Deep Learning

Alexandre Allauzen, Michèle Sebag CNRS & Université Paris-Sud

Oct. 17th, 2018

Credit for slides: Sanjeev Arora; Yoshua Bengio; Yann LeCun; Nando de Freitas; Pascal Germain; Léon Gatys; Weidi Xie; Max Welling; Victor Berger; Kevin Frans; Lars Mescheder et al.; Mehdi Sajjadi et al.; Pascal Germain et al.; Ian Goodfellow; Arthur Pesah

Adversarial examples

Domain Adaptation: Formal background

Introduction

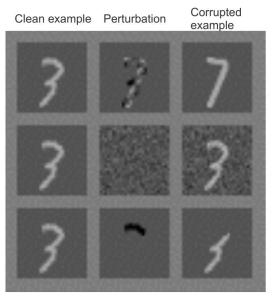
Position of the problem Applications
Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms

Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

What happens when perturbing an example?



Informed perturbations

Goodfellow et al. 15

For x' perturbed from x

$$F(x',\theta) \approx F(x,\theta) + \langle x - x', \nabla_x F(x,\theta) \rangle$$

Nasty small perturbations?

Maximize
$$\langle x - x', \nabla_x F(x, \theta) \rangle$$

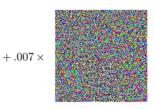
subject to

$$||x - x'||_{\infty} \le \epsilon$$

Example

Goodfellow et al. 15

x
"panda"
57.7% confidence



 $\begin{aligned} & \text{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y)) \\ & \text{"nematode"} \\ & 8.2\% \text{ confidence} \end{aligned}$

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"

99.3 % confidence

Example 2

Karpathy et al. 15

The lesson of adversarial examples

- ▶ Good performances do not imply that the NN got it!
- ▶ Small modifications are enough to make it change its diagnosis
- ▶ Terrible implications for autonomous vehicles !
- An arms race: modify the learning criterion; find adversarial examples defeating the modified criterion; iterate
- ▶ More in the Course/Seminar!

Adversarial examples

Domain Adaptation: Formal background

Introduction

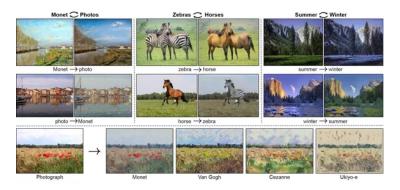
Position of the problem Applications Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms

Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxation

What is domain adaptation?



some differences should make no difference

Domain adaptation:

- Learning from poor data by leveraging other (not really, not much different) data
- ▶ Teaching the learner to overcome these differences

Adversarial examples

Domain Adaptation: Formal background

Introduction

Position of the problem Applications Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms

Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

Have you been to Stockholm recently?

\dots you recognize the castle \dots

regardless of light, style, angle...

Formally

Domain Adaptation

- ► Task: classification, or regression
- ► A source domain
- ► A target domain

source distribution \mathcal{D}_s target distribution \mathcal{D}_t

Idea

- Source and target are "sufficiently" related
- ... one wants to use source data to improve learning from target data

Applications

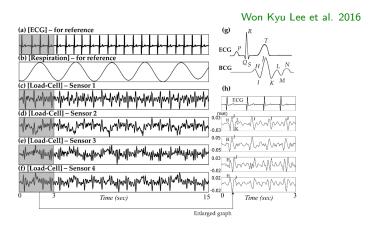
- 1. Calibration
- 2. Physiological signals
- 3. Reality gap (simulation vs real-world)
- 4. Lab essays
- 5. Similar worlds

Application 1. Calibration

Different devices

- same specifications (in principle)
- ▶ in practice response function is biased
- ▶ Goal: recover the output complying with the specifications.

Application 2. Physiological signals



Different signals

- ► Acquired from different sensors (different price, SNR),
- ▶ Goal: predict from poor signal

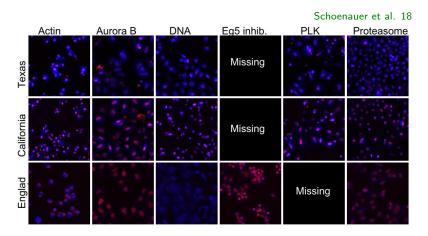
Application 3. Bridging the reality gap

Source world aimed to model target world

- ► Target (expensive): real-world
- ► Source (cheap, approximate): simulator
- ► Goal: getting best of both worlds

In robotics; for autonomous vehicles; for science (e.g. Higgs boson ML challenge); ...

