Michèle Sebag

TAO: Theme Apprentissage & Optimization

Acknowledgments: **Olivier Teytaud**, Sylvain Gelly, Philippe Rolet, Romaric Gaudel

CP 2012

Foreword

Motivations

- ► CP evolves from "Model + Search" to "Model + Run": ML needed
- ▶ Which ML problem is this ?

Model + Run

Wanted: For any problem instance, automatically

- ► Select algorithm/heuristics in a portfolio
- Tune hyper-parameters

A general problem, faced by

- Constraint Programming
- Stochastic Optimization
- ► Machine Learning, too...

1. Case-based learning / Metric learning

CP Hydra

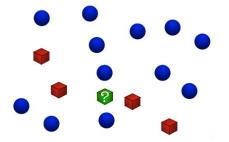
Input

Observations

Representation

Output

- ▶ For any new instance, retrieve the nearest case
- ▶ (but what is the metric ?)



2. Supervised Learning

SATzilla

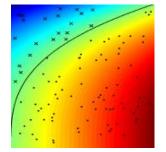
Representation

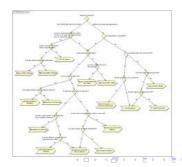
Input

- Observations
- ► Target (best alg.)

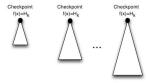
Output: Prediction

- Classification
- Regression





From decision to sequential decision

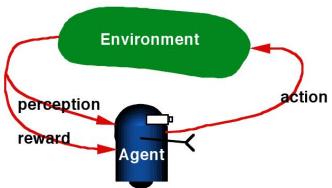


Arbelaez et al. 11

- ▶ In each restart, predict the best heuristics
- ... it might solve the problem;
- otherwise the description is refined; iterate

Can we do better: Select the heuristics which will bring us where we'll be in good shape to select the best heuristics to solve the problem...

3. Reinforcement learning



Features

- An agent, temporally situated
- acts on its environment
- in order to maximize its cumulative reward

Learned output

A policy mapping each state onto an action

Formalisation

Notations

- ightharpoonup State space ${\cal S}$
- Action space A
- Transition model
 - deterministic: s' = t(s, a)
 - ▶ probabilistic: $P_{s,s'}^a = p(s, a, s') \in [0, 1]$.
- Reward r(s)

bounded

► Time horizon *H* (finite or infinite)

Goal

- ▶ Find policy (strategy) $\pi: \mathcal{S} \mapsto \mathcal{A}$
- ▶ which maximizes cumulative reward from now to timestep *H*

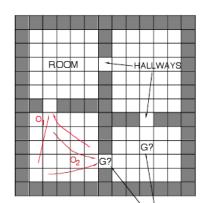
$$\pi^* = \text{ argmax } \mathbb{E}_{s_{t+1} \sim p(s_t, \pi(s_t), s)} \left[\sum r(s_t) \right]$$

Reinforcement learning

Context

In an uncertain environment, Some actions, in some states, bring (delayed) rewards [with some probability].

Goal: find the policy (state \rightarrow action) maximizing the expected cumulative reward



- 4 rooms
- 4 hallways
- 4 unreliable primitive actions

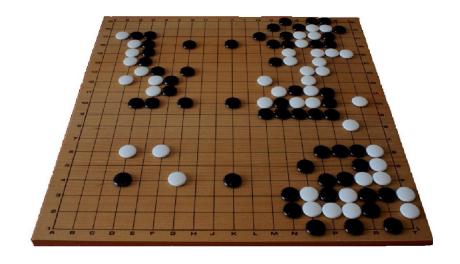
- 8 multi-step options (to each room's 2 hall ways)
- Given goal location, quickly plan shortest route

This talk is about sequential decision making

Reinforcement learning:First learn the optimal policy; then apply it

Monte-Carlo Tree Search: Any-time algorithm: learn the next move; play it; iterate.

MCTS: computer-Go as explanatory example



Not just a game: same approaches apply to optimal energy policy

MCTS for computer-Go and MineSweeper

Go: deterministic transitions

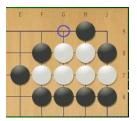
MineSweeper: probabilistic transitions

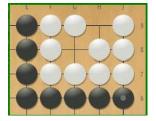
							1	•
		1	1	2	1	1	1	1
		2	-	3	<u>_</u>	3	2	1
		2	•	3	2	-	•	2
		1	1	2	2	3	3	•
				1	<u>_</u>	1	1	1
				1	1	1		
1	1	1				1	1	1
1	-	1				1	-	1

