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What happens when perturbing an example ?

Corrupted

Clean example Perturbation
example

Anything !



Informed perturbations

Goodfellow et al. 15
For x’ perturbed from x

F(x',0) = F(x,0) + (x — x', V<F(x, 0))
Nasty small perturbations ?
Maximize (x — x', V«F(x, 0))

subject to
I = x'lloo < €



Example

“panda”
57.7% confidence

+.007 x

sign(VzJ(0,x,y))

“nematode”
8.2% confidence

Goodfellow et al. 15

x +
esign(VJ(0,z,y))
“gibbon”

99.3 % confidence



EXar“pIe 2

Karpathy et al. 15
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The lesson of adversarial examples

v

Good performances do not imply that the NN got it !

» Small modifications are enough to make it change its diagnosis

v

Terrible implications for autonomous vehicles !

> An arms race: modify the learning criterion; find adversarial examples
defeating the modified criterion; iterate

v

More in the Course/Seminar !

52



Domain Adaptation: Formal background



What is domain adaptation ?

Summer ;= Winter

some differences should make no difference

Domain adaptation:

> Learning from poor data by leveraging other (not really, not much
different) data

» Teaching the learner to overcome these differences




Introduction
Position of the problem
Applications
Settings



Have you been to Stockholm recently ?
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... you recognize the castle ...

AT AT AT AT

regardless of light, style, angle...

12/52



Formally

Domain Adaptation

» Task: classification, or regression

» A source domain source distribution Ds
» A target domain target distribution D,
Idea

> Source and target are “sufficiently” related

> ... one wants to use source data to improve learning from target data
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Applications

Calibration
Physiological signals
Reality gap (simulation vs real-world)

Lab essays

ok w =

Similar worlds
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Application 1. Calibration

Different devices

> same specifications (in principle)

> in practice response function is biased
» Goal: recover the output complying with the specifications

[m]

=

1PN G4
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Application 2. Physiological signals

Won Kyu Lee et al. 2016
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Different signals

» Acquired from different sensors (different price, SNR),
» Goal: predict from poor signal
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Application 3. Bridging the reality gap

REAL WORLD FLIGHT SIMULATOR

Source world aimed to model target world
> Target (expensive): real-world
> Source (cheap, approximate): simulator
> Goal: getting best of both worlds

In robotics; for autonomous vehicles; for science (e.g. Higgs boson ML
challenge); ...
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Application 4. Learning across labs

Schoenauer et al. 18
LK

Proteasome

Missing

Aurora B DNA P

Many labs, many experiments in quantitative microscopy

California Texas

Englad

» Each dataset: known and unknown perturbations; experimental bias

» Goal: Identify drugs in datasets: in silico discovery.



Application 5. Bridges between worlds

Visual Domain Shift Textual Domain Shift

Guiness is an engaging and

- N .
. enthusiastic speaker.
Domain 1 V - | tried reading this book but found
'@ it so turgid and poorly written.

It's speedy and space saving and
Domain 2 inexpensive.

Got it at Walmart can't even
remove a scuff.

Different domains
» Supposedly related
> One (source) is well-known;
> The other (target) less so: few or no labels

» Goal: Learn faster/better on the target domain
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At the root of domain adaptation; Analogical reasoning
Hofstadter 1979: Analogy is at the core of cognition

Solar system <> Atom and electrons

' oN

Bongard 1Q tests
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Roots of domain adaptation, 2

Training on male mice; testing on male and female mice ?

Relaxing the iid assumption:
when training and test distributions differ

» Class ratios are different Kubat et al. 97; Lin et al, 02; Chan and Ng 05

» Marginals are different: Covariate shift
Shimodaira 00; Zadrozny 04; Sugiyama et al. 05; Blickel et al. 07
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Adversarial examples

Domain Adaptation: Formal background

Introduction

Settings

Key concept: distance between source and target distributions

Some Domain Adaptation Algorithms
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Settings: Domain adaptation wrt Transfert learning

Notations
‘ Joint dis. ‘ Marginal Instance dis.  Conditional dis.

