L3 Apprentissage

Michèle Sebag – Benjamin Monmège LRI – LSV

13 février 2013

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Validation issues

- 1. What is the result ?
- 2. My results look good. Are they ?
- 3. Does my system outperform yours ?
- 4. How to set up my system ?

Validation: Three questions

Define a good indicator of quality

- Misclassification cost
- Area under the ROC curve

Computing an estimate thereof

- Validation set
- Cross-Validation
- Leave one out
- Bootstrap

Compare estimates: Tests and confidence levels

Which indicator, which estimate: depends.

Settings

Large/few data

Data distribution

- Dependent/independent examples
- balanced/imbalanced classes

Performance indicators

Estimating an indicator

Testing

Hyper-parameter tuning

5

Performance indicators

Binary class

- h* the truth
- \hat{h} the learned hypothesis

Confusion matrix

\hat{h} / h^*	1	0	
1	а	b	a+b
0	с	d	c+d
	a+c	b+d	a + b + c + d

Performance indicators, 2

\hat{h} / h^*	1	0	
1	а	b	a+b
0	с	d	c+d
	a+c	b+d	a + b + c + d

- Misclassification rate $\frac{b+c}{a+b+c+d}$
- Sensitivity (recall), True positive rate (TP) $\frac{a}{a+c}$
- Specificity, False negative rate (FN) $\frac{b}{b+d}$
- Precision $\frac{a}{a+b}$

Note: always compare to random guessing / baseline alg.

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

h leads to order the examples:

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

h leads to order the examples:

Here, TP $(\theta) = .8$; FN $(\theta) = .1$

The ROC curve

Ideal classifier: (0 False negative,1 True positive) Diagonal (True Positive = False negative) \equiv nothing learned.

ROC Curve, Properties

Properties

ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + $c \times \#$ false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with $\Delta(-c,-1)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

ROC Curve, Properties, foll'd

Used to compare learners

multi-objective-like insensitive to imbalanced distributions shows sensitivity to error cost.

Bradley 97

Area Under the ROC Curve

Often used to select a learner Don't ever do this !

Hand, 09

Sometimes used as learning criterion

Mann Whitney Wilcoxon

$$AUC = Pr(h(x) < h(x')|y = 1, y' = -1)$$

WHY

- More stable $\mathcal{O}(n^2)$ vs $\mathcal{O}(n)$
- With a probabilistic interpretation

Rosset, 04

Clemencon et al. 08

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

HOW

- SVM-Ranking
- Stochastic optimization

Joachims 05; Usunier et al. 08, 09

Performance indicators

Estimating an indicator

Testing

Hyper-parameter tuning

14

Validation, principle

Assumption: Dataset is to World, like Training set is to Dataset.

Validation, 2

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Validation, 2

parameter*, h*, perf (h*)

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Validation, 2

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

Confidence intervals

Definition

Given a random variable X on ${\rm I\!R},$ a p%-confidence interval is $I \subset {\rm I\!R}$ such that

 $Pr(X \in I) > p$

Binary variable with probability ϵ

Probability of r events out of n trials:

$$P_n(r) = \frac{n!}{r!(n-r)!} \epsilon^r (1-\epsilon)^{n-r}$$

▶ Mean: *n*€

• Variance:
$$\sigma^2 = n\epsilon(1-\epsilon)$$

Gaussian approximation

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp^{-\frac{1}{2}\frac{x-\mu^2}{\sigma}^2}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Confidence intervals

Bounds on (true value, empirical value) for n trials, n > 30

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

		$Pr(\hat{x}_n - x^* >$		1.96	$\sqrt{rac{\hat{x}_{n.}(1-\hat{x}_{n})}{n}}) < 1$.05	
					Ζ			ε
Tabla	z	.67	1.	1.28	1.64	1.96	2.33	2.58
Table	ε	50	32	20	10	5	2	1

Empirical estimates

Empirical estimates, foll'd

Same as N-fold CV, with N = number of examples.