The game of Go in one slide

Rules

- Each player puts a stone on the goban, black first
- ► Each stone remains on the goban, except:





group w/o degree freedom is killed

a group with two eyes can't be killed

▶ The goal is to control the max. territory

Go as a sequential decision problem

Features

- ► Size of the state space 2.10¹⁷⁰
- ▶ Size of the action space 200
- No good evaluation function
- ► Local and global features (symmetries, freedom, ...)
- A move might make a difference some dozen plies later

Setting

- ightharpoonup State space ${\cal S}$
- Action space A
- Known transition model: p(s, a, s')
- Reward on final states: win or lose

Baseline strategies do not apply:

- Cannot grow the full tree
- Cannot safely cut branches
- Cannot be greedy

Monte-Carlo Tree Search

- An any-time algorithm
- Iteratively and asymmetrically growing a search tree
 most promising subtrees are more explored and developed

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

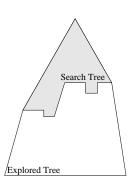
Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes

- Returned solution:
 - Path visited most often



Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes
 Propagate

Bandit-Based Phase Search Tree Explored Tree

- Returned solution:
 - Path visited most often

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

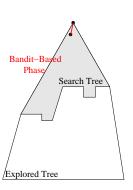
Evaluate

Update information in visited nodes

Propagate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06



Kocsis Szepesvári, 06

Gradually grow the search tree:

- ▶ Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ▶ Iterate Tree-Walk
 - Building Blocks
 - Select next action

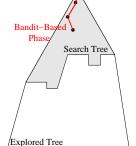
Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate



- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

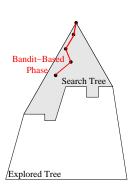
Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes

Propagate



- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

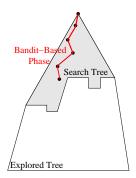
Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate



- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

Update information in visited nodes
 Propagate

Bandit-Bayed Phase Search Tree Explored Tree

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis Random phase, roll-out
- Compute instant reward

Evaluate

- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

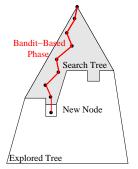
Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate



- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

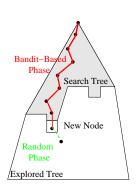
Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate



- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

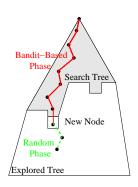
Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate



- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ▶ Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate



- Returned solution:
 - Path visited most often

Kocsis Szepesvári, 06

Gradually grow the search tree:

- ► Iterate Tree-Walk
 - Building Blocks
 - Select next action

Bandit phase

Add a node

Grow a leaf of the search tree

- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate



- Returned solution:
 - Path visited most often

MCTS Algorithm

Main

Input: number *N* of tree-walks

Initialize search tree $\mathcal{T} \leftarrow$ initial state

Loop: For i = 1 to N

TreeWalk(T, initial state)

EndLoop

Return most visited child node of root node

MCTS Algorithm, ctd

```
Tree walk
Input: search tree \mathcal{T}, state s
Output: reward r
If s is not a leaf node
    Select a^* = \operatorname{argmax} \{\hat{\mu}(s, a), tr(s, a) \in \mathcal{T}\}
    r \leftarrow \mathsf{TreeWalk}(\mathcal{T}, tr(s, a^*))
Else
    A_s = \{ \text{ admissible actions not yet visited in } s \}
    Select a^* in \mathcal{A}_s
    Add tr(s, a^*) as child node of s
    r \leftarrow \mathsf{RandomWalk}(tr(s, a^*))
End If
Update n_s, n_{s,a^*} and \hat{\mu}_{s,a^*}
Return r
```

MCTS Algorithm, ctd

Random walk

r = Evaluate(u)

Return r

```
Input: search tree \mathcal{T}, state u

Output: reward r

\mathcal{A}_{rnd} \leftarrow \{\} // store the set of actions visited in the random phase 
While u is not final state

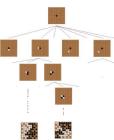
Uniformly select an admissible action a for u

\mathcal{A}_{rnd} \leftarrow \mathcal{A}_{rnd} \cup \{a\}
u \leftarrow \operatorname{tr}(u, a)

EndWhile
```

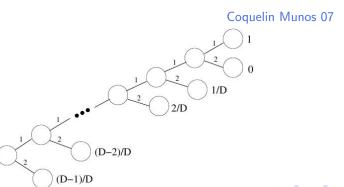
4□ > 4団 > 4 豆 > 4 豆 > 豆 のQで

//reward vector of the tree-walk



Properties of interest

- ightharpoonup Consistency: Pr(finding optimal path) ightharpoonup when the number of tree-walks go to infinity
- ▶ Speed of convergence; can be exponentially slow.



