*

Learner *я*

T-size training set $S_{\tau}(h^*)$ { $(x_1, h^*(x_1)), ..., (x_{\tau}, h^*(x_{\tau}))$ }

Target Concept *h** (a.k.a. Oracle)

Goal: argmin E[Err(𝔅(S_τ(h*)), h*)]

Optimal Strategy for AL

- AL modeled as a Markov decision process:
 - State space: all possible training sets of size $\leq T$
 - Action space: instances x available for query
 - Transition function: $P(s_{t+1} | s_t, x)$
 - **Reward function**: gen. err. $Err(\mathcal{A}(S_{\tau}(h)),h)$
- Optimal policy $\pi^* \rightarrow$ Optimal AL strategy

Active Learning: a 1-Player Game

Bottlenecks:

- Large state space
- Large action space
- Cannot use h* directly
- Approx. sol. inspired from Go: AL as a game Coulom 06, Chaslot et al. 06, Gelly&Sliver 07
- Browse game tree
- Estimate move values with *Monte-Carlo* simulations

Apprentissage par Renforcement: Plan du cours

Contexte

Algorithms

- Value functions
- Optimal policy
- Temporal differences and eligibility traces
- Q-learning
- Playing Go: MoGo

Feature Selection as a Game

Position du problème Monte-Carlo Tree Search Feature Selection: the FUSE algorithm Experimental Validation

Active Learning as a Game

Position du problème Algorithme BAAL Validation expérimentale

Constructive Induction

The BAAL Algorithm

- => <u>Bandit-based</u> Active Learner
- Simulation planning with Multi-armed bandits
- Asymetric tree growth More exploration for promising moves

BAAL: Exploration v. Exploitation

 UCB: balance exploration and exploitation Auer, 2002

UCT = UCB for trees

Kocsis&Szepesvari, 2006

$$\hat{\mu}_i + C \sqrt{\frac{\log(\sum_j n_j)}{n_i}}$$

BAAL: Outline

Baal: Continuous action space

- UCB is designed for finite action spaces
- AL: action space = R^D
- Coulom, 2007
 Control the number of arms: Wang, Audibert, Munos, 2008
 progressive widening # instances ~ (# visits)^{1/4}
- Select new instances
 - In a random order
 - Following a given heuristic (e.g. QbC heuristic)

Baal: draw surrogate hypotheses

- Sound: provably converges to uniform draw
- **Scalable** w.r.t. dimension, # constraints

Apprentissage par Renforcement: Plan du cours

Contexte

Algorithms

- Value functions
- Optimal policy
- Temporal differences and eligibility traces
- Q-learning
- Playing Go: MoGo

Feature Selection as a Game

Position du problème Monte-Carlo Tree Search Feature Selection: the FUSE algorithm Experimental Validation

Active Learning as a Game

Position du problème Algorithme BAAL Validation expérimentale

Constructive Induction

Some results

Some results

Partial Conclusion on BAAL

- A new approach to AL: AL as a Game
- Boosts heuristic to optimal strategy (provably)
- Anytime algorithm
- Straightforward extension to Optimization

Rolet, Sebag, Teytaud, 2009b

- Perspectives:
 - Kernelized Baal
 - Numerical engineering application

Apprentissage par Renforcement: Plan du cours

Contexte

Algorithms

- Value functions
- Optimal policy
- Temporal differences and eligibility traces
- Q-learning
- Playing Go: MoGo

Feature Selection as a Game

- Position du problème
- Monte-Carlo Tree Search
- Feature Selection: the FUSE algorithm

Experimental Validation

Active Learning as a Game

Position du problème Algorithme BAAL Validation expérimentale

Constructive Induction

KDD 2009 - Orange

Targets

- 1. Churn
- 2. Appetency
- 3. Up-selling

Core Techniques

- 1. Feature Selection
- 2. Bounded Resources
- 3. Parameterless methods

