## L3 Apprentissage

#### Michèle Sebag – Benjamin Monmège LRI – LSV

6 février 2013

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @



## Overview

#### The AI roots of ML, foll'd

Introduction to Supervised Machine Learning

Decision trees

Empirical validation Performance indicators Estimating an indicator



## La promesse (1960)

#### Within 10 years, a computer will

- be the world's chess champion
- prove an important theorem in maths
- compose good music
- set up the language for theoretical psychology

#### The world's chess champion ?





#### Discussion

Entre intelligence et force brute.

Prouver un théorème ?



#### The robot scientist

- ▶ Faits → Hypothèses
- ► Hypothèses → Expériences
- ► Expériences → Faits
- King R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K., Bryant, C. H., Muggleton, S., Kell, D. B. and Oliver, S. G. (2004) Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427 (6971) p247-252
- King R.D., Rowland J., Oliver S.G, Young M., Aubrey W., Byrne E., Liakata M., Markham M., Pir P., Soldatova L., Sparkes A., Whelan K.E., Clare A. (2009). The Automation of Science. Science 324 (5923): 85-89, 3rd April 2009

# **Automating Biology Using Robot Scientists**

**Ross D. King, University of Manchester, ross.king@manchester.ac.uk** 



## The Concept of a Robot Scientist

Computer systems capable of originating their own experiments, physically executing them, interpreting the results, and then repeating the cycle.



#### Composer de la bonne musique ?

Musac

#### Set up the language for theoretical psychology ?





Neuro-imagerie – Interfaces Cerveau-Machine

#### Set up the language for theoretical psychology ?



#### Test d'hypothèses multiples

http://videolectures.net/msht07\_baillet\_mht/

## Lessons from 50 years

- We need descriptive knowledge: perceptual primitives, patterns, constraints, rules,
- ► We need control knowledge: policy, adaptation
- Knowledge can hardly be given: must be acquired
- We need interaction knowledge: retrieving new information, feedback

#### Meta-knowledge

J. Pitrat, 2009

- Each goal, a new learning algorithm ?
- Problem reduction ? John Langford, http://hunch.net/

## **Artificial Intelligence**

| Search space                                     | ML                                             |
|--------------------------------------------------|------------------------------------------------|
| <ul> <li>Representation</li> </ul>               | (Un) Supervised L.                             |
| <ul> <li>Patterns, Rules, Constraints</li> </ul> | (knowledge)<br>(Un) Supervised L., Data Mining |
| <ul> <li>Navigation policy</li> </ul>            | Reinforcement L.                               |
| Navigation                                       |                                                |
| <ul> <li>Inference</li> </ul>                    | Optimisation                                   |
| Validation, control, feedback                    |                                                |
| <ul> <li>Criteria</li> </ul>                     | Statistics                                     |

## Overview

#### The Al roots of ML, foll'd

#### Introduction to Supervised Machine Learning

**Decision trees** 

Empirical validation Performance indicators Estimating an indicator



11

## **Types of Machine Learning problems**

#### WORLD - DATA - USER

| Observations | + Target                  | + Rewards     |
|--------------|---------------------------|---------------|
| Understand   | Predict                   | Decide        |
| Code         | Classification/Regression | Policy        |
| Unsupervised | Supervised                | Reinforcement |
| LEARNING     | LEARNING                  | LEARNING      |

## Data

## Example

- row : example/ case
- column : feature/ variable/ attribute
- attribute : class/ label