Comparative results

2012	7 wins out of 12 games against professional players and 9 wins out of 12 games against 6D players	

2012 MoGoTW used for physiological measurements of human players

		MoGoTW
2011	20 wins out of 20 games in 7x7 with minimal computer komi	MoGoTW
2011	First win against a pro (6D), H2, 13×13	MoGoTW
2011	First win against a pro (9P), H2.5, 13×13	MoGoTW
2011	First win against a pro in Blind Go, 9×9	MoGoTW
2010	Gold medal in TAAI, all categories	MoGoTW
	19×19 , 13×13 , 9×9	
2009	Win against a pro (5P), 9×9 (black)	MoGo
2009	Win against a pro (5P), 9×9 (black)	MoGoTW
2008	in against a pro (5P), 9×9 (white)	MoGo
2007	Win against a pro (5P), 9×9 (blitz)	MoGo
2009	Win against a pro (8P), 19×19 H9	MoGo
2009	Win against a pro (1P), 19×19 H6	MoGo
2008	Win against a pro (9P), 19×19 H7	MoGo

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Action selection as a Multi-Armed Bandit problem

Lai, Robbins 85

In a casino, one wants to maximize one's gains while playing. Lifelong learning

Exploration vs Exploitation Dilemma

- Play the best arm so far ?
- But there might exist better arms...

Exploitation **Exploration**

The multi-armed bandit (MAB) problem

- K arms
- ▶ Each arm gives reward 1 with probability μ_i , 0 otherwise
- ▶ Let $\mu^* = argmax\{\mu_1, \dots \mu_K\}$, with $\Delta_i = \mu^* \mu_i$
- ▶ In each time t, one selects an arm i_t^* and gets a reward r_t

$$n_{i,t} = \sum_{u=1}^{t} \mathbb{I}_{i_u^*=i}$$
 number of times i has been selected $\hat{\mu}_{i,t} = \frac{1}{n_{i,t}} \sum_{i_u^*=i} r_u$ average reward of arm i

Goal: Maximize $\sum_{u=1}^{t} r_u$

 \Leftrightarrow

$$\text{Minimize Regret } (t) = \sum_{u=1}^t (\mu^* - r_u) = t \mu^* - \sum_{i=1}^K n_{i,t} \, \hat{\mu}_{i,t} \approx \sum_{i=1}^K n_{i,t} \Delta_i$$

The simplest approach: ϵ -greedy selection

At each time t,

 \blacktriangleright With probability $1-\varepsilon$ select the arm with best empirical reward

$$i_t^* = argmax\{\hat{\mu}_{1,t}, \dots \hat{\mu}_{K,t}\}$$

▶ Otherwise, select i_t^* uniformly in $\{1...K\}$

Regret
$$(t) > \varepsilon t \frac{1}{K} \sum_{i} \Delta_{i}$$

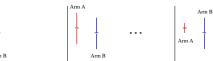
Optimal regret rate: log(t)

Lai Robbins 85

Upper Confidence Bound

Auer et al. 2002

Select
$$i_t^* = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{C \frac{\log(\sum n_{j,t})}{n_{i,t}}} \right\}$$



Decision: Optimism in front of unknown!

Upper Confidence bound, followed

UCB achieves the optimal regret rate log(t)

Select
$$i_t^* = \operatorname{argmax} \left\{ \hat{\mu}_{i,t} + \sqrt{c_e \frac{\log(\sum n_{j,t})}{n_{i,t}}} \right\}$$

Extensions and variants

- lacktriangle Tune $c_{
 m e}$ control the exploration/exploitation trade-off
- ▶ UCB-tuned: take into account the standard deviation of $\hat{\mu}_i$: Select $i_t^* = \operatorname{argmax}$

$$\left\{\hat{\mu}_{i,t} + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}} + min\left(\frac{1}{4}, \hat{\sigma}_{i,t}^2 + \sqrt{c_e \frac{log(\sum n_{j,t})}{n_{i,t}}}\right)}\right\}$$

- Many-armed bandit strategies
- Extension of UCB to trees: UCT

Kocsis & Szepesvári, 06

Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:

- Iterate Tree-Walk
 - Building Blocks
 - Select next action

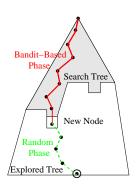
Bandit phase

- Add a node
 - Grow a leaf of the search tree
- Select next action bis
 Random phase, roll-out
- Compute instant reward

Evaluate

► Update information in visited nodes

Propagate



- Returned solution:
 - Path visited most often

Random phase — Roll-out policy

Monte-Carlo-based

Brügman 93

- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Random phase — Roll-out policy

Monte-Carlo-based

- Brügman 93
- Until the goban is filled, add a stone (black or white in turn) at a uniformly selected empty position
- 2. Compute r = Win(black)
- 3. The outcome of the tree-walk is r

Improvements?

