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RESEARCH INTERESTS

• Decision-making: choice at each moment of the most 
appropriate behavior for an agent’s survival, to solve a task.

• Reinforcement Learning (by trial/error): adaptation of this 
choice to maximize a particular reward function.

• Complex problems: noise, partial representation of states, 
non stationarity of the environment.

• Modular/hierarchical structure of different learning levels, 
enabling a better flexibility and autonomy of decision in 
animals and robots.
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Global organization of learning in the 
brain (according to Doya 2000)

Doya, 2000
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Outline

1. Model-free Reinforcement Learning
 Temporal-Difference RL Algorithm
 Dopamine activity
 Wide application to Neuroscience of decision-making

2. Model-based Reinforcement Learning
 Off-line learning / Replay during sleep
 Dual-system RL
 Online parameters tuning (meta-learning)
 Link with Neurobehavioral data
 Applications to Robotics
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REINFORCEMENT LEARNING
& DOPAMINE ACTIVITY

TDRL Model
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THE ACTOR-CRITIC MODEL
Sutton & Barto (1998) Reinforcement Learning: An Introduction

TDRL Model

The Actor learns to select actions that maximize reward.

The Critic learns to predict reward (its value V).

A reward prediction error constitutes the reinforcement signal.
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REINFORCEMENT LEARNING

• Learning from delayed reward

TDRL Model
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reward

reward
reinforcement

REINFORCEMENT LEARNING

δt = rt

• Learning from delayed reward

TDRL Model
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1
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Reward

1 2 3 4 5actions:

reinforcement

reward

reward
reinforcement

V(st)Value estimation (“reward prediction”):

Rescorla and Wagner (1972).

REINFORCEMENT LEARNING

δt+n = rt+n – V(st) 

• Learning from delayed reward

TDRL Model
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• Temporal-Difference (TD) learning

1

2

3

4

5
Reward

1 2 3 4 5actions:
reward

reward
reinforcement

reinforcement

Sutton and Barto (1998).

REINFORCEMENT LEARNING

δt+1 = rt+1 + γ . V(st+1) – V(st)     (γ < 1) 

Value estimation (“reward prediction”): V(st) V(st+1)

TDRL Model
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learning rate (=0.9)discount factor (=0.9)

REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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learning rate (=0.9)discount factor (=0.9)

REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
0   =  0   +     0          - 0 0   =    0    +  0.9 * 0
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REINFORCEMENT LEARNING
in a Markov Decision Process

1   =  1   +     0          - 0 0.9   =    0    +  0.9 * 1

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

TDRL Model
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

1   =  1   +     0          - 0 0.9   =    0    +  0.9 * 1

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

Color 
indicates 

value
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
0   =  0   +     0          - 0 0   =    0    +  0.9 * 0
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REINFORCEMENT LEARNING
in a Markov Decision Process

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
0.81 =  0 + 0.9 * 0.9    - 0 0.72 =    0    +  0.9 * 0.81

TDRL Model
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

0.81 =  0 + 0.9 * 0.9    - 0 0.72 =    0    +  0.9 * 0.81

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

Color 
indicates 

value
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REINFORCEMENT LEARNING
in a Markov Decision Process

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
0.1  =  1    +     0        - 0.9 0.99 =    0.9  +  0.9 * 0.1

TDRL Model
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REINFORCEMENT LEARNING
in a Markov Decision Process

0.1  =  1    +     0        - 0.9 0.99 =    0.9  +  0.9 * 0.1

learning rate (=0.9)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

Color 
indicates 

value

TDRL Model
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

After

N simulations

Very long!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)

usually small for stability
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

After

N simulations

Very long!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

After

N simulations

Very long!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

May converge 

to a sub-

optimal 

solution!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

Exploration-

Exploitation 

trade-off

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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REINFORCEMENT LEARNING
in a Markov Decision Process

TDRL Model

Finds best 

solution after 

infinite time!

