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La promesse (1960)

Within 10 years, a computer will

I be the world’s chess champion

I prove an important theorem in maths

I compose good music

I set up the language for theoretical psychology
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L’IA a beaucoup promis

The world’s chess champion ?

Discussion
Entre intelligence et force brute.
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L’IA a beaucoup promis, 2

Prouver un théorème ?

The robot scientist

I Faits → Hypothèses

I Hypothèses → Expériences

I Expériences → Faits

I King R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K., Bryant, C. H.,
Muggleton, S., Kell, D. B. and Oliver, S. G. (2004) Functional genomic
hypothesis generation and experimentation by a robot scientist. Nature
427 (6971) p247-252

I King R.D., Rowland J., Oliver S.G, Young M., Aubrey W., Byrne E.,
Liakata M., Markham M., Pir P., Soldatova L., Sparkes A., Whelan K.E.,
Clare A. (2009). The Automation of Science. Science 324 (5923): 85-89,
3rd April 2009
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Automating Biology 
Using Robot Scientists 

Ross D. King,  
University of Manchester, ross.king@manchester.ac.uk



The Concept of a Robot Scientist

Background 
Knowledge

Analysis

Final Theory Experiment 
selection Robot

Results 
Interpretation

Computer systems capable of originating their own 
experiments, physically executing them, interpreting the 

results, and then repeating the cycle.

Hypothesis Formation



L’IA a beaucoup promis, 3

Composer de la bonne musique ?

Musac
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L’IA a beaucoup promis, 4

Set up the language for theoretical psychology ?

Neuro-imagerie − Interfaces Cerveau-Machine
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L’IA a beaucoup promis, 4

Set up the language for theoretical psychology ?

Test d’hypothèses multiples
http://videolectures.net/msht07 baillet mht/
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Lessons from 50 years

I We need descriptive knowledge: perceptual primitives,
patterns, constraints, rules,

I We need control knowledge: policy, adaptation

I Knowledge can hardly be given: must be acquired

I We need interaction knowledge: retrieving new information,
feedback

Meta-knowledge J. Pitrat, 2009

I Each goal, a new learning algorithm ?

I Problem reduction ? John Langford, http://hunch.net/
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Artificial Intelligence

Search space ML

I Representation (Un) Supervised L.

I Patterns, Rules, Constraints (knowledge)
(Un) Supervised L., Data Mining

I Navigation policy Reinforcement L.

Navigation

I Inference Optimisation

Validation, control, feedback

I Criteria Statistics
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Types of Machine Learning problems

WORLD − DATA − USER

Observations

Understand
Code

Unsupervised
LEARNING

+ Target

Predict
Classification/Regression

Supervised
LEARNING

+ Rewards

Decide
Policy

Reinforcement
LEARNING
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Data

Example

I row : example/ case

I column : feature/
variable/ attribute

I attribute : class/
label

Instance space X
I Propositionnal :
X ≡ IRd

I Structured :
sequential,
spatio-temporal,
relational.

aminoacid
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Data / Applications

I Propositionnal data 80% des applis.

I Spatio-temporal data alarms, mines, accidents

I Relationnal data chemistry, biology

I Semi-structured data text, Web

I Multi-media images, music, movies,..
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Difficulty factors

Quality of data / of representation

− Noise; missing data

+ Relevant attributes Feature extraction

− Structured data: spatio-temporal, relational, text, videos,..

Data distribution

+ Independants, identically distributed examples

− Other: robotics; data streams; heterogeneous data

Prior knowledge

+ Goals, interestingness criteria

+ Constraints on target hypotheses
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Difficulty factors, 2

Learning criterion

+ Convex optimization problem

↘ Complexity : n, nlogn, n2 Scalability

− Combinatorial optimization

H. Simon, 1958:
In complex real-world situations, optimization becomes
approximate optimization since the description of the real-world is
radically simplified until reduced to a degree of complication that
the decision maker can handle.
Satisficing seeks simplification in a somewhat different direction,
retaining more of the detail of the real-world situation, but settling
for a satisfactory, rather than approximate-best, decision.
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Learning criteria, 2

The user’s criteria

I Relevance, causality,

I INTELLIGIBILITY

I Simplicity

I Stability

I Interactive processing, visualisation

I ... Preference learning

17



Difficulty factors, 3

Crossing the chasm

I No killer algorithm

I Little expertise about algorithm selection

How to assess an algorithm

I Consistency

When number n of examples goes to infinity
and target concept h∗ is in H

h∗ is found:

limn→∞hn = h∗

I Speed of convergence

||h∗ − hn|| = O(1/n),O(1/
√

n),O(1/ ln n)
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Context

Disciplines et critères

I Data bases, Data Mining
Scalability

I Statistics, data analysis
Predefined models

I Machine learning
Prior knowledge; complex data/hypotheses

I Optimisation
well / ill posed problems

I Computer Human Interaction
No final solution: a process

I High performance computing
Distributed processing; safety
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Supervised Learning, notations
Context

World → Instance xi →
Oracle
↓
yi

INPUT ∼ P(x, y)