- ▶ Put stones randomly in the neighborhood of a previous stone
- Put stones matching patterns

prior knowledge

▶ Put stones optimizing a value function

Silver et al. 07

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

For each node (s, a) in the tree-walk

$$\begin{array}{ll} \textit{n}_{\textit{s,a}} & \leftarrow \textit{n}_{\textit{s,a}} + 1 \\ \hat{\mu}_{\textit{s,a}} & \leftarrow \hat{\mu}_{\textit{s,a}} + \frac{1}{\textit{n}_{\textit{s,a}}} (\textit{r} - \mu_{\textit{s,a}}) \end{array}$$

Evaluation and Propagation

The tree-walk returns an evaluation r

win(black)

Propagate

For each node (s, a) in the tree-walk

$$\begin{array}{ll} \textit{n}_{\textit{s,a}} & \leftarrow \textit{n}_{\textit{s,a}} + 1 \\ \hat{\mu}_{\textit{s,a}} & \leftarrow \hat{\mu}_{\textit{s,a}} + \frac{1}{\textit{n}_{\textit{s,a}}} (\textit{r} - \mu_{\textit{s,a}}) \end{array}$$

Variants

Kocsis & Szepesvári, 06

$$\hat{\mu}_{s,a} \leftarrow \left\{ \begin{array}{ll} \min\{\hat{\mu}_x, x \text{ child of } (s,a)\} & \text{if } (s,a) \text{ is a black node} \\ \max\{\hat{\mu}_x, x \text{ child of } (s,a)\} & \text{if } (s,a) \text{ is a white node} \end{array} \right.$$

Dilemma

- ightharpoonup smarter roll-out policy ightharpoonup more computationally expensive ightharpoonup less tree-walks on a budget
- ▶ frugal roll-out → more tree-walks → more confident evaluations

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Action selection revisited

$$\mathsf{Select}\ \mathit{a}^{*} = \ \mathsf{argmax}\ \left\{\hat{\mu}_{\mathit{s},\mathit{a}} + \sqrt{c_{\mathit{e}} \frac{log(\mathit{n}_{\mathit{s}})}{\mathit{n}_{\mathit{s},\mathit{a}}}}\right\}$$

- Asymptotically optimal
- But visits the tree infinitely often !

Being greedy is excluded

not consistent

Frugal and consistent

Select
$$a^* = \operatorname{argmax} \frac{\operatorname{Nb} \operatorname{win}(s, a) + 1}{\operatorname{Nb} \operatorname{loss}(s, a) + 2}$$

Berthier et al. 2010

Further directions

Optimizing the action selection rule

Maes et al., 11

Controlling the branching factor

What if many arms?

degenerates into exploration

- ► Continuous heuristics
 Use a small exploration constant *c*_e
- Discrete heuristics

Progressive Widening Coulom 06; Rolet et al. 09

Limit the number of considered actions to $\lfloor \sqrt[b]{n(s)} \rfloor$ (usually b=2 or 4)

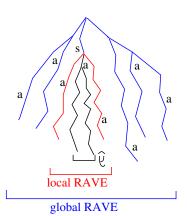
Introduce a new action when $\lfloor \sqrt[b]{n(s)+1} \rfloor > \lfloor \sqrt[b]{n(s)} \rfloor$ (which one ? See RAVE, below).

Gelly Silver 07

Motivation

- ▶ It needs some time to decrease the variance of $\hat{\mu}_{s,a}$
- Generalizing across the tree ?

RAVE(s, a) =average $\{\hat{\mu}(s', a), s \text{ parent of } s'\}$



Rapid Action Value Estimate, 2

Using RAVE for action selection

In the action selection rule, replace $\hat{\mu}_{s,a}$ by

$$\alpha \hat{\mu}_{s,a} + (1 - \alpha) \left(\beta RAVE_{\ell}(s,a) + (1 - \beta) RAVE_{g}(s,a) \right)$$

$$\alpha = \frac{n_{s,a}}{n_{s,a} + c_1} \qquad \beta = \frac{n_{parent(s)}}{n_{parent(s)} + c_2}$$

Using RAVE with Progressive Widening

- ▶ PW: introduce a new action if $|\sqrt[b]{n(s)+1}| > |\sqrt[b]{n(s)}|$
- Select promising actions: it takes time to recover from bad ones
- ▶ Select argmax $RAVE_{\ell}(parent(s))$.