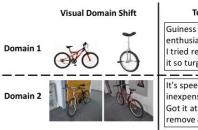
Application 4. Learning across labs



Many labs, many experiments in quantitative microscopy

- ► Each dataset: known and unknown perturbations; experimental bias
- ▶ Goal: Identify drugs in datasets: *in silico* discovery.

Application 5. Bridges between worlds



Textual Domain Shift

Guiness is an engaging and enthusiastic speaker.

I tried reading this book but found it so turgid and poorly written.

It's speedy and space saving and inexpensive.

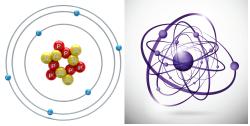
Got it at Walmart can't even remove a scuff.

Different domains

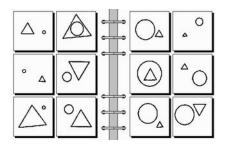
- Supposedly related
- One (source) is well-known;
- ► The other (target) less so: few or no labels
- ► Goal: Learn faster/better on the target domain

At the root of domain adaptation; Analogical reasoning

Hofstadter 1979: Analogy is at the core of cognition



 $\textbf{Solar system} \, \leftrightarrow \, \textbf{Atom and electrons}$



Roots of domain adaptation, 2

Training on male mice; testing on male and female mice?

Relaxing the iid assumption:

when training and test distributions differ

- ► Class ratios are different Kubat et al. 97; Lin et al, 02; Chan and Ng 05
- Marginals are different: Covariate shift
 Shimodaira 00; Zadrozny 04; Sugiyama et al. 05; Blickel et al. 07

Adversarial examples

Domain Adaptation: Formal background

Introduction

Position of the problem Applications
Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms

Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

Settings: Domain adaptation wrt Transfert learning

Notations

	Joint dis.	Marginal Instance dis.	Conditional dis.
Source	\mathcal{D}_s	$P_s(X)$	$P_s(Y X)$
Target	\mathcal{D}_t	$P_t(X)$	$P_t(Y X)$

The settings

- ▶ Same instance distributions $P_s(X) = P_t(X)$
 - ► Same conditional distributions $P_s(Y|X) == P_t(Y|X)$ Usual setting
 - ▶ Different conditional distributions $P_s(Y|X) \neq P_t(Y|X)$ Concept drift Inductive transfert learning
- ▶ Different instance distributions $P_s(X) \neq P_t(X)$
 - Same conditional distributions $P_s(Y|X) == P_t(Y|X)$ Domain adaptation

 Transductive transfert learning
 - ▶ Different conditional distributions $P_s(Y|X) \neq P_t(Y|X)$ Concept drift Unsupervised transfert learning

NB: For some authors, all settings but the usual one are Transfer learning.

NB: Multi-task, $dom(Y_s) \neq dom(Y_t)$

NB: A continuum from Domain Adaptation to Transfer Learning to Multi-task learning

Examples of concept drift

- Which speed reached depending on the actuator value ? decreases as the motor is aging
- ► The concept of "chic" ? depends on the century

nice, cool, ...

Related: Lifelong learning

	Dataset	instances	attributes	Reference
player increases its abilities through time	Chess	503	8	(Žliobaite, 2010)
poker hands were generated in order	Poker	100,000	10	(Olorunnimbe et al., 2015)
 instance is a market state in 30 minutes 	Electricity	$45,\!312$	8	(Baena-García et al., 2006)
synthetic data with three drift points of abrupt	Stagger	70,000	3	(Gama et al., 2014)
concept change		AutoM	L2 challenge	data sets

AutoML2 challenge data sets

Shameless ad for AutoML3: AutoML for Lifelong ML-2018

Toy example of domain adaptation: the intertwining moons

Settings, 2

General assumptions

- Wealth of information about source domain
- ► Scarce information about target domain

Domain Adaptation aims at alleviating the costs

- of labelling target examples
- of acquiring target examples

No target labels

Unsupervised Domain Adaptation

Partial labels

Partially unsupervised Domain Adaptation

Few samples

Few-shot Domain Adaptation

Adversarial examples

Domain Adaptation: Formal background

Introduction

Position of the problem Applications
Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms

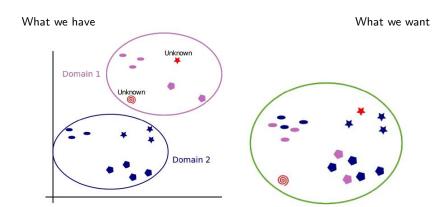
Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