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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How can the agent learn a policy?
How to learn to perform the right actions

TDRL Model
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How can the agent learn a policy?
How to learn to perform the right actions

S : state space

A : action space
Policy function  π : S A

What we have learned so far:
Value function  V : S R

TDRL Model
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Dopaminergic neuron

The Actor-Critic model
TDRL Model

How can the agent learn a policy?
How to learn to perform the right actions

a solution: parallely update a policy and a value function

V(st) = V(st) + α . δt+1
Pπ(at|st) = Pπ(at|st) + α . δt+1



TDRL Model
Dopamine

TD Applications
Model-based RL

slide # 30 / 141

The Q-learning model
TDRL Model

How can the agent learn a policy?
How to learn to perform the right actions

other solution: learning Q-values (qualities)
Q : (S,A) R                Q-table: state / action a1 : North a2 : South a3 : East a4 : West

s1 0.92 0.10 0.35 0.05
s2 0.25 0.52 0.43 0.37
s3 0.78 0.9 1.0 0.81
s4 0.0 1.0 0.9 0.9
… … … … …
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The Q-learning model
TDRL Model

0.9
0

0.1
0.3

0.8
0

0.1
0

0
0.9

0.3
0.1

0.8
0.8

0.
0.1

state / action a1 : North a2 : South a3 : East a4 : West
s1 0.92 0.10 0.35 0.05
s2 0.25 0.52 0.43 0.37
s3 0.78 0.9 1.0 0.81
s4 0.0 1.0 0.9 0.9
… … … … …

How can the agent learn a policy?
How to learn to perform the right actions

other solution: learning Q-values (qualities)
Q : (S,A) R                Q-table: 
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The Q-learning model
TDRL Model

exp(β . Q(s,a))

Σ exp(β . Q(s,b))b

P(a) =  The β parameter regulates the exploration –
exploitation trade-off. 

state / action a1 : North a2 : South a3 : East a4 : West
s1 0.92 0.10 0.35 0.05
s2 0.25 0.52 0.43 0.37
s3 0.78 0.9 1.0 0.81
s4 0.0 1.0 0.9 0.9
… … … … …

How can the agent learn a policy?
How to learn to perform the right actions

other solution: learning Q-values (qualities)
Q : (S,A) R                Q-table: 
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 ACTOR-CRITIC

 SARSA

 Q-LEARNING

Different Temporal-Difference (TD) 
methods 

State-dependent Reward Prediction Error

(independent from the action)

TDRL Model
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 ACTOR-CRITIC

 SARSA

 Q-LEARNING

Different Temporal-Difference (TD) 
methods 

State-dependent Reward Prediction Error

(independent from the action)

TDRL Model

P(at|st)       P(at|st) + α δt+1

Also used to update

the ACTOR
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 ACTOR-CRITIC

 SARSA

 Q-LEARNING

Different Temporal-Difference (TD) 
methods 

Reward Prediction Error dependent on the action 

chosen to be performed next

TDRL Model
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 ACTOR-CRITIC

 SARSA

 Q-LEARNING

Different Temporal-Difference (TD) 
methods 

Reward Prediction Error dependent on the best action

TDRL Model
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Links with biology
Activity of dopaminergic neurons

Dopamine
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TD-learning explains classical conditioning (predictive 
learning)

CLASSICAL CONDITIONING
Dopamine

Taken from Bernard Balleine’s lecture at Okinawa Computational Neuroscience Course (2005).
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reward
reinforcement

RS

Schultz et al. (1993);
Houk et al. (1995); Schultz et al. (1997).

+1

REINFORCEMENT LEARNING

 Analogy with dopaminergic neurons’ activity

δt+1 = rt+1 + γ . V(st+1) – V(st)

Dopamine
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reward
reinforcement

RS

+1

Schultz et al. (1993);
Houk et al. (1995); Schultz et al. (1997).

REINFORCEMENT LEARNING

δt+1 = rt+1 + γ . V(st+1) – V(st)

 Analogy with dopaminergic neurons’ activity

Dopamine
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reward
reinforcement

RS

0

Schultz et al. (1993);
Houk et al. (1995); Schultz et al. (1997).

REINFORCEMENT LEARNING

δt+1 = rt+1 + γ . V(st+1) – V(st)

 Analogy with dopaminergic neurons’ activity

Dopamine
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reward
reinforcement

RS

-1

Schultz et al. (1993);
Houk et al. (1995); Schultz et al. (1997).