A limit of RAVE

- ▶ Brings information from bottom to top of tree
- Sometimes harmful:

B2 is the only good move for white B2 only makes sense as first move (not in subtrees) ⇒ RAVE rejects B2.

Improving the roll-out policy π

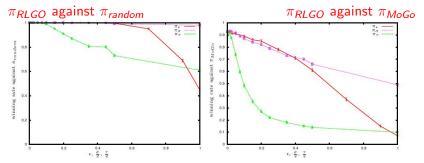
```
\pi_0 Put stones uniformly in empty positions \pi_{random} Put stones uniformly in the neighborhood of a previous stone \pi_{MoGo} Put stones matching patterns prior knowledge \pi_{RLGO} Put stones optimizing a value function Silver et al. 07
```

Beware!

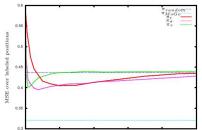
Gelly Silver 07

$$\pi$$
 better π' \Rightarrow $MCTS(\pi)$ better $MCTS(\pi')$

Improving the roll-out policy π , followed



Evaluation error on 200 test cases



Interpretation

What matters:

- Being biased is more harmful than being weak...
- Introducing a stronger but biased rollout policy π is detrimental.

if there exist situations where you (wrongly) think you are in good shape then you go there and you are in bad shape...

Using prior knowledge

Assume a value function $Q_{prior}(s, a)$

▶ Then when action a is first considered in state s, initialize

$$n_{s,a}=n_{prior}(s,a)$$
 equivalent experience / confidence of priors $\mu_{s,a}=Q_{prior}(s,a)$

The best of both worlds

- Speed-up discovery of good moves
- Does not prevent from identifying their weaknesses

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

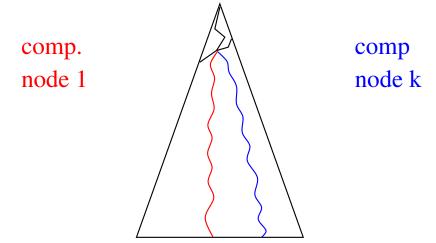
Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

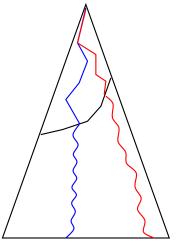
Parallelization. 1 Distributing the roll-outs



Distributing roll-outs on different computational nodes does not work.

Parallelization. 2 With shared memory

comp.

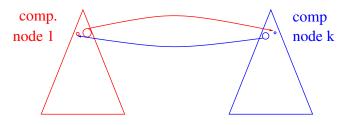


comp node k

- ► Launch tree-walks in parallel on the same MCTS
- (micro) lock the indicators during each tree-walk update.

Use virtual updates to enforce the diversity of tree walks.

Parallelization. 3. Without shared memory



- ► Launch one MCTS per computational node
- k times per second

$$k = 3$$

- \blacktriangleright Select nodes with sufficient number of simulations $> .05 \times \#$ total simulations
- Aggregate indicators

Good news

Parallelization with and without shared memory can be combined.

It works!

32 cores against	Winning rate on 9×9	Winning rate on 19×19
1	75.8 ± 2.5	95.1 ± 1.4
2	66.3 ± 2.8	82.4 ± 2.7
4	62.6± 2.9	73.5 ± 3.4
8	59.6± 2.9	63.1 ± 4.2
16	52± 3.	63 ± 5.6
32	48.9± 3.	48 ± 10

Then:

- ► Try with a bigger machine! and win against top professional players!
- ▶ Not so simple... there are diminishing returns.