Ds ‘ Ps(X) Ps(Y1]X)

Source

Target D: P:(X) P:(Y|X)

The settings
» Same instance distributions Ps(X) = P¢(X)
> Same conditional distributions Ps(Y|X) == P:(Y|X) Usual setting

> Different conditional distributions Ps(Y|X) # P:(Y|X) Concept drift
Inductive transfert learning

» Different instance distributions Ps(X) # P¢(X)
> Same conditional distributions Ps(Y|X) == P;(Y|X) Domain adaptation
Transductive transfert learning

> Different conditional distributions Ps(Y|X) # P:(Y|X) Concept drift
Unsupervised transfert learning

NB: For some authors, all settings but the usual one are Transfer learning.
NB: Multi-task, dom(Ys) # dom(Y;)

NB: A continuum from Domain Adaptation to Transfer Learning to Multi-task
learning
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Examples of concept drift

» Which speed reached depending on the actuator value ?
decreases as the motor is aging

» The concept of “chic” ?
depends on the century nice, cool, ...

Related: Lifelong learning
Dataset  instances attributes Reference

. 5:2/3& ;]nﬁlr;e]gses its abilities  (Thess 503 8 (Zliobaite, 2010)

* poker hands were generated Poker 100,000 10 (Olorunnimbe et al., 2015)

“Instance miamarketteteln  Eloctricity 45812 8 (Baena-Garcfa et al., 2006)

gymneticdatawith tvee  Stagger 0000 3 (Gama et al., 2014)
CHpEIRngp AutoML2 challenge data sets

Shameless ad for AutoML3: AutoML for Lifelong ML-2018
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Toy example of domain adaptation: the intertwining moons
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Settings, 2

General assumptions
» Wealth of information about source domain

» Scarce information about target domain

Domain Adaptation aims at alleviating the costs
> of labelling target examples

» of acquiring target examples

No target labels Unsupervised Domain Adaptation

Partial labels Partially unsupervised Domain Adaptation

Few samples Few-shot Domain Adaptation
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Key concept: distance between source and target distributions
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Key Concept: Distance between source and target marginal
distributions

1. The larger, the more difficult the domain adaptation

2. Can we measure it ? for theory
if so, turn the measure into a loss, to be minimized
3. Can we reduce it ? for algorithms

N,

e N s

R 3 & 7

7 S,i_% K] " ¥ f; g
‘.':..

The 2 moons problem
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Domain adaptation, intuition

What we have What we want

Domain 1

Domain 2
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Distance between source and target marginal distributions, followed

Main strategies

> Reduce it in original space X
Importance sampling

» Modify source representation
Optimal transport

» Map source and target onto a third latent space
Domain adversarial

> Build generative mechanisms in latent space
Generative approaches

Milestone: defining distances on distributions
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Discrepancy between source and target marginal distributions
Ben-David 06, 10
H Divergence between Ps and P;

dx (Ps, P:) = 2sup |Pry ~p,(h(x) = 1) — Pryp,(h(x) = 1)|
heH
This divergence is high if there exists h separating Ps and P.

Perfect separation case

Perfect separation:
H-div = 2
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Discrepancy between source and target marginal distributions, 2
Ben-David 06, 10

dx(Ps, P:) = 2sup |Pry ~p,(h(x) = 1) — Prep,(h(x) = 1)|
heH

Perfect mixt case

No good separation:
H-div <<1

= what is learned on source
32/52



Discrepancy between source and target marginal distributions, 3

Ben-David et al. 2006, 2010
Approximation of H divergence Proxy A-distance (PAD)

—

(1 1
dx(Ps, Pt) =2 (1 — min (n Z Lap=o + 7 Z 1h(xj’)—1>)
i J

The divergence can be approximated by the ability to empirically discriminate
between source and target examples.

Comment
Estimation of distribution differences — two-sample tests.
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Bounding the domain adaptation risk

Ben-David et al. 2006, 2010

Notations
> Rs(h) = Ep,L(h) risk of h under source distribution
> Ri(h) =Ep,L(h) risk of h under target distribution
Theorem

With probability 1 — ¢, if d(#) is the VC-dimension of H,

R:(h) < m +dx + C\/4(d(7-[)log% + logi) + Best possible

n 5

and
Best possible = irzf (Rs(h) + Rr(h))

What we want (risk on h wrt D7) is bounded by:

» empirical risk on source domain

v

+ Proxy A-distance
» + error related to possible overfitting

> -+ min error one can achieve on both source and target distribution.
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Interpretation

Ben-David et al. 2006, 2010
The regret
With probability 1 — ¢, if d(H) is the VC-dimension of #,

+ log - )+dx

— 4
_ ible < R, i
R:(h) — Best possible < Rs(h) + C\/n(d( )log d(’H)

Hence a domain adaptation strategy:
> Choose H with good potential

> Minimize dx: through transporting source data; or mapping source and
target toward another favorable space.
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Some Domain Adaptation Algorithms
Domain Adversarial Neural Network
Evaluating DA algorithms
DANN improvements and relaxations
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Extending Adversarial ldeas to Domain Adaptation