REINFORCEMENT LEARNING

δt+1 = rt+1 + γ . V(st+1) – V(st)

 Analogy with dopaminergic neurons’ activity

Dopamine
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The Actor-Critic model

Barto (1995); Montague et al. (1996); Schultz et al. (1997); Berns 
and Sejnowski (1996); Suri and Schultz (1999); Doya (2000); Suri 
et al. (2001); Baldassarre (2002).
see Joel et al. (2002) for a review.

Dopaminergic neuron

Houk et al. (1995)

Dopamine
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The Actor-Critic model

also called:
Tapped-delay line

Temporal-order input
[0 0 1 0 0 0 0]

Montague et al. (1996); Suri & Schultz (2001)
Daw (2003); Bertin et al. (2007).

Dopaminergic neuron

Which state space as an 
input?

Dopamine
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Dopaminergic neuron

The Actor-Critic model

Temporal-order input
[0 0 1 0 0 0 0]

1

2

3

4

5

reward

or spatial or visual 
information

Which state space as an 
input?

Dopamine
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Wide application of RL models to 
model-based analyses of behavioral 

and physiological data during 
decision-making tasks

Dopamine
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Typical probabilistic decision-making task

Niv et al. (2006), commentary about the results presented in Morris et al. (2006) Nat Neurosci.

Dopamine
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Typical probabilistic decision-making task

Niv et al. (2006), commentary about the results presented in Morris et al. (2006) Nat Neurosci.

Dopamine
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Typical probabilistic decision-making task

Niv et al. (2006), commentary about the results presented in Morris et al. (2006) Nat Neurosci.

Dopamine
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Model-based analysis of brain data

Sequence of observed trials : Left (Reward); Left (Nothing); Right (Nothing); Left (Reward); …

RL model

?

Brain responses Prediction error

fMRI scanner

cf. travail de Mathias Pessiglione (ICM)

ou Giorgio Coricelli (ENS)

TD Applications
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Model-based analysis
Work by Jean Bellot (PhD student)

TD-learning models

Behavior of the animal

Bellot, Sigaud, Khamassi (2012) SAB conference.

Low fitting error

High fitting error



TDRL Model
Dopamine

TD Applications
Model-based RL

slide # 52 / 141

Model-based analysis
My post-doc work

• Analysis of single neurons recorded in the monkey 
dorsolateral prefrontal cortex and anterior cingulate 

cortex
• Correlates of prediction errors? Action values? Level 

of control/exploration?
Khamassi et al. (2013) Prog Brain Res; Khamassi et al. (in revision)

TD Applications
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Multiple regression analysis with bootstrap

Q

δ

β*

Khamassi et al. (2013) Prog Brain Res; Khamassi et al. (in revision)

Model-based analysis
My post-doc work

TD Applications
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This works well, but…

• Most experiments are single-step
• All these cases are discrete
• Very small number of states, actions
• We supposed a perfect state identification

TD Applications



TDRL Model
Dopamine

TD Applications
Model-based RL

slide # 55 / 141

Continuous reinforcement learning

Actions
1

2

3

4

5 reward

TD-Learning model applied to spatial navigation behavior learning 
in a robot performing the bio-inspired plus-maze task

Sensory input

Khamassi et al. (2005). Adaptive Behavior.
Khamassi et al. (2006). Lecture Notes in 

Computer Science

TD Applications
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Coordination by a self-organizing map

Actor-Critic multi-modules
neural network

Continuous reinforcement learning TD Applications
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Hand-tuned Autonomous Random

Continuous reinforcement learning TD Applications
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Autonomous

Two methods :

1. Self-Organizing Maps (SOMs)

2. specialization based on performance
(tests modules' capacity for state prediction)
Baldassarre (2002); Doya et al. (2002). Within a 
particular subpart of the maze, only the module 
with the most accurate reward prediction is 
trained. Each module thus becomes an expert 
responsible for learning in a given task subset.