Increasing the number N of tree-walks

N	2N against N		
	Winning rate on 9×9	Winning rate on $19 imes 19$	
1,000	71.1 ± 0.1	90.5 ± 0.3	
4,000	68.7 ± 0.2	84.5 ± 0.3	
16,000	66.5 ± 0.9	80.2 ± 0.4	
256,000	61± 0,2	58.5 ± 1.7	

The limits of parallelization

R. Coulom

Improvement in terms of performance against humans

 \ll

Improvement in terms of performance against computers

 \ll

Improvements in terms of self-play

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits
Random phase
Evaluation and Propagation

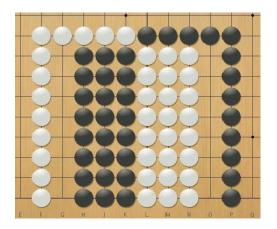
Advanced MCTS

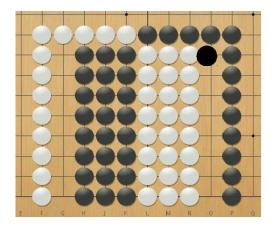
Rapid Action Value Estimate Improving the rollout policy Using prior knowledge

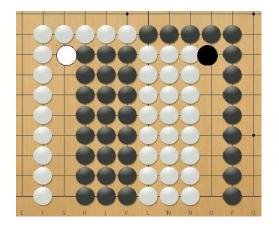
Open problems

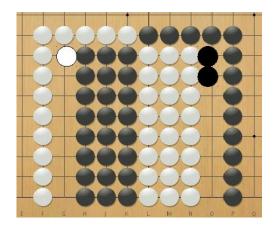
MCTS and 1-player games
MCTS and CP
Optimization in expectati

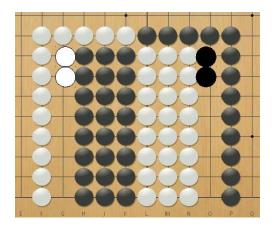
Conclusion and perspectives

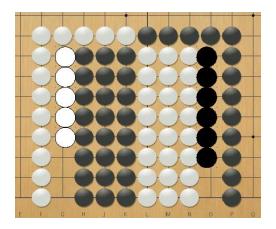


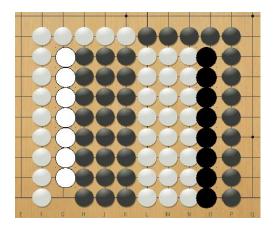


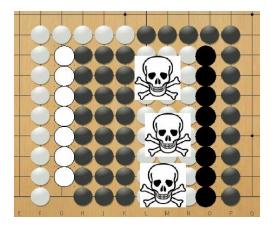


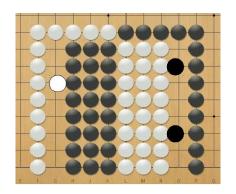












Why does it fail

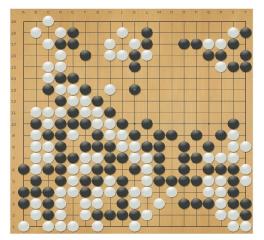
- ► First simulation gives 50%
- ► Following simulations give 100% or 0%
- ▶ But MCTS tries other moves: doesn't see all moves on the black side are equivalent.

Implication 1



MCTS does not detect invariance \rightarrow too short-sighted and parallelization does not help.

Implication 2



MCTS does not build abstractions \rightarrow too short-sighted and parallelization does not help.

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

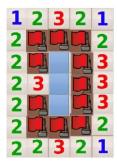
MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

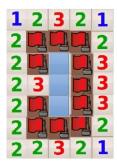
MCTS for one-player game

- ► The MineSweeper problem
- Combining CSP and MCTS

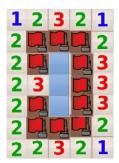
- ► All locations have same probability of death 1/3
- ► Are then all moves equivalent ?



- ► All locations have same probability of death 1/3
- ► Are then all moves equivalent ? NO!



- ► All locations have same probability of death 1/3
- ► Are then all moves equivalent ? NO!
- ▶ Top, Bottom: Win with probability 2/3



- ► All locations have same probability of death 1/3
- ► Are then all moves equivalent ? NO!
- ▶ Top, Bottom: Win with probability 2/3
- MYOPIC approaches LOSE.

MineSweeper, State of the art

Markov Decision Process

Very expensive; 4×4 is solved

Single Point Strategy (SPS)

local solver

CSP

- ▶ Each unknown location j, a variable x[j]
- lacktriangle Each visible location, a constraint, e.g. loc(15)=4
 ightarrow

$$x[04] + x[05] + x[06] + x[14] + x[16] + x[24] + x[25] + x[26] = 4$$

- Find all N solutions
- ▶ P(mine in j) = $\frac{\text{number of solutions with mine in } j}{N}$
- ▶ Play j with minimal P(mine in j)

Constraint Satisfaction for MineSweeper

State of the art

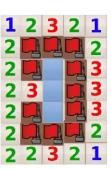
- ▶ 80% success *beginner* (9x9, 10 mines)
- ▶ 45% success *intermediate* (16×16, 40 mines)
- ▶ 34% success *expert* (30x40, 99 mines)