Key Concept: Distance between source and target marginal distributions

- 1. The larger, the more difficult the domain adaptation
- 2. Can we measure it ? $\qquad \qquad \text{for theory} \\ \text{if so, turn the measure into a loss, to be minimized}$
- 3. Can we reduce it ? for algorithms

The 2 moons problem

Domain adaptation, intuition



Distance between source and target marginal distributions, followed

Main strategies

ightharpoonup Reduce it in original space \mathcal{X}

Importance sampling

Modify source representation

Optimal transport

Map source and target onto a third latent space

Domain adversarial

▶ Build generative mechanisms in latent space

Generative approaches

Milestone: defining distances on distributions

Discrepancy between source and target marginal distributions

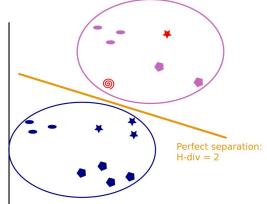
Ben-David 06, 10

 ${\cal H}$ Divergence between P_s and P_t

$$d_X(P_s, P_t) = 2 \sup_{h \in \mathcal{H}} |Pr_x|_{r \sim P_s} (h(x) = 1) - Pr_{x \sim P_t} (h(x) = 1)|$$

This divergence is high if there exists h separating P_s and P_t .

Perfect separation case

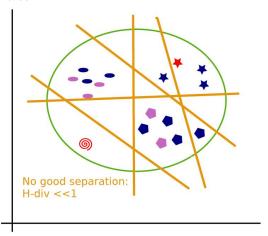


Discrepancy between source and target marginal distributions, 2

Ben-David 06, 10

$$d_X(P_s,P_t) = 2 \underset{h \in \mathcal{H}}{sup} \left| Pr_{x \sim P_s}(h(x) = 1) - Pr_{x \sim P_t}(h(x) = 1) \right|$$

Perfect mixt case



Discrepancy between source and target marginal distributions, 3

Approximation of ${\cal H}$ divergence

Ben-David et al. 2006, 2010 Proxy A-distance (PAD)

$$\widehat{d_X(P_s, P_t)} = 2\left(1 - \min_{h} \left(\frac{1}{n} \sum_{i} 1_{h(x_i) = 0} + \frac{1}{n'} \sum_{j} 1_{h(x_j') = 1}\right)\right)$$

The divergence can be approximated by the ability to empirically discriminate between source and target examples.

Comment

Estimation of distribution differences \rightarrow two-sample tests.

Bounding the domain adaptation risk

Ben-David et al. 2006, 2010

Notations

- $ightharpoonup R_s(h) = \mathbb{E}_{\mathcal{D}_s} \mathcal{L}(h)$
- $ightharpoonup R_t(h) = \mathbb{E}_{\mathcal{D}_t} \mathcal{L}(h)$

risk of h under source distribution risk of h under target distribution

Theorem

With probability $1 - \delta$, if $d(\mathcal{H})$ is the VC-dimension of \mathcal{H} ,

$$R_t(h) \leq \widehat{R_s(h)} + \widehat{d_X} + C\sqrt{\frac{4}{n}(d(\mathcal{H})log\frac{2}{d} + log\frac{4}{\delta})} + \mathsf{Best\ possible}$$

and

Best possible =
$$\inf_{h} (R_S(h) + R_T(h))$$

What we want (risk on h wrt $\mathcal{D}_{\mathcal{T}}$) is bounded by:

- empirical risk on source domain
- ► + Proxy A-distance
- + error related to possible overfitting
- ▶ + min error one can achieve on both source and target distribution.

Interpretation

Ben-David et al. 2006, 2010

The regret

With probability $1 - \delta$, if $d(\mathcal{H})$ is the VC-dimension of \mathcal{H} ,

$$R_{\mathrm{t}}(h) - \mathsf{Best} \ \mathsf{possible} \leq \widehat{R_{\mathrm{s}}(h)} + C\sqrt{\frac{4}{n}(d(\mathcal{H})log\frac{2}{d(\mathcal{H})} + log\frac{4}{\delta})} + \widehat{d_X}$$

Hence a domain adaptation strategy:

- ightharpoonup Choose ${\mathcal H}$ with good potential
- Minimize $\widehat{d_X}$: through transporting source data; or mapping source and target toward another favorable space.