E = {(xi , yi ), xi ∈ X , yi ∈ Y, i = 1 . . . n}
HYPOTHESIS SPACE

H h : X 7→ Y
LOSS FUNCTION

` : Y × Y 7→ IR

OUTPUT
h∗ = arg max{score(h), h ∈ H}
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Classification and criteria
Supervised learning

I Y = True/False classification
I Y = {1, . . . k} multi-class discrimination
I Y = IR regression

Generalization Error

Err(h) = E [`(y , h(x))] =

∫
`(y , h(x))dP(x , y)

Empirical Error

Erre(h) =
1

n

n∑
i=1

`(yi , h(xi ))

Bound structural risk

Err(h) < Erre(h) + F(n, d(H))

d(H) = Vapnik Cervonenkis dimension of H, see later
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The Bias-Variance Trade-off

Biais Bias (H): error of the best hypothesis h∗ de H

Variance Variance of hn as a function of E

h*

h

h

Variance

h

H

Bias

target concept

Function Space

Overfitting

Test error

Training error

Complexity of H
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Key notions

I The main issue regarding supervised learning is overfitting.

I How to tackle overfitting:
I Before learning: use a sound criterion regularization
I After learning: cross-validation Case studies

Summary

I Learning is a search problem

I What is the space ? What are the navigation operators ?
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Hypothesis Spaces

Logical Spaces

Concept ←
∨∧

Literal,Condition

I Conditions = [color = blue]; [age < 18]

I Condition f : X 7→ {True,False}
I Find: disjunction of conjunctions of conditions

I Ex: (unions of) rectangles of the 2D-planeX .
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Hypothesis Spaces

Numerical Spaces

Concept = (h() > 0)

I h(x) = polynomial, neural network, . . .

I h : X 7→ IR

I Find: (structure and) parameters of h
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Hypothesis Space H

Logical Space

I h covers one example x iff h(x) = True.

I H is structured by a partial order relation

h ≺ h′ iff ∀x , h(x)→ h′(x)

Numerical Space H
I h(x) is a real value (more or less far from 0)

I we can define `(h(x), y)

I H is structured by a partial order relation

h ≺ h′ iff E [`(h(x), y)] < E [`(h′(x), y)]
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Hypothesis Space H / Navigation

H navigation operators

Version Space Logical spec / gen
Decision Trees Logical specialisation

Neural Networks Numerical gradient
Support Vector Machines Numerical quadratic opt.

Ensemble Methods − adaptation E
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Decision Trees

C4.5 (Quinlan 86)

I Among the most widely
used algorithms

I Easy
I to understand
I to implelement
I to use
I and cheap in CPU time

I J48, Weka, SciKit

NORMAL

>= 55 < 55

Age

Smoker

no yes

Sport

RISK

NORMAL

highlow

RISK

Tension

yesno

Diabete

yes

RISK PATH.

no
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Decision Trees
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Decision Trees (2)

Procedure DecisionTree(E)

1. Assume E = {(xi , yi )
n
i=1, xi ∈ IRD , yi ∈ {0, 1}}

• If E single-class (i.e., ∀i , j ∈ [1, n]; yi = yj), return
• If n too small (i.e., < threshold), return
• Else, find the most informative attribute att

2. Forall value val of att
• Set Eval = E ∩ [att = val ].
• Call DecisionTree(Eval)

Criterion: information gain

p = Pr(Class = 1|att = val)
I ([att = val ]) = −p log p − (1− p) log (1− p)

I (att) =
∑

i Pr(att = vali ).I ([att = vali ])

31



Decision Trees (3)

Contingency Table
Quantity of Information (QI)

p

Q
I

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7 Quantity of Information

Computation
value p(value) p(poor | value) QI (value) p(value) * QI (value)
[0,10[ 0.051 0.999 0.00924 0.000474

[10,20[ 0.25 0.938 0.232 0.0570323
[20,30[ 0.26 0.732 0.581 0.153715
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Decision Trees (4)

Limitations

I XOR-like attributes

I Attributes with many values

I Numerical attributes

I Overfitting
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Limitations

Numerical Attributes

I Order the values val1 < . . . < valt
I Compute QI([att < vali ])

I QI(att) = maxi QI([att < vali ])

The XOR case
Bias the distribution of the examples
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Complexity

Quantity of information of an attribute

n ln n

Adding a node

D × n ln n
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Tackling Overfitting

Penalize the selection of an already used variable

I Limits the tree depth.

Do not split subsets below a given minimal size

I Limits the tree depth.

Pruning

I Each leaf, one conjunction;

I Generalization by pruning litterals;

I Greedy optimization, QI criterion.
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Decision Trees, Summary

Still around after all these years

I Robust against noise and irrelevant attributes

I Good results, both in quality and complexity

Random Forests Breiman 00
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Validation issues

1. What is the result ?

2. My results look good. Are they ?

3. Does my system outperform yours ?

4. How to set up my system ?
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Validation: Three questions

Define a good indicator of quality

I Misclassification cost

I Area under the ROC curve

Computing an estimate thereof

I Validation set

I Cross-Validation

I Leave one out

I Bootstrap

Compare estimates: Tests and confidence levels
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Which indicator, which estimate: depends.