PROS

Very fast

CONS

- Not optimal
- Beware of first move (opening book)



Upper Confidence Tree for MineSweeper

Couetoux Teytaud 11

- Cannot compete with CSP in terms of speed
- But consistent (find the optimal solution if given enough time)

Lesson learned

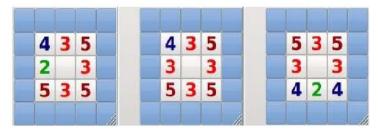
- Initial move matters
- UCT improves on CSP

- ▶ 3x3, 7 mines
- Optimal winning rate: 25%
- Optimal winning rate if uniform initial move: 17/72
- ► UCT improves on CSP by 1/72

UCT for MineSweeper

Another example

- ▶ 5x5, 15 mines
- ► GnoMine rule (first move gets 0)
- ▶ if 1st move is center, optimal winning rate is 100 %
- UCT finds it; CSP does not.



The best of both worlds

CSP

- Fast
- Suboptimal (myopic)

UCT

- Needs a generative model
- Asymptotic optimal

Hybrid

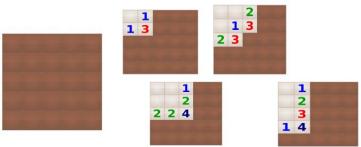
UCT with generative model based on CSP

UCT needs a generative model

Given

- A state, an action
- Simulate possible transitions

Initial state, play top left



Simulating transitions

- ▶ Using rejection (draw mines and check if consistent) SLOW
- Using CSP

The algorithm: Belief State Sampler UCT

- One node created per simulation/tree-walk
- Progressive widening
- Evaluation by Monte-Carlo simulation
- Action selection: UCB tuned (with variance)
- Monte-Carlo moves
 - If possible, Single Point Strategy (can propose riskless moves if any)
 - ▶ Otherwise, move with null probability of mines (CSP-based)
 - Otherwise, with probability .7, move with minimal probability of mines (CSP-based)
 - Otherwise, draw a hidden state compatible with current observation (CSP-based) and play a safe move.

The results

▶ BSSUCT: Belief State Sampler UCT

► CSP-PGMS: CSP + initial moves in the corners

Format	CSP-PGMS	BSSUCT
4 mines on 4x4	64.7 %	$70.0\%\pm0.6\%$
1 mine on 1x3	100 %	100% (2000 games)
3 mines on 2x5	22.6%	$25.4~\%~\pm~1.0\%$
10 mines on 5x5	8.20%	9% (p-value: 0.14)
5 mines on 1x10	12.93%	$18.9\%\pm0.2\%$
10 mines on 3x7	4.50%	$\mathbf{5.96\%}\pm\mathbf{0.16\%}$
15 mines on 5x5	0.63%	$0.9\%\pm0.1\%$

Partial conclusion

Given a myopic solver

- ▶ It can be combined with MCTS / UCT:
- Significant (costly) improvements

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games MCTS and CP Optimization in expectation

Conclusion and perspectives

Active Learning, position of the problem

Supervised learning, the setting

- ► Target hypothesis *h**
- ▶ Training set $\mathcal{E} = \{(x_i, y_i), i = 1 \dots n\}$
- ▶ Learn h_n from \mathcal{E}

Criteria

- ▶ Consistency: $h_n \to h^*$ when $n \to \infty$.
- ightharpoonup Sample complexity: number of examples needed to reach the target with precision ϵ

$$\epsilon \rightarrow n_{\epsilon} \text{ s.t. } ||h_n - h^*|| < \epsilon$$

Active Learning, definition

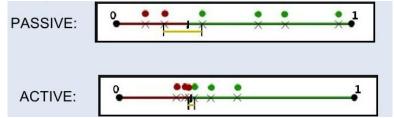
Passive learning

iid examples

$$\mathcal{E} = \{(x_i, y_i), i = 1 \dots n\}$$

Active learning

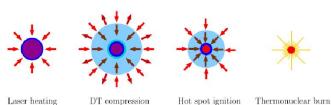
 x_{n+1} selected depending on $\{(x_i, y_i), i = 1 \dots n\}$ In the best case, exponential improvement:



A motivating application

Numerical Engineering

- ► Large codes
- ightharpoonup Computationally heavy \sim days
- not fool-proof



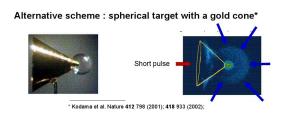
Inertial Confinement Fusion, ICF

Goal

Simplified models

- Approximate answer
- ... for a fraction of the computational cost
- Speed-up the design cycle
- Optimal design