Adversarial examples

Domain Adaptation: Formal background

Introduction

Position of the problem Applications Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms

Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

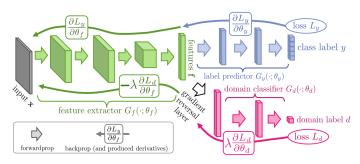
Extending Adversarial Ideas to Domain Adaptation

Input

$$\mathcal{E}_s = \{(x_{s,i}, y_i), i = [[1, n]]\}$$
$$\mathcal{E}_t = \{(x_{t,j}), j = [[1, m]]\}$$

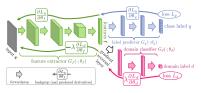
Principle

- ▶ What matters is the distance between \mathcal{D}_s and \mathcal{D}_t Ben David et al. 2010
- Strategy: mapping both on a same latent space in an indistinguishable manner



Domain Adversarial Neural Net

Ganin et al. 2015; 2016



Adversarial Modules

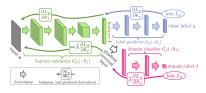
- ► Encoder G_f green $x_s \mapsto G_f(x_s)$; $x_t \mapsto G_f(x_t)$
- ▶ Discriminator G_d : trained from $\{(G_f(x_{s,i}), 1)\} \cup \{(G_f(x_{t,j}), 0)\}$ red Find $\max_{G_f} \min_{G_d} \mathcal{L}(G_d, G_f)$

And a Classifier Module

- $G_{v} : \mathcal{L}(G_{v}) = \sum_{i} \ell(G_{v}(G_{f}(x_{s,i})), y_{i})$ blue
- ▶ NB: needed to prevent trivial solution $G_f \equiv 0$