| age | employme  | education | edun | marital    | job        | relation   | race       | gender | hour | country    | wealt |
|-----|-----------|-----------|------|------------|------------|------------|------------|--------|------|------------|-------|
|     |           |           |      |            |            |            |            |        |      |            |       |
| 39  | State_gov | Bachelors | 13   | Never_mar  | Adm_cleri  | Not_in_fan | White      | Male   | 40   | United_Sta | poor  |
| 51  | Self_emp_ | Bachelors | 13   | Married    | Exec_mar   | Husband    | White      | Male   | 13   | United_Sta | poor  |
| 39  | Private   | HS_grad   | 9    | Divorced   | Handlers_  | Not_in_fan | White      | Male   | 40   | United_Sta | poor  |
| 54  | Private   | 11th      | 7    | Married    | Handlers_  | Husband    | Black      | Male   | 40   | United_Sta | poor  |
| 28  | Private   | Bachelors | 13   | Married    | Prof_spec  | Wife       | Black      | Female | 40   | Cuba       | poor  |
| 38  | Private   | Masters   | 14   | Married    | Exec_mar   | Wife       | White      | Female | 40   | United_Sta | poor  |
| 50  | Private   | 9th       | 5    | Married_sp | Other_ser  | Not_in_fan | Black      | Female | 16   | Jamaica    | poor  |
| 52  | Self_emp_ | HS_grad   | 9    | Married    | Exec_mar   | Husband    | White      | Male   | 45   | United_Sta | rich  |
| 31  | Private   | Masters   | 14   | Never_mar  | Prof_spec  | Not_in_fan | White      | Female | 50   | United_Sta | rich  |
| 42  | Private   | Bachelors | 13   | Married    | Exec_man   | Husband    | White      | Male   | 40   | United_Sta | rich  |
| 37  | Private   | Some_coll | 10   | Married    | Exec_mar   | Husband    | Black      | Male   | 80   | United Sta | rich  |
| 30  | State_gov | Bachelors | 13   | Married    | Prof_spec  | Husband    | Asian      | Male   | 40   | India      | rich  |
| 24  | Private   | Bachelors | 13   | Never_mar  | Adm_cleri  | Own_child  | White      | Female | 30   | United_Sta | poor  |
| 33  | Private   | Assoc_ac  | 12   | Never_mar  | Sales      | Not_in_fan | Black      | Male   | 50   | United_Sta | poor  |
| 41  | Private   | Assoc_voo | 11   | Married    | Craft_repa | Husband    | Asian      | Male   | 40   | *MissingV  | rich  |
| 34  | Private   | 7th 8th   | 4    | Married    | Transport  | Husband    | Amer India | Male   | 45   | Mexico     | poor  |
| 26  | Self_emp_ | HS_grad   | 9    | Never_mar  | Farming_fi | Own_child  | White      | Male   | 35   | United_Sta | poor  |
| 33  | Private   | HS grad   | 9    | Never mar  | Machine of | Unmarried  | White      | Male   | 40   | United Sta | poor  |
| 38  | Private   | 11th      | 7    | Married    | Sales      | Husband    | White      | Male   | 50   | United_Sta | poor  |
| 44  | Self_emp_ | Masters   | 14   | Divorced   | Exec_mar   | Unmarried  | White      | Female | 45   | United_Sta | rich  |
| 41  | Private   | Doctorate | 16   | Married    | Prof_spec  | Husband    | White      | Male   | 60   | United_Sta | rich  |
|     |           |           |      |            | 1          |            |            |        |      |            |       |

#### Instance space ${\mathcal X}$

- Propositionnal :  $\mathcal{X} \equiv \mathbb{R}^d$
- Structured : sequential, spatio-temporal, relational.



aminoacid

イロン イヨン イヨン イヨン

Э

## Data / Applications

- Propositionnal data
- Spatio-temporal data
- Relationnal data
- Semi-structured data
- Multi-media

80% des applis. alarms, mines, accidents chemistry, biology text, Web images, music, movies,...



## **Difficulty factors**

## Quality of data / of representation

- Noise; missing data
- + Relevant attributes

#### Feature extraction

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

- Structured data: spatio-temporal, relational, text, videos,...

### Data distribution

- + Independants, identically distributed examples
- Other: robotics; data streams; heterogeneous data

## Prior knowledge

- + Goals, interestingness criteria
- + Constraints on target hypotheses

## Difficulty factors, 2

#### Learning criterion

- + Convex optimization problem
- $\searrow$  Complexity : *n*, *nlogn*,  $n^2$
- Combinatorial optimization

H. Simon, 1958:

In complex real-world situations, optimization becomes approximate optimization since the description of the real-world is radically simplified until reduced to a degree of complication that the decision maker can handle.

Satisficing seeks simplification in a somewhat different direction, retaining more of the detail of the real-world situation, but settling for a satisfactory, rather than approximate-best, decision.

**Scalability** 

## Learning criteria, 2

#### The user's criteria

- Relevance, causality,
- INTELLIGIBILITY
- Simplicity
- Stability
- Interactive processing, visualisation
- … Preference learning

## **Difficulty factors, 3**

Crossing the chasm

- No killer algorithm
- Little expertise about algorithm selection

How to assess an algorithm

Consistency

When number *n* of examples goes to infinity and target concept  $h^*$  is in  $\mathcal{H}$  $h^*$  is found:

$$lim_{n\to\infty}h_n = h^*$$

Speed of convergence

$$||h^* - h_n|| = \mathcal{O}(1/n), \mathcal{O}(1/\sqrt{n}), \mathcal{O}(1/\ln n)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