Properties

Low bias; high variance; underestimate error if data not independent

Empirical estimates, foll'd

Beware

Multiple hypothesis testing

- If you test many hypotheses on the same dataset
- one of them will appear confidently true...

More

 Video and slides: ICML 2012, Videolectures, Tutorial Japkowicz & Shah http://www.mohakshah.com/tutorials/icml2012/

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Performance indicators

Estimating an indicator

Testing

Hyper-parameter tuning

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

23

Is \hat{h} better than random ?

The McNemar test

McNemar 47

\hat{h} / h^*	1	0	
1	а	b	a + b
0	с	d	c+d
	a+c	b+d	a + b + c + d

Property

 $rac{|b-c|-1}{b+c}$ follows a χ^2 law with degre of freedom 1

Chi-squared distribution with k degrees of freedom

What

Sum of k squared independent Gaussian normal variables.

Types of test error

Type I error

The hypothesis is not significant, and the test thinks it's significant

Type II error

The hypothesis is valid, and the test discards it.

Comparing algorithms A and B

	А	В	A-B
run 1	30	28	2
run 2	17	25	-8
	28	25	3
	17	28	-11
	30	26	4

Assumption

A and B have normal distribution

Simplest case

two samples with same size, (quasi) same variance.

Define

$$t = \frac{\bar{A} - \bar{B}}{S_{A,B} \cdot \sqrt{\frac{2}{n}}}$$

with
$$S_{A,B} = \sqrt{\frac{1}{2}(S_A^2 + S_B^2)}$$
 and $S_A^2 = \frac{1}{n}\sum (A_i - \bar{A})^2$

Comparing algorithms A and B

t follows a Student law with (2n-2)-dof

- Compute t
- See confidence of t

Comparing algorithms A and B

Recommended: Use paired t-test

- Apply A and B with same (training, test) sets
- Variance is lower:

$$Var(A - B) = Var(A) + Var(B) - 2coVar(A, B)$$

Thus easier to make significant differences

What if variances are different ? See Welch' test:

$$\frac{\bar{A}-\bar{B}}{\sqrt{\frac{S_A^2}{N_A}+\frac{S_B^2}{N_B}}}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Summary: single dataset (if we had enough data...)

The 5 x 2CV

- 5 times
- split the data into 2 halves
- gives 10 estimates of error indicator
- + More independent
- Each training set is 1/2 data.

With a single dataset

- ▶ 5x2 CV
- paired t-test
- McNemar test on a validation set

Dietterich 98

(ロ) (四) (三) (三) (三) (○) (○)

Multiple datasets

If A and B results don't follow a normal distribution

$$Z_i = A_i - B_i$$

Wilcoxon signed rank test

1.	Rank	the	$ Z_i $
----	------	-----	---------

2. $W_+ = \text{sum of ranks when } Z_i > 0$

3.
$$W_{-} =$$
sum of ranks when $Z_i < 0$

4.
$$W_{min} = min(W_+, W_-)$$

$$z = \frac{1/4n(n+1) - W_{min} - 1/2}{\sqrt{1/24n(n+1)(2n+1)}}$$

5. $z \sim \mathcal{N}(0, 1)$ n > 20

А	В	Z	rank	sign
19	23	4	6th	_
22	21	1	1st	+
21	19	2	2nd	+
25	28	3	4th	_
24	22	2	2nd	+
23	20	3	4th	+

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Multiple hypothesis testing

Beware

- If you test many hypotheses on the same dataset
- one of them will appear confidently true... increase in type I error

(

Corrections Over *n* tests, the global significance level α_{global} is related to the elementary significance level α_{unit} :

$$\alpha_{global} = 1 - (1 - \alpha_{unit})^n$$

Bonferroni correction

pessimistic

$$\alpha_{unit} = \frac{\alpha_{global}}{n}$$

Sidak correction

$$lpha_{unit} = 1 - (1 - lpha_{global})^{rac{1}{n}}$$

32

Performance indicators

Estimating an indicator

Testing

Hyper-parameter tuning

How to set up my system ?