DANN, 2

Ganin et al. 2015; 2016



Training

1. Classifier: backprop from $\nabla(\mathcal{L}(G_y))$

blue

2. Encoder: backprop from $\nabla(\mathcal{L}(G_y))$ and $-\nabla(\mathcal{L}(G_d))$

green

3. Discriminator: backprop from $\nabla(\mathcal{L}(G_d))$

red

The algorithm

Algorithm 1 Shallow DANN – Stochastic training update

```
tmp \leftarrow \lambda(1 - G_d(G_f(\mathbf{x}_i)))
  1: Input:
                                                                                                               20:
       - samples S = \{(\mathbf{x}_i, y_i)\}_{i=1}^n and T = \{\mathbf{x}_i\}_{i=1}^{n'},
                                                                                                                                                         \times \mathbf{u} \odot G_f(\mathbf{x}_i) \odot (1 - G_f(\mathbf{x}_i))

    hidden laver size D.

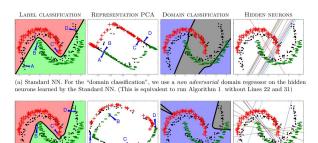
                                                                                                               21:
                                                                                                                                  \Delta_{\mathbf{b}} \leftarrow \Delta_{\mathbf{b}} + \operatorname{tmp}

    adaptation parameter λ,

                                                                                                               22:
                                                                                                                                  \Delta \mathbf{w} \leftarrow \Delta \mathbf{w} + \operatorname{tmp} \cdot (\mathbf{x}_i)^{\top}
       — learning rate \mu,
                                                                                                               23:
                                                                                                                                  # ...from other domain
 2: Output: neural network {W, V, b, c}
                                                                                                               24:
                                                                                                                                 i \leftarrow \text{uniform\_integer}(1, \dots, n')
                                                                                                               25:
                                                                                                                                  G_f(\mathbf{x}_i) \leftarrow \operatorname{sigm}(\mathbf{b} + \mathbf{W}\mathbf{x}_i)
 3: \mathbf{W}, \mathbf{V} \leftarrow \operatorname{random\_init}(D)
                                                                                                               26:
                                                                                                                                  G_d(G_f(\mathbf{x}_i)) \leftarrow \operatorname{sigm}(d + \mathbf{u}^\top G_f(\mathbf{x}_i))
 4: \mathbf{b}, \mathbf{c}, \mathbf{u}, d \leftarrow 0
                                                                                                               27:
                                                                                                                                  \Delta_d \leftarrow \Delta_d - \lambda G_d(G_f(\mathbf{x}_i))
  5: while stopping criterion is not met do
                                                                                                                                  \Delta_{n} \leftarrow \Delta_{n} - \lambda G_{d}(G_{f}(\mathbf{x}_{i}))G_{f}(\mathbf{x}_{i})
             for i from 1 to n do
                                                                                                               28:
  7:
                                                                                                               29:
                                                                                                                                  tmp \leftarrow -\lambda G_d(G_f(\mathbf{x}_i))
                  # Forward propagation
                                                                                                                                                          \times \mathbf{u} \odot G_f(\mathbf{x}_i) \odot (1 - G_f(\mathbf{x}_i))
 8:
                  G_f(\mathbf{x}_i) \leftarrow \operatorname{sigm}(\mathbf{b} + \mathbf{W}\mathbf{x}_i)
 9:
                  G_u(G_f(\mathbf{x}_i)) \leftarrow \operatorname{softmax}(\mathbf{c} + \mathbf{V}G_f(\mathbf{x}_i))
                                                                                                               30:
                                                                                                                                  \Delta_{\mathbf{b}} \leftarrow \Delta_{\mathbf{b}} + \operatorname{tmp}
                                                                                                               31:
                                                                                                                                  \Delta \mathbf{w} \leftarrow \Delta \mathbf{w} + \operatorname{tmp} \cdot (\mathbf{x}_i)^{\top}
10:
                   # Backpropagation
                                                                                                               32:
                                                                                                                                  # Update neural network parameters
11:
                   \Delta_c \leftarrow -(\mathbf{e}(y_i) - G_y(G_f(\mathbf{x}_i)))
                   \Delta \mathbf{v} \leftarrow \Delta_c \ G_f(\mathbf{x}_i)
                                                                                                               33:
                                                                                                                                  \mathbf{W} \leftarrow \mathbf{W} - \mu \Delta \mathbf{w}
12:
                                                                                                               34:
                                                                                                                                 V \leftarrow V - \mu \Delta_V
13:
                   \Delta_{\mathbf{b}} \leftarrow (\mathbf{V}^{\top} \Delta_{\mathbf{c}}) \odot G_f(\mathbf{x}_i) \odot (1 - G_f(\mathbf{x}_i))
                                                                                                               35:
                                                                                                                                  \mathbf{b} \leftarrow \mathbf{b} - \mu \Delta_{\mathbf{b}}
                   \Delta \mathbf{w} \leftarrow \Delta \mathbf{b} \cdot (\mathbf{x}_i)^{\top}
14:
                                                                                                               36:
                                                                                                                                 \mathbf{c} \leftarrow \mathbf{c} - \mu \Delta_{\mathbf{c}}
15:
                   # Domain adaptation regularizer...
                                                                                                               37:
                                                                                                                                  # Update domain classifier
16:
                   # ...from current domain
                                                                                                                                  \mathbf{u} \leftarrow \mathbf{u} + \mu \Delta_{\mathbf{u}}
                                                                                                               38:
17:
                  G_d(G_f(\mathbf{x}_i)) \leftarrow \operatorname{sigm}(d + \mathbf{u}^\top G_f(\mathbf{x}_i))
                                                                                                                                 d \leftarrow d + \mu \Delta_d
                                                                                                               39:
18:
                   \Delta_d \leftarrow \lambda(1 - G_d(G_f(\mathbf{x}_i)))
                                                                                                               40:
                                                                                                                            end for
19:
                   \Delta_{n} \leftarrow \lambda (1 - G_d(G_f(\mathbf{x}_i))) G_f(\mathbf{x}_i)
                                                                                                               41: end while
```

Note: In this pseudo-code, $\mathbf{e}(y)$ refers to a "one-hot" vector, consisting of all 0s except for a 1 at position y, and \odot is the element-wise product.

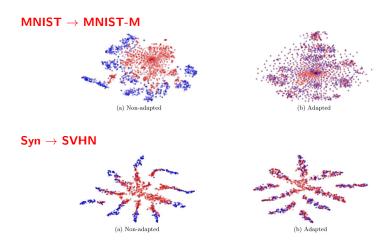
The intertwinning moons



(b) DANN (Algorithm 1)

- ▶ left: the decision boundary
- 2nd left: apply PCA on the feature layer
- ▶ 3rd left: discrimination source vs target
- ▶ right: each line corresponds to hidden neuron = .5

Mixing the distributions in latent space



Evaluation

Top: SVHN; Bottom: MNIST

Usual practice

- ► The reference experiment: adapting from Street View House Numbers (SVHN, source) to MNIST (handwritten digits)
- Score: accuracy on the test set of MNIST.
- ▶ Caveat: reported improvements might come from:
 - 1. algorithm novelty;
 - 2. neural architecture;
 - 3. hyperparameter tuning ?
- Lesion studies are required!