Input
& = {(xs,i» i), i = [[1, nl]}
Ee ={(xe),J = [[L, m]]}
Principle
» What matters is the distance between D; and D; Ben David et al. 2010

» Strategy: mapping both on a same latent space in an indistinguishable
manner

L
oL y
30; a0, @
|:> |:> |:> a ¢> [> |:> Eclass label y
' Y aLg label predictor Gy (- 6,)
%, 00 ¢

domain classifier Gg(-;604)
s Y, j’@p
feature extractor Gy(:0y) 4, %, i
@ E> |:> @ domain label d

o Ny
00,4

forwardprop  backprop (and produced derivatives)
Ganin et al., 2015; 2016
o & = = =

J seanjeay

N
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Domain Adversarial Neural Net

Ganin et al. 2015; 2016

Adversarial Modules

» Encoder G green
xs > Gr(xs); xe — Gr(xe)
» Discriminator Gg: trained from {(Gs(xs,i), 1)} U {(Gr(x¢),0)} red

Find maxmin £(Gg, Gr)
Gr Gy

And a Classifier Module
> Gy L(G)) = X, UGy (Gr(xe)). i) blue
» NB: needed to prevent trivial solution Gr =0
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DANN, 2

Ganin et al.

Training
1. Classifier: backprop from V(L£(G,))

2. Encoder: backprop from V(£(G,)) and —V(£L(Gq4))

3. Discriminator: backprop from V(£(Gy))

2015; 2016

blue

green

red
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The algorithm

Algorithm 1 Shallow DANN — Stochastic training update

G N

: Input: ,
— samples S = {(x;,y:)}im; and T = {x;}1,,

— hidden layer size D,
— adaptation parameter A,
— learning rate g,

: Output: neural network {W,V b, c}

: W,V ¢ random_init( D )

: b,c,u,d 0

: while stopping criterion is not met do
6:

for i from 1 to n do
# Forward propagation
Gf(x;) + sigm(b + Wx;)
Gy (Gr(xi)) < softmax(c + VGy(xi))
# Backpropagation
e —(e(y) — Gy (G (x)))
Av + Ac Gp(x:)"

Ap = (VTA) © Gr(xi) © (1= Gy(xi)

Aw — Ab - (x:)"

# Domain adaptation regularizer...
# ...from current domain
Gu(Gy(x:)) « sigm(d + u' Gy (x:))

Ag M1 = Ga(Gy(x2)))

Ay = M1 = Ga(Gr(xi)))G ¢ (xi)

20:

21:
22;

23:
24:
25:
26:
27
28:
29:

30:
31:

32:
33:
34:
35:
36:

37:
38:
39:
40:

tmp + AL — Ga(Gy(x:)))
XuOGr(xi) © (1= Gr(xi))

Ap — Ap + tmp

Aw + Aw + tmp - (xi)

# ...from other domain
j « uniform_ integer(1,...,n")
Gy(x;) < sigm(b+ Wx;)
Ga(Gy(x;)) « sigm(d + u' Gs(x,))
Ag = Ag = AGa(Gr(x;))
Au = Ay = AGa(G(x;)) Gy (%)
tmp < —AGa(G5(x5))

xu0Gr(x;) © (1 - Gy(x;))
Ap + Ap + tmp
Aw + Aw +tmp - (x;) "

# Update neural network parameters
W« W — uAw

V'V — Ay

b« b — Ay

c+c—ple

# Update domain classifier

u < u+ pAy

d+—d+ pAg

end for

41: end while

Note: In this pseudo-code, e(y) refers to a “one-hot” vector, consisting of all Os except for a 1 at position y,
and © is the element-wise product.
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The intertwinning moons

LABEL CLASSIFICATION

REPRESENTATION PCA  DOMAIN CLASSIFICATION

e

‘fm\ 8
£t
‘?K

B..
el

(a) Standard NN. For the

(b) DANN (Algorithm 1)

on the feature layer

> left: the decision boundary

» 2nd left: apply PCA

> 3rd left: discrimination source vs target
>

“domain classification”, we use a non adversarial domain regressor on the hidden
neurons learned by the Standard NN. (This is equivalent to run Algorithm 1. without Lines 22 and 31)

HIDDEN NEURONS

right: each line corresponds to hidden neuron = .5

1PN G4
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Mixing the distributions in latent space

MNIST — MNIST-M

(a) Non-adapted

Syn — SVHN

(b)':A'dapted
{1‘ LS
T & AN A e
'\vhi‘vf ;. "’“‘\-— P oA
PR * )
j ? % N .\-4‘-"# o
(a) Non-adapted

(b) Adapted

D¢
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Evaluation

Top: SVHN; Bottom: MNIST

Usual practice

» The reference experiment: adapting from Street View House Numbers
(SVHN, source) to MNIST (handwritten digits)

» Score: accuracy on the test set of MNIST.