Continuous reinforcement learning TD Applications
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average

Continuous reinforcement learning TD Applications
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Nb of iterations required

(Average performance during the second 
half of the experiment)

94
3,500

404
30,000

1. hand-tuned
2. specialization based on performance
3. autonomous categorization (SOM)
4. random robot

Continuous reinforcement learning TD Applications
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Nb of iterations required

(Average performance during the second 
half of the experiment)

94
3,500

404
30,000

1. hand-tuned
2. specialization based on performance
3. autonomous categorization (SOM)
4. random robot

Continuous reinforcement learning TD Applications
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Outline

1. Model-free Reinforcement Learning
 Temporal-Difference RL Algorithm
 Dopamine activity
 Wide application to Neuroscience of decision-making

2. Model-based Reinforcement Learning
 Off-line learning / Replay during sleep
 Dual-system RL
 Online parameters tuning (meta-learning)
 Link with Neurobehavioral data
 Applications to Robotics
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Off-learning (Model-based RL) and 
hippocampal & prefrontal cortex activity 

replay during sleep

Model-based RL
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REINFORCEMENT LEARNING

After

N simulations

Very long!

Model-based RL

learning rate (=0.1)discount factor (=0.9)

V(st) = V(st) + α . δt+1
δt+1 = rt+1 + γ . V(st+1) – V(st)
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TRAINING DURING SLEEP

Method in Artificial Intelligence:
Off-line Dyna-Q-learning

(Sutton & Barto, 1998)

Model-based RL
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To incrementally learn a model of transition and reward 
functions, then plan within this model by updates “in 
the head of the agent” (Sutton, 1990).

S : state space

A : action space
Transition function  T : S x A       S
Reward function  R : S x A R

Internal model

Model-based Reinforcement Learning Model-based RL
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Model-based Reinforcement Learning

s : state of the agent (  )

Model-based RL
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Model-based Reinforcement Learning

s : state of the agent (  )
maxQ=0.3 maxQ=0.9

maxQ=0.7

Model-based RL
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Model-based Reinforcement Learning

s : state of the agent (  )
a : action of the agent (go east) maxQ=0.3 maxQ=0.9

maxQ=0.7

Model-based RL
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Model-based Reinforcement Learning

s : state of the agent (  )
a : action of the agent (go east)

stored transition function T:
proba(        ) = 0.9
proba(        ) = 0.1
proba(        ) = 0

maxQ=0.3 maxQ=0.9

maxQ=0.7

Model-based RL
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Model-based Reinforcement Learning

s : state of the agent (  )
a : action of the agent (go east)

stored transition function T:
proba(        ) = 0.9
proba(        ) = 0.1
proba(        ) = 0

0.6 0                 0.9*0.7 + 0.1*0.9 + 0*0.3 + …

maxQ=0.3 maxQ=0.9

maxQ=0.7

Model-based RL
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Model-based Reinforcement Learning

No reward prediction error!
Only:
Estimated Q-values

Transition function
Reward function
This process is called Value Iteration or Dynamic prog.

Model-based RL
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Model-based Reinforcement Learning Model-based RL

Links with neurobiological data
Activity of hippocampal place neurons
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Nakazawa, McHugh, Wilson, Tonegawa (2004) Nature Reviews Neuroscience

Model-based RL
Hippocampal place cells
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Hippocampal place cells

• Reactivation of hippocampal place cells during sleep
(Wilson & McNaughton, 1994, Science)

Model-based RL
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Hippocampal place cells

• Forward replay of hippocampal place cells during
sleep (sequence is compressed 7 times) (Euston et
al., 2007, Science)

Model-based RL
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Sharp-Wave Ripple (SWR) events

 “Ripple” events = irregular 
bursts of population 
activity that give rise to 
brief but intense high-
frequency (100-250 Hz) 
oscillations in the CA1 
pyramidal cell layer.

Model-based RL
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Selective suppression of SWRs 
impairs spatial memory

 Girardeau G, Benchenane K, Wiener SI, Buzsáki G, 
Zugaro MB (2009) Nat Neurosci.