Parameter tuning

- Setting the parameters for feature extraction
- Select the best learning algorithm
- Setting the learning parameters (e.g. type of kernel, the parameters in SVMs)
- Setting the validation parameters

Goal: find the best setting

a pervasive concern

(ロ) (四) (三) (三) (三) (三) (○) (○)

- Algorithm selection in Operational Research
- Parameter tuning in Stochastic Optimization
- Meta-Learning in Machine Learning

From Design of Experiments to ...

Main approaches

- 1. Design of experiments (Latin square)
- 2. Anova (Analysis of variance)-like methods:
 - Racing
 - Sequential parameter optimization

Parameter Tuning: A Meta-Optimization problem

performance

Optimization: the Black-Box Scenario

Need to perform several runs to compute performance

Cross-Validation

► Need to specify the *#* runs

and tune it optimally

- Overall cost is the total number of evaluations
- And don't forget to tune the parameters of the meta-optimizer!

Parameter Tuning: A Meta-Optimization problem

Optimization: the Black-Box Scenario

► Need to perform several runs to compute performance

Cross-Validation

▶ Need to specify the *#* runs

and tune it optimally

- Overall cost is the total number of evaluations
- And don't forget to tune the parameters of the meta-optimizer!

Parameter Tuning: A Meta-Optimization problem

Best performance

Optimization: the Black-Box Scenario

Need to perform several runs to compute performance

Cross-Validation

Need to specify the # runs

- and tune it optimally
- Overall cost is the total number of evaluations
- And don't forget to tune the parameters of the meta-optimizer!

Ingredients

Design Of Experiments (DOE)

- A long-known method from statistics
- Choose a finite number of parameter sets
- Compute their performance
- Return the statistically significantly best sets

Analysis of Variance (ANOVA)

- Assumes normally distributed data
- Tests if means are significantly different

for a given confidence level; generalizes T-Test

Perform pairwise tests if ANOVA reports some difference

T-Test, rank-based tests, ...

DOE: Issues

Choice of sample parameter sets

- Full Factorial Design
 - Discretize all parameters if continuous
 - Choose all possible combinations
- Latin Hypercube Sampling: to generate k sets,
 - Discretize all parameters in k values
 - Repeat k times:
 - for each parameter, (uniformly) choose one value out of k
 - For each parameter, each value is taken once

fine if no correlation

Cost

- ► For each parameter set, the full cost of learning validation
- Combinatorial explosion with number of parameters and precision

Birattari & al. 02, Yuan & Gallagher 04

Rationale

All parameter settings are run the same number of times

whereas very bad settings could be detected earlier

Implementation

- Repeat
 - Perform only a few runs per parameter set
 - Statistically check all sets against the best one

at given confidence level

- Discard the bad ones
- Until only survivor, or maximum number of runs per setting reached

How?

Example: Initialization

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

How?

Example: Initialization

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

How?

Example: Initialization

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

How?

Example: Iteration 1

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

How?

Example: Iteration 1

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

How?

Example: Iteration N

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

Example: Iteration N

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ▶ *R*+ = *r*

Example: Best parameter sets

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ▶ *R*+ = *r*

Racing algorithms: Discussion

Results

Published results claim saving between 50 and 90% of the runs

Useful for

- Multiple algorithms on single problem
- Single algorithm on multiple problems

for efficiency

to assess problem difficulties

(ロ) (四) (三) (三) (三) (○) (○)

Multiple algorithms on multiple problems
for robustness

Issues

- Nevertheless costly
- Can only find the best one in initial sample

Validation, summary

What is the performance criterion

- Cost function
- Account for class imbalance
- Account for data correlations

Assessing a result

- Compute confidence intervals
- Consider baselines
- Use a validation set

If the result looks too good, don't believe it