More is Different



Active Learning as a Game

Ph. Rolet, 2010

Optimization problem

Find
$$F^* = \operatorname{argmin}$$

$$\mathbb{E}_{h \sim \mathcal{A}(\mathcal{E}, \sigma, T)} \operatorname{Err}(h, \sigma, T)$$

 \mathcal{E} : Training data set

 \mathcal{A} : Machine Learning algorithm

 \mathcal{Z} : Set of instances

 $\sigma: \mathcal{E} \mapsto \mathcal{Z}$ sampling strategy

T: Time horizon

Err: Generalization error

Bottlenecks

- Combinatorial optimization problem
- Generalization error unknown

Where is the game?

- Wanted: a good strategy to find, as accurately as possible, the true target concept.
- ▶ If this is a game, you play it only once!
- But you can train...

Training game: Iterate

- ▶ Draw a possible goal (fake target concept h^*); use it as oracle
- Try a policy (sequence of instances

$$\mathcal{E}_{h^*,T} = \{(x_1,h^*(x_1)),\ldots(x_T,h^*(x_T))\}$$

▶ Evaluate: Learn h from $\mathcal{E}_{h^*,T}$. Reward = $||h - h^*||$

Learner A



T-size training set $S_{\tau}(h^*)$ $\{(x_{\tau}, h^*(x_{\tau})), \dots, (x_{\tau}, h^*(x_{\tau}))\}$

Target Concept h*
(a.k.a. Oracle)

Overview

Motivations

Monte-Carlo Tree Search

Multi-Armed Bandits Random phase Evaluation and Propagation

Advanced MCTS

Rapid Action Value Estimate Improving the rollout policy Using prior knowledge Parallelization

Open problems

MCTS and 1-player games

MCTS and CP
Optimization in expectation

Conclusion and perspectives

Conclusion

Take-home message: MCTS/UCT

- enables any-time smart look-ahead for better sequential decisions in front of uncertainty.
- is an integrated system involving two main ingredients:
 - Exploration vs Exploitation rule
 UCB, UCBtuned, others
 - Roll-out policy
- can take advantage of prior knowledge

Caveat

- ► The UCB rule was not an essential ingredient of MoGo
- ▶ Refining the roll-out policy ≠ refining the system Many tree-walks might be better than smarter (biased) ones.

On-going, future, call to arms

Extensions

- ► Continuous bandits: action ranges in a ℝ
- lacktriangle Contextual bandits: state ranges in \mathbb{R}^d
- Multi-objective sequential optimization

- Bubeck et al. 11
- Langford et al. 11
 - Wang Sebag 12

Controlling the size of the search space

- Building abstractions
- Considering nested MCTS (partially observable settings, e.g. poker)
- Multi-scale reasoning

Bibliography

- Peter Auer, Nicolò Cesa-Bianchi, Paul Fischer: Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning 47(2-3): 235-256 (2002)
- Vincent Berthier, Hassen Doghmen, Olivier Teytaud: Consistency Modifications for Automatically Tuned Monte-Carlo Tree Search. LION 2010: 111-124
- Sébastien Bubeck, Rémi Munos, Gilles Stoltz, Csaba Szepesvári: X-Armed Bandits. Journal of Machine Learning Research 12: 1655-1695 (2011)
- Pierre-Arnaud Coquelin, Rémi Munos: Bandit Algorithms for Tree Search. UAI 2007: 67-74
- Rémi Coulom: Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Computers and Games 2006: 72-83
- Romaric Gaudel, Michèle Sebag: Feature Selection as a One-Player Game. ICML 2010: 359-366

- Sylvain Gelly, David Silver: Combining online and offline knowledge in UCT. ICML 2007: 273-280
- ► Levente Kocsis, Csaba Szepesvári: Bandit Based Monte-Carlo Planning. ECML 2006: 282-293
- ► Francis Maes, Louis Wehenkel, Damien Ernst: Automatic Discovery of Ranking Formulas for Playing with Multi-armed Bandits. EWRL 2011: 5-17
- Arpad Rimmel, Fabien Teytaud, Olivier Teytaud: Biasing Monte-Carlo Simulations through RAVE Values. Computers and Games 2010: 59-68
- ▶ David Silver, Richard S. Sutton, Martin Müller: Reinforcement Learning of Local Shape in the Game of Go. IJCAI 2007: 1053-1058
- Olivier Teytaud, Michèle Sebag: Combining Myopic Optimization and Tree Search: Application to MineSweeper, LION 2012.