Model-based RL
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Contribution to decision making (forward 
planning) and evaluation of transitions

Johnson & Redish (2007) J Neurosci

Model-based RL



TDRL Model
Dopamine

TD Applications
Model-based RL

slide # 80 / 141

SUMMARY OF NEUROSCIENCE DATA
Replay their sequential activity during sleep (Foster & 

Wilson, 2006; Euston et al., 2007; Gupta et al., 2010)
Performance is impaired if this replay is disrupted 

(Girardeau, Benchenane et al. 2012; Jadhav et al. 
2012)

Only task-related replay in PFC (Peyrache et al., 2009)
Hippocampus may contribute to model-based navigation 

strategies, striatum to model-free navigation strategies 
(Khamassi & Humphries, 2012)

Hippocampal place cells
Model-based RL
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Applications to robot off-line learning
Work of Jean-Baptiste Mouret et al. @ ISIR Model-based RL

How to recover from damage without needing to identify the damage?
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Applications to robot off-line learning
Work of Jean-Baptiste Mouret et al. @ ISIR Model-based RL

The reality gap
Self-model vs reality: how to use a simulator?

Solution: Learn a transferability function (how well does the simulation 
match reality?) with SVM or neural networks.

Idea: the damage is a large reality gap.
Koos, Mouret & Doncieux. IEEE Trans Evolutionary Comput 2012
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Applications to robot off-line learning
Work of Jean-Baptiste Mouret et al. @ ISIR Model-based RL

Experiments

Koos, Cully & Mouret. Int J Robot Res 2013
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META-LEARNING
(regulation of decision-making)

1. Dual-system RL coordination
2. Online parameters tuning

Meta-Learning
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Multiple decision systems

(Daw Niv Dayan 2005, Nat Neurosci)

Model-based system                          Model-free sys.Skinner box (instrumental conditioning)

Behavior is initially model-based and becomes model-
free (habitual) with overtraining.

Model-based RL
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Yin et al. 2004; Balleine 2005; Yin & Knowlton 2006 

Habitual vs goal-directed: sensitive 
to changes in outcome Model-based RL
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Devalue

Yin et al. 2004; Balleine 2005; Yin & Knowlton 2006 

Habitual vs goal-directed: sensitive 
to changes in outcome Model-based RL
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Yin et al. 2004; Balleine 2005; Yin & Knowlton 2006 

Habitual vs goal-directed: sensitive 
to changes in outcome Model-based RL
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Goal-directed

Habitual

Yin et al. 2004; Balleine 2005; Yin & Knowlton 2006 

Habitual vs goal-directed: sensitive 
to changes in outcome Model-based RL
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Change R: fast to update

Goal-directed

Change R: slow to update

Habitual

Switch with 

experience

[reduce 

computational 

load]

Daw et al 2005 Nat Neurosci

Model-free vs model-based: 
outcome sensitivity Model-based RL
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Multiple decision systems

Keramati et al. (2011): extension of the Daw 2005 model 
with a speed-accuracy trade-off arbitration criterion.

Model-based RL
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Progressive shift from model-based 
navigation to model-free navigation

Khamassi & Humphries (2012) Frontiers in Behavioral Neuroscience

Model-based RL
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Model-based and model-free 
navigation strategies Model-based RL

Benoît Girard 2010 UPMC lecture

Model-based navigation Model-free navigation
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Martinet et al. (2011) model applied to the Tolman maze

Old behavioral evidence for
Place-based model-based RL Model-based RL
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Old behavioral evidence for
Place-based model-based RL

Martinet et al. (2011) model applied to the Tolman maze

Model-based RL
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MULTIPLE NAVIGATION STRATEGIES 
IN THE RAT

Devan and White, 1999

Packard and Knowlton, 2002 Rotation 180°

N

S

O E Rats with a lesion
of the hippocampus

Rats with a lesion of 
the dorsal striatum

Previous

platform location

Model-based RL
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MULTIPLE DECISION SYSTEMS IN A 
NAVIGATION MODEL

Model-free system

(basal ganglia)

Model-based 
system

(hippocampal 
place cells)

Work by Laurent Dollé:

Dollé et al., 2008, 2010, submitted
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MULTIPLE NAVIGATION STRATEGIES 
IN A TD-LEARNING MODEL

Model:

Dollé et al., 2010

Task with a cued platform (visible flag) changing location every 4 trials

Task of Pearce et al., 1998

Model-based RL
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PSIKHARPAX ROBOT

Caluwaerts et al. (2012) Biomimetics & Bioinspiration

Work by:

Ken Caluwaerts (2010)

Steve N’Guyen (2010)

Mariacarla Staffa (2011)