## Context

#### Disciplines et critères

- Data bases, Data Mining
- Statistics, data analysis

Scalability

Predefined models

Machine learning

Prior knowledge; complex data/hypotheses

Optimisation

well / ill posed problems

Computer Human Interaction

No final solution: a process

High performance computing

Distributed processing; safety

## Supervised Learning, notations Context

$$\begin{array}{c} & \text{Oracle} \\ \text{World} \rightarrow \text{Instance } \mathbf{x}_i \rightarrow & \downarrow \\ & y_i \end{array}$$



 $\sim P(\mathbf{x}, y)$ 

$$\mathcal{E} = \{(\mathbf{x}_i, y_i), x_i \in \mathcal{X}, y_i \in \mathcal{Y}, i = 1 \dots n\}$$

HYPOTHESIS SPACE

$$\mathcal{H} \quad h: \mathcal{X} \mapsto \mathcal{Y}$$

LOSS FUNCTION

$$\ell:\mathcal{Y} imes\mathcal{Y}\mapsto {\rm I\!R}$$

OUTPUT

$$h^* = {\sf arg} \; max\{{\sf score}(h), h \in \mathcal{H}\}_{{\scriptscriptstyle eff}}$$
 , we have  ${\scriptscriptstyle eff}$  , we have  ${\scriptscriptstyle eff}$ 

20

## **Classification and criteria**

#### **Supervised learning**

 $\mathcal{Y} = \text{True/False}$  classification  $\mathcal{Y} = \{1, \dots, k\}$  multi-class discrimination  $\mathcal{Y} = \mathbb{R}$  regression

#### **Generalization Error**

$$Err(h) = E[\ell(y, h(\mathbf{x}))] = \int \ell(y, h(\mathbf{x})) dP(x, y)$$

**Empirical Error** 

$$Err_{e}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_{i}, h(\mathbf{x}_{i}))$$

#### Bound

structural risk

$$Err(h) < Err_e(h) + \mathcal{F}(n, d(\mathcal{H}))$$
  
 $d(\mathcal{H}) = Vapnik Cervonenkis dimension of  $\mathcal{H}$ , see later$ 

## The Bias-Variance Trade-off

**Biais** Bias  $(\mathcal{H})$ : error of the best hypothesis  $h^*$  de  $\mathcal{H}$ 

**Variance** Variance of  $h_n$  as a function of  $\mathcal{E}$ 



## The Bias-Variance Trade-off

**Biais** Bias  $(\mathcal{H})$ : error of the best hypothesis  $h^*$  de  $\mathcal{H}$ 

**Variance** Variance of  $h_n$  as a function of  $\mathcal{E}$ target concept Variance Bias Η Function Space **Overfitting** Test error Training error

Complexity of H

## **Key notions**

The main issue regarding supervised learning is overfitting.

- How to tackle overfitting:
  - Before learning: use a sound criterion
  - After learning: cross-validation

regularization Case studies

#### Summary

- Learning is a search problem
- What is the space ? What are the navigation operators ?

## **Hypothesis Spaces**

#### **Logical Spaces**

Concept 
$$\leftarrow \bigvee \bigwedge$$
 Literal,Condition

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- Conditions = [color = blue]; [age < 18]</p>
- Condition  $f : X \mapsto \{ True, False \}$
- Find: disjunction of conjunctions of conditions
- Ex: (unions of) rectangles of the 2D-planeX.

## **Hypothesis Spaces**

**Numerical Spaces** 

Concept 
$$= (h() > 0)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- h(x) = polynomial, neural network, ...
- $h: X \mapsto \mathbb{R}$
- ▶ Find: (structure and) parameters of *h*

## Hypothesis Space $\mathcal{H}$

#### Logical Space

- h covers one example x iff h(x) = True.
- $\mathcal{H}$  is structured by a partial order relation

$$h \prec h'$$
 iff  $\forall x, h(x) \rightarrow h'(x)$ 

#### Numerical Space $\mathcal{H}$

- h(x) is a real value (more or less far from 0)
- we can define  $\ell(h(x), y)$
- $\mathcal{H}$  is structured by a partial order relation

 $h \prec h'$  iff  $E[\ell(h(x), y)] < E[\ell(h'(x), y)]$ 

## Hypothesis Space $\mathcal{H}$ / Navigation

|                         | $\mathcal{H}$ | navigation operators  |
|-------------------------|---------------|-----------------------|
| Version Space           | Logical       | spec / gen            |
| Decision Trees          | Logical       | specialisation        |
| Neural Networks         | Numerical     | gradient              |
| Support Vector Machines | Numerical     | quadratic opt.        |
| Ensemble Methods        | _             | adaptation ${\cal E}$ |