Experimental setting

Ganin et al., 16

The datasets

SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS

TARGET MNIST-M SVHN MNIST GTSRB

- ► MNIST: as usual
- MNIST-M: blend with patches randomly extracted from color photos from BSDS500
- SVHN: Street-View House Number dataset
- Syn Numbers: figures from WindowsTM fonts, varying positioning, orientation, background and stroke colors, blur.
- ▶ Street Signs: real (430) and synthetic (100,000)

Results

Ganin et al., 16

Метнор	Source	MNIST	Syn Numbers	SVHN	Syn Signs
	TARGET	MNIST-M	SVHN	MNIST	GTSRB
Source only		.5225	.8674	.5490	.7900
SA (Fernando et al., 2013)		.5690 (4.1%)	.8644~(-5.5%)	$.5932\ (9.9\%)$.8165~(12.7%)
DANN		. 7666 (52.9%)	.9109 (79.7%)	. 7385 (42.6%)	.8865 (46.4%)
Train on target		.9596	.9220	.9942	.9980

Score DANN: 74%

Adversarial examples

Domain Adaptation: Formal background

Introduction

Position of the problem Applications Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms

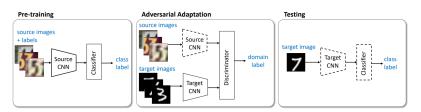
Domain Adversarial Neural Network Evaluating DA algorithms DANN improvements and relaxations

Decoupling the encoder: ADDA

Tzeng et al., 2017

Adversarial Discriminative Domain Adaptation (ADDA)

- ightharpoonup DANN used a single encoder G_f for both source and target domains
- ▶ ADDA learns $G_{f,s}$ and $G_{f,t}$ independently, both subject to G_d (domain discriminator); and $G_{f,s}$ subject to G_y
- Rationale: makes it easier to handle source and target with different dimensionality, specificities,...



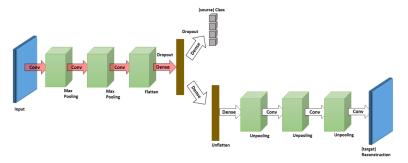
Score DANN: 74% Score ADDA: 76%

Replacing domain discrimination with reconstruction: DRCN

Ghifary et al., 2016

Deep Reconstruction-Classification Networks (DRCN)

- ▶ DANN used a discriminator G_d to discriminate $G_f(x_t)$ and $G_f(x_s)$
- ▶ DRCN replaces G_d with a decoder s.t. $G_d(G_f(x_t)) \approx x_t$
- Rationale: The latent space preserves all information from target, while enabling classification on source.



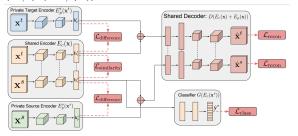
Score DANN: 74% Score ADDA: 76%

Hybridizing ADDA and DRCN: Deep Separation Networks

Bousmalis et al., 2016

Deep Separation Networks (DSN)

- Encoder:
 - ► A shared part G_{f,u}
 - A private source part G_{f,s}
 - A private domain part G_{f,t}
- ▶ Discriminator → Decoder
 - $G_d(G_{f,u}(x_s), G_{f,s}(x_s)) \approx x_s$
 - $ightharpoonup G_d(G_{f,u}(x_t), G_{f,t}(x_t)) \approx x_t$



(... stands for "shared weights")

Score DANN: 74% Score ADDA: 76% Score DRCN: 82%

Not covered...

▶ Optimal transport

- Couturi Peyre 18, Courty et al. 17,18
- ▶ Generative Networks and domain to domain translations

Taigman et al. 16; Sankaranarayanan et al. 17; Liu et al. 17 Choi et al. 17; Anoosheh et al., 2017; Shu et al. 18

► Partial domain adaptation

Motiian et al. 17a, b; Schoenauer-Sebag 18

Conclusions

Theory and Validation

▶ Most theoretical analysis relies on

- Ben David et al. 06; 10
- When using feature space, something is underlooked (see DRCN).
- Comprehensive ablation studies needed to assess the mixture of losses/architectures
- Assessing the assumptions

Applications

Many applications on vision

The Waouh effect ?

- Reinforcement learning !
- ► Natural Language processing !

Take home message

What is domain adaptation:

- ▶ Playing with tasks and distributions
- Making assumptions about how they are related
- ► Testing your assumptions

Domain adaptation is like playing Lego with ML