Antoine Favre-Félix (2011)
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PSIKHARPAX ROBOT

Planning strategy only

Caluwaerts et al. (2012) Biomimetics & Bioinspiration

Planning strategy + Taxon strategy

Model-based RL
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CURRENT APPLICATIONS TO 
THE PR2 ROBOT

Travaux de :

Erwan Renaudo

Omar Islas Ramirez
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CURRENT APPLICATIONS TO 
HUMAN-ROBOT INTERACTION

Travaux de :

Erwan Renaudo

Collaboration : 

Alami et al (LAAS)

Task: Clean the table

Current state: A priori given action plan 

(right image)

Goal: Autonomous learning by the robot

Model-based RL
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Pavlovian autoshaping

Sign-trackers Goal-trackers

Flagel et al. (2011). “A selective role for dopamine in stimulus-reward learning”. Nature, 
469:53:7.

Meta-Learning
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Pavlovian autoshaping

Sign-trackers Goal-trackers

Flagel et al. (2011). “A selective role for dopamine in stimulus-reward learning”. Nature, 
469:53:7.

Fast Scan Cyclic Voltammetry (FSCV) in the ventral striatum.

Meta-Learning
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Pavlovian autoshaping

Sign-trackers Goal-trackers

Flagel et al. (2011). “A selective role for dopamine in stimulus-reward learning”. Nature, 
469:53:7.

Fast Scan Cyclic Voltammetry (FSCV) in the ventral striatum.

Meta-Learning
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Pavlovian autoshaping

Sign-trackers Goal-trackers

Flagel et al. (2011). “A selective role for dopamine in stimulus-reward learning”. Nature, 
469:53:7.

Systemic injection of flupentixol prior to each session.

Meta-Learning
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Computational model

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Meta-Learning
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Computational model

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Dopamine

McClure et al. (2003); 
Humphries et al. (2012)

Schultz et al. (1997)

Meta-Learning



TDRL Model
Dopamine

TD Applications
Model-based RL
slide # 109 / 141

Computational model

Modelling the task as a Markov Decision Process

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Meta-Learning



TDRL Model
Dopamine

TD Applications
Model-based RL
slide # 110 / 141

Computational model

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

with ω = 0.499 (STs), ω = 0.048 (GTs), ω = 0.276 (IGs)

Meta-Learning
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Computational model

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

with ω = 0.499 (STs), ω = 0.048 (GTs), ω = 0.276 (IGs)

Meta-Learning
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Computational model

Behavioral results

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Meta-Learning
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Computational model

Physiological results

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Meta-Learning
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Computational model

Physiological results

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Meta-Learning
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Computational model

Pharmacological results

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Meta-Learning
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Computational model

Summary of the simulation results

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Meta-Learning
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Computational model

Experimental predictions

• DA dip at each magazine visit during ITI.

• DA patterns in the intermediate group.

• Shortening the ITI should change DA pattern in GTs.

• Removing the magazine during ITI should abolish the 
difference in DA patterns between STs and GTs.

• Reducing the ITI duration should increase the 
tendency to goal-track in the overall population.

Lesaint, Sigaud, Flagel, Robinson, Khamassi (2014) PLOS Computational Biology.

Meta-Learning
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META-LEARNING
(regulation of decision-making)

1. Dual-system RL coordination
2. Online parameters tuning

Meta-Learning
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Dopamine: TD error 
Acetylcholine: learning rate 
Noradrenaline: exploration 

Serotonin: temporal discount Doya, 2002

META-LEARNING
Meta-Learning

exp(β . Q(s,a))

Q(s,a)  Q(s,a) + α . δ

Σ exp(β . Q(s,b))
b

P(a) =  

Action values update

Action selection

Reinforcement signalδ = r + γ . max[Q(s’,a’)] – Q(s,a)
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Effect of β on 

exploration

META-LEARNING
Meta-Learning

exp(β . Q(s,a))

Σ exp(β . Q(s,b))
b

Boltzmann softmax equation: P(a) =  

Doya, 2002
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• Meta-learning methods propose to tune RL parameters as a 
function of average reward and uncertainty (Schweighofer & 

Doya, 2003).