## Overview

#### The AI roots of ML, foll'd

#### Introduction to Supervised Machine Learning

#### Decision trees

Empirical validation Performance indicators Estimating an indicator

## **Decision Trees**

## C4.5 (Quinlan 86)

- Among the most widely used algorithms
- Easy
  - to understand
  - to implelement
  - to use
  - and cheap in CPU time
- ► J48, Weka, SciKit





## **Decision Trees**



30

## **Decision Trees (2)**

## Procedure DecisionTree( $\mathcal{E}$ )

- 1. Assume  $\mathcal{E} = \{(x_i, y_i)_{i=1}^n, x_i \in \mathbb{R}^D, y_i \in \{0, 1\}\}$ 
  - If  $\mathcal{E}$  single-class (i.e.,  $\forall i, j \in [1, n]; y_i = y_j$ ), return
  - If *n* too small (i.e., < threshold), return
  - Else, find the most informative attribute att
- 2. Forall value val of att
  - Set  $\mathcal{E}_{val} = \mathcal{E} \cap [att = val].$
  - Call DecisionTree( $\mathcal{E}_{val}$ )

## Criterion: information gain

$$p = Pr(Class = 1|att = val)$$

$$I([att = val]) = -p \log p - (1 - p) \log (1 - p)$$

$$I(att) = \sum_{i} Pr(att = val_{i}).I([att = val_{i}])$$

## **Decision Trees (3)**

## Contingency Table



## Quantity of Information (QI)



#### Computation

| value  | p(value) | p(poor   value) | QI (value) | p(value) * QI (value) |
|--------|----------|-----------------|------------|-----------------------|
| [0,10[ | 0.051    | 0.999           | 0.00924    | 0.000474              |
| 10,20[ | 0.25     | 0.938           | 0.232      | 0.0570323             |
| 20,30[ | 0.26     | 0.732           | 0.581      | 0.153715              |

## **Decision Trees (4)**

### Limitations

- XOR-like attributes
- Attributes with many values
- Numerical attributes
- Overfitting

## Limitations

#### Numerical Attributes

- Order the values  $val_1 < \ldots < val_t$
- Compute QI([att < val<sub>i</sub>])
- $QI(att) = max_i QI([att < val_i])$

#### The XOR case Bias the distribution of the examples

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

## Complexity

## Quantity of information of an attribute

*n* ln *n* 

Adding a node

 $D \times n \ln n$ 

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @



## **Tackling Overfitting**

#### Penalize the selection of an already used variable

Limits the tree depth.

#### Do not split subsets below a given minimal size

Limits the tree depth.

#### Pruning

- Each leaf, one conjunction;
- Generalization by pruning litterals;
- Greedy optimization, QI criterion.

## **Decision Trees, Summary**

#### Still around after all these years

- Robust against noise and irrelevant attributes
- Good results, both in quality and complexity

#### **Random Forests**

Breiman 00

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

## Overview

The AI roots of ML, foll'd

Introduction to Supervised Machine Learning

**Decision trees** 

Empirical validation Performance indicators Estimating an indicator

## Validation issues

- 1. What is the result ?
- 2. My results look good. Are they ?
- 3. Does my system outperform yours ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

4. How to set up my system ?

## Validation: Three questions

#### Define a good indicator of quality

- Misclassification cost
- Area under the ROC curve

#### Computing an estimate thereof

- Validation set
- Cross-Validation
- Leave one out
- Bootstrap

#### Compare estimates: Tests and confidence levels

## Which indicator, which estimate: depends.

#### Settings

Large/few data

#### Data distribution

- Dependent/independent examples
- balanced/imbalanced classes

## Overview

The Al roots of ML, foll'd

Introduction to Supervised Machine Learning

**Decision trees** 

Empirical validation Performance indicators Estimating an indicator

## **Performance indicators**

#### **Binary class**

- h\* the truth
- $\hat{h}$  the learned hypothesis

#### **Confusion matrix**

| $\hat{h} / h^*$ | 1   | 0   |               |
|-----------------|-----|-----|---------------|
| 1               | а   | b   | a+b           |
| 0               | с   | d   | c+d           |
|                 | a+c | b+d | a + b + c + d |

## Performance indicators, 2

| $\hat{h} / h^*$ | 1   | 0   |               |
|-----------------|-----|-----|---------------|
| 1               | а   | b   | a+b           |
| 0               | с   | d   | c+d           |
|                 | a+c | b+d | a + b + c + d |

- Misclassification rate  $\frac{b+c}{a+b+c+d}$
- Sensitivity (recall), True positive rate (TP)  $\frac{a}{a+c}$
- Specificity, False negative rate (FN)  $\frac{b}{b+d}$
- Precision  $\frac{a}{a+b}$

Note: always compare to random guessing / baseline alg.