» Caveat: reported improvements might come from:

1. algorithm novelty;
2. neural architecture;
3. hyperparameter tuning ?

» Lesion studies are required !
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Experimental setting

Ganin et al., 16
The datasets

MNIST SyN NUMBERS SVHN SYN SiGNSs

SOURCE )B 8 § A 0
TARGET ‘l ﬂ 8 ? SI

MNIST-M SVHN MNIST GTSRB

» MNIST: as usual

» MNIST-M: blend with patches randomly extracted from color photos from
BSDS500

» SVHN: Street-View House Number dataset

» Syn Numbers: figures from WindowsTM fonts, varying positioning,
orientation, background and stroke colors, blur.

> Street Signs: real (430) and synthetic (100,000)
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Results

Ganin et al., 16

e —_—" SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS
) TARGET MNIST-M SVHN MNIST GTSRB
SOURCE ONLY 5225 8674 5490 .7900

SA (Fernando et al., 2013)
DANN
TRAIN ON TARGET

7666 (52.9%)

5690 (4.1%) 8644 (—5.5%)
19109 (79.7%)

.9220

5932 (9.9%)
7385 (42.6%)

9596 9942

8165 (12.7%)
8865 (46.4%)
19980

Score DANN: 74%

45 /52



Some Domain Adaptation Algorithms

DANN improvements and relaxations
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Decoupling the encoder: ADDA

Tzeng et al., 2017
Adversarial Discriminative Domain Adaptation (ADDA)

> DANN used a single encoder G for both source and target domains

» ADDA learns Gr s and Gy independently, both subject to Gy (domain
discriminator); and Gy s subject to G,

» Rationale: makes it easier to handle source and target with different
dimensionality, specificities,...

Pre-training Adversarial Adaptation Testing

/ (- h
source images
-

source images
+ labels [l

targetimage . _

domain E Target 3
Iabel TN T

class
label

poom ooy

Classifier

Discriminator

Target
CNN

Score DANN: 74%
Score ADDA: 76%
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Replacing domain discrimination with reconstruction: DRCN
Ghifary et al., 2016
Deep Reconstruction-Classification Networks (DRCN)
» DANN used a discriminator Gy to discriminate Gr(x:) and Gr(xs)
» DRCN replaces G4 with a decoder s.t. Gg(Gr(xt)) = x:

» Rationale: The latent space preserves all information from target, while
enabling classification on source.

Max Max
Pooling Pooling

Unpooling

Score DANN: 74%
Score ADDA: 76%
Score DRCN: 82%
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Hybridizing ADDA and DRCN: Deep Separation Networks

Bousmalis et al., 2016

Deep Separation Networks (DSN)
» Encoder:
> A shared part Gf ,
> A private source part Gy s
> A private domain part Gr ;
» Discriminator — Decoder
4 Gd(Gf,u(Xs)7 Gf,s(XS)) N Xs
> Ga(Grulxt), G e(xt)) = xt

Private Target Encoder /5] (x')

EIR=2:A1
.Sh»éd %iﬁ —
[@a@ B

Shared Decoder: D(E.(x) + E,(x))

(... stands for “shared weights”)
Score DANN: 74%
Score ADDA: 76%
Score DRCN: 82%
Score DSN: 82.7%
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Not covered...

» Optimal transport Couturi Peyre 18, Courty et al. 17,18

» Generative Networks and domain to domain translations
Taigman et al. 16; Sankaranarayanan et al. 17; Liu et al. 17
Choi et al. 17; Anoosheh et al., 2017; Shu et al. 18

» Partial domain adaptation Motiian et al. 17a, b; Schoenauer-Sebag 18
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Conclusions

Theory and Validation
> Most theoretical analysis relies on Ben David et al. 06; 10
> When using feature space, something is underlooked (see DRCN).

» Comprehensive ablation studies needed to assess the mixture of
losses/architectures

> Assessing the assumptions

Applications
» Many applications on vision The Waouh effect ?
» Reinforcement learning !

» Natural Language processing !

51/52



Take home message

What is domain adaptation:

» Playing with tasks and distributions
» Making assumptions about how they are related
» Testing your assumptions

Domain adaptation is like playing Lego with ML
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