Can we use such meta-learning principles to better 
understand neural mechanisms in the prefrontal cortex ?

condition change

Meta-Learning
META-LEARNING
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Back to my post-doc work

Question: How did the monkeys learn to re-explore 
after each presentation of the PCC signal?
Hypothesis: By trial-and-error during pretraining.

Khamassi et al. (2011) Front in Neurorobotics; Khamassi et al. (2013) Prog Brain Res

Meta-Learning
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Computational model

β*: exploratory variable used to modulate β

Meta-Learning

Khamassi et al. (2011) Frontiers in Neurorobotics
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Meta-Learning

Robotic model of monkey behavior 
in this task
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Meta-Learning
Computational model

Khamassi et al. (2011) Frontiers in Neurorobotics

 Reproduction of the global properties of monkey 
performance in the PS task.
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Multiple regression analysis with bootstrap

Q

δ

β*

Khamassi et al. (2013) Prog Brain Res; Khamassi et al. (2014) Cerebral Cortex

Model-based analysis
My post-doc work Meta-Learning
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• In the previous task, monkeys and the model a priori 
‘know’ that PCC means a reset of exploration rate 
and action values.

• Here, we want the iCub robot to learn it by itself.

Meta-Learning

Meta-learning applied to Human-
Robot Interaction
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Application to simple learning in 
humanoid robot

Khamassi et al. (2011) Frontiers in Neurorobotics

Meta-Learning
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Go signal

Error

Wooden boardRewardChoice

Human’s hands Cheating Cheating

Meta-learning applied to Human-
Robot Interaction Meta-Learning
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meta-value(i)  meta-value(i) + α’. Δ[averageReward]

Threshold

Meta-learning applied to Human-
Robot Interaction Meta-Learning
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CONCLUSION OF THE ACC-LPFC 
META-LEARNING PART

 ACC is in an appropriate position to evaluate feedback 
history to modulate the exploration rate in LPFC.

 ACC-LPFC interactions could regulate exploration 
based on mechanisms capturable by the meta-
learning framework.

 Such modulation could be subserved via 
noradrenaline innervation in LPFC.

 Such a pluridisciplinary approach can contribute both 
to a better understanding of the brain and to the 
design of algorithms for autonomous decision-making.

Meta-Learning
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Meta-learning and motor learning

 Can meta-learning principles be useful for the 
integration of reinforcement learning and motor 
learning?

Meta-Learning
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Structure learning
(Braun Aertsen Wolpert Mehring 2009) Meta-Learning
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Structure learning
(Braun Aertsen Wolpert Mehring 2009) Meta-Learning



TDRL Model
Dopamine

TD Applications
Model-based RL
slide # 135 / 141

Structure learning
(Braun Aertsen Wolpert Mehring 2009) Meta-Learning
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Schmidhuber on meta-learning (1)

 Recurrent neural-networks applied to Robotics

Mayer et al. (IROS 2006)

Meta-Learning
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Schmidhuber on meta-learning (2)

 RL with self-modifying policies (actions that can edit 
the policy itself)

 Success-story criterion (time varying set V of past 
checkpoints that led to long-term reward 
accelerations)

Meta-Learning
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Schmidhuber on motor learning

 Learning maps of task-relevant motor behaviors under 
specified constraints (e.g. maintain hands parallel ; do 
not touch box nor table ; …)

 How can these primitive constrained motor behaviors 
be used by decision system and high-level goal-
directed learning?

Stollenga et al. (IROS 2013)

Meta-Learning
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SUMMARY

 Dopamine neurons encode a reward prediction error.
 Model-based analysis in Neurosci of Decision-making
 Reinforcement Learning models need to be refined to 

explain behavior / neural activity:
 multiple parallel decision systems.
 off-line learning during sleep.
 meta-learning (ACC-DLPFC interactions).

 These model improvements can produce testable 
experimental predictions (Pavlovian autoshaping ; 
Navigation ; L-DOPA in Parkinson disease ; …)
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CONCLUSION

 The Reinforcement Learning framework provides 
algorithms for autonomous agents.

 It can also help explain neural activity in the brain.
 Such a pluridisciplinary approach can contribute both 

to a better understanding of the brain and to the 
design of algorithms for autonomous decision-making.
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