## Performance indicators, 3

#### The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

### Principle

 $h: X \mapsto \mathbb{R}$  h(x) measures the risk of patient x

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

h leads to order the examples:

## Performance indicators, 3

#### The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

#### Principle

 $h: X \mapsto \mathbb{R}$  h(x) measures the risk of patient x

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

h leads to order the examples:

Here, TP  $(\theta) = .8$ ; FN  $(\theta) = .1$ 



・ロット (日)・ (田)・ (日)・

## The ROC curve



Ideal classifier: (0 False negative,1 True positive) Diagonal (True Positive = False negative)  $\equiv$  nothing learned.

## **ROC Curve, Properties**

#### **Properties**

ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive +  $c \times \#$  false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with  $\Delta(-c,-1)$ 

・ロ・・日・・日・・日・ ・ 日・ うへつ

## ROC Curve, Properties, foll'd

#### Used to compare learners

multi-objective-like insensitive to imbalanced distributions shows sensitivity to error cost.



Bradley 97

Area Under the ROC Curve

Often used to select a learner Don't ever do this !

Hand, 09

Sometimes used as learning criterion Mann Whitney Wilcoxon

$$AUC = Pr(h(x) > h(x')|y > y')$$

#### WHY

Rosset, 04

- More stable  $\mathcal{O}(n^2)$  vs  $\mathcal{O}(n)$
- With a probabilistic interpretation

Clemencon et al. 08

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

## HOW

- SVM-Ranking
- Stochastic optimization

Joachims 05; Usunier et al. 08, 09

## Overview

The AI roots of ML, foll'd

Introduction to Supervised Machine Learning

**Decision trees** 

Empirical validation Performance indicators Estimating an indicator

## Validation, principle



Assumption: Dataset is to World, like Training set is to Dataset.



## Validation, 2



Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

## Validation, 2



parameter\*, h\*, perf (h\*)

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

## Validation, 2



#### Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

## Overview

The AI roots of ML, foll'd

Introduction to Supervised Machine Learning

**Decision trees** 

Empirical validation Performance indicators Estimating an indicator

## **Confidence intervals**

#### Definition

Given a random variable X on  ${\rm I\!R},$  a p%-confidence interval is  $I \subset {\rm I\!R}$  such that

 $Pr(X \in I) > p$ 

#### Binary variable with probability $\epsilon$

Probability of r events out of n trials:

$$P_n(r) = \frac{n!}{r!(n-r)!} \epsilon^r (1-\epsilon)^{n-r}$$

▶ Mean: *n*€

• Variance: 
$$\sigma^2 = n\epsilon(1-\epsilon)$$

#### Gaussian approximation

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp^{-\frac{1}{2}\frac{x-\mu^2}{\sigma}^2}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

## **Confidence intervals**

#### **Bounds on (true value, empirical value)** for n trials, n > 30

|       |   | $Pr( \hat{x}_n - x^*  >$ |    |      | 1.96 | $\sqrt{\frac{\hat{x}_{n.}}{(}}$ | .05  |      |
|-------|---|--------------------------|----|------|------|---------------------------------|------|------|
|       |   |                          |    |      | Ζ    |                                 |      | ε    |
| Tabla | Z | .67                      | 1. | 1.28 | 1.64 | 1.96                            | 2.33 | 2.58 |
| Table | ε | 50                       | 32 | 20   | 10   | 5                               | 2    | 1    |

## **Empirical estimates**



## Empirical estimates, foll'd





Same as N-fold CV, with N = number of examples.

#### **Properties**

Low bias; high variance; underestimate error if data not independent

## Empirical estimates, foll'd



## Beware

#### Multiple hypothesis testing

- If you test many hypotheses on the same dataset
- one of them will appear confidently true...

#### More

- Tutorial slides: http://www.lri.fr/ sebag/Slides/Validation\_Tutorial\_11.pdf
- Video and slides (soon): ICML 2012, Videolectures, Tutorial Japkowicz & Shah http://www.mohakshah.com/tutorials/icml2012/

## Validation, summary

#### What is the performance criterion

- Cost function
- Account for class imbalance
- Account for data correlations

#### Assessing a result

- Compute confidence intervals
- Consider baselines
- Use a validation set

#### If the result looks too good, don't believe it