Settings

I Large/few data

Data distribution

I Dependent/independent examples

I balanced/imbalanced classes
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Performance indicators

Binary class

I h∗ the truth

I ĥ the learned hypothesis

Confusion matrix

ĥ / h∗ 1 0

1 a b a+b
0 c d c+d

a+c b+d a + b + c + d
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Performance indicators, 2

ĥ / h∗ 1 0

1 a b a+b
0 c d c+d

a+c b+d a + b + c + d

I Misclassification rate b+c
a+b+c+d

I Sensitivity (recall), True positive rate (TP) a
a+c

I Specificity, False negative rate (FN) b
b+d

I Precision a
a+b

Note: always compare to random guessing / baseline alg.
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Performance indicators, 3

The Area under the ROC curve

I ROC: Receiver Operating Characteristics

I Origin: Signal Processing, Medicine

Principle

h : X 7→ IR h(x) measures the risk of patient x

h leads to order the examples:
+ + +−+−+ + + +−−−+−−−+−−−−−−−−−−−−

Given a threshold θ, h yields a classifier: Yes iff h(x) > θ.
+ + +−+−+ + ++ | − − −+−−−+−−−−−−−−−−−−

Here, TP (θ)= .8; FN (θ) = .1

45



Performance indicators, 3

The Area under the ROC curve

I ROC: Receiver Operating Characteristics

I Origin: Signal Processing, Medicine

Principle

h : X 7→ IR h(x) measures the risk of patient x

h leads to order the examples:
+ + +−+−+ + + +−−−+−−−+−−−−−−−−−−−−

Given a threshold θ, h yields a classifier: Yes iff h(x) > θ.
+ + +−+−+ + ++ | − − −+−−−+−−−−−−−−−−−−

Here, TP (θ)= .8; FN (θ) = .1

45



ROC
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The ROC curve

θ 7→ IR2 : M(θ) = (1− TNR,FPR)

Ideal classifier: (0 False negative,1 True positive)
Diagonal (True Positive = False negative) ≡ nothing learned.
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ROC Curve, Properties

Properties
ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + c × # false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with ∆(−c ,−1)
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ROC Curve, Properties, foll’d
Used to compare learners Bradley 97

multi-objective-like
insensitive to imbalanced distributions
shows sensitivity to error cost.
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Area Under the ROC Curve

Often used to select a learner
Don’t ever do this ! Hand, 09

Sometimes used as learning criterion Mann Whitney

Wilcoxon

AUC = Pr(h(x) > h(x ′)|y > y ′)

WHY Rosset, 04

I More stable O(n2) vs O(n)

I With a probabilistic interpretation Clemençon et al. 08

HOW

I SVM-Ranking Joachims 05; Usunier et al. 08, 09

I Stochastic optimization
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Validation, principle

Desired: performance on further instances

Further examples

WORLD

h

Quality

Dataset

Assumption: Dataset is to World, like Training set is to Dataset.

Training set

h

Quality

Test examples

DATASET
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

parameter*, h*, perf (h*)

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

Validation set

True performance

parameter*, h*, perf (h*)

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Confidence intervals
Definition
Given a random variable X on IR, a p%-confidence interval is
I ⊂ IR such that

Pr(X ∈ I ) > p

Binary variable with probability ε
Probability of r events out of n trials:

Pn(r) =
n!

r !(n − r)!
εr (1− ε)n−r

I Mean: nε

I Variance: σ2 = nε(1− ε)
Gaussian approximation

P(x) =
1√

2πσ2
exp−

1
2
x−µ
σ

2
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Confidence intervals

Bounds on (true value, empirical value) for n trials, n > 30

Pr(|x̂n − x∗| > 1.96
√

x̂n.(1−x̂n)
n ) < .05

z ε

Table
z .67 1. 1.28 1.64 1.96 2.33 2.58
ε 50 32 20 10 5 2 1
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Empirical estimates

When data abound (MNIST)

Training Test Validation

Cross validation
Fold

2 31

Run

N

2

1

N

Error =  Average (error on 

N−fold Cross Validation

of h

learned from )
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Empirical estimates, foll’d

Cross validation → Leave one out

2 31

Run 2

1

Fold

n

n

Leave one out

Same as N-fold CV, with N = number of examples.

Properties
Low bias; high variance; underestimate error if data not
independent
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Empirical estimates, foll’d

Bootstrap

Dataset

Training set

Test set.

rest of examples

with replacement

uniform sampling

Average indicator over all (Training set, Test set) samplings.

59



Beware

Multiple hypothesis testing

I If you test many hypotheses on the same dataset

I one of them will appear confidently true...

More

I Tutorial slides:
http://www.lri.fr/ sebag/Slides/Validation Tutorial 11.pdf

I Video and slides (soon): ICML 2012, Videolectures, Tutorial
Japkowicz & Shah
http://www.mohakshah.com/tutorials/icml2012/
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Validation, summary

What is the performance criterion

I Cost function

I Account for class imbalance

I Account for data correlations

Assessing a result

I Compute confidence intervals

I Consider baselines

I Use a validation set

If the result looks too good, don’t believe it
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