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Validation issues

1. What is the result ?

2. My results look good. Are they ?

3. Does my system outperform yours ?

4. How to set up my system ?
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Validation: Three questions

Define a good indicator of quality

I Misclassification cost

I Area under the ROC curve

Computing an estimate thereof

I Validation set

I Cross-Validation

I Leave one out

I Bootstrap

Compare estimates: Tests and confidence levels
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Which indicator, which estimate: depends.

Settings

I Large/few data

Data distribution

I Dependent/independent examples

I balanced/imbalanced classes
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Overview

Performance indicators

Estimating an indicator

Testing

Hyper-parameter tuning
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Performance indicators

Binary class

I h∗ the truth

I ĥ the learned hypothesis

Confusion matrix

ĥ / h∗ 1 0

1 a b a+b
0 c d c+d

a+c b+d a + b + c + d
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Performance indicators, 2

ĥ / h∗ 1 0

1 a b a+b
0 c d c+d

a+c b+d a + b + c + d

I Misclassification rate b+c
a+b+c+d

I Sensitivity (recall), True positive rate (TP) a
a+c

I Specificity, False negative rate (FN) b
b+d

I Precision a
a+b

Note: always compare to random guessing / baseline alg.
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Performance indicators, 3

The Area under the ROC curve

I ROC: Receiver Operating Characteristics

I Origin: Signal Processing, Medicine

Principle

h : X 7→ IR h(x) measures the risk of patient x

h leads to order the examples:
+ + +−+−+ + + +−−−+−−−+−−−−−−−−−−−−

Given a threshold θ, h yields a classifier: Yes iff h(x) > θ.
+ + +−+−+ + ++ | − − −+−−−+−−−−−−−−−−−−

Here, TP (θ)= .8; FN (θ) = .1
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ROC
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The ROC curve

θ 7→ IR2 : M(θ) = (1− TNR,FPR)

Ideal classifier: (0 False negative,1 True positive)
Diagonal (True Positive = False negative) ≡ nothing learned.
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ROC Curve, Properties

Properties
ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + c × # false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with ∆(−c ,−1)
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ROC Curve, Properties, foll’d
Used to compare learners Bradley 97

multi-objective-like
insensitive to imbalanced distributions
shows sensitivity to error cost.
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Area Under the ROC Curve

Often used to select a learner
Don’t ever do this ! Hand, 09

Sometimes used as learning criterion
Mann Whitney Wilcoxon

AUC = Pr(h(x) < h(x ′)|y = 1, y ′ = −1)

WHY Rosset, 04

I More stable O(n2) vs O(n)

I With a probabilistic interpretation Clemençon et al. 08

HOW

I SVM-Ranking Joachims 05; Usunier et al. 08, 09

I Stochastic optimization
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Overview

Performance indicators

Estimating an indicator
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Hyper-parameter tuning
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Validation, principle

Desired: performance on further instances

Further examples

WORLD

h

Quality

Dataset

Assumption: Dataset is to World, like Training set is to Dataset.

Training set

h

Quality

Test examples

DATASET
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

parameter*, h*, perf (h*)

perf(h)

Unbiased Assessment of Learning Algorithms
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

Validation set

True performance

parameter*, h*, perf (h*)

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Confidence intervals
Definition
Given a random variable X on IR, a p%-confidence interval is
I ⊂ IR such that

Pr(X ∈ I ) > p

Binary variable with probability ε
Probability of r events out of n trials:

Pn(r) =
n!

r !(n − r)!
εr (1− ε)n−r

I Mean: nε

I Variance: σ2 = nε(1− ε)
Gaussian approximation

P(x) =
1√

2πσ2
exp−

1
2
x−µ
σ

2
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Confidence intervals

Bounds on (true value, empirical value) for n trials, n > 30

Pr(|x̂n − x∗| > 1.96
√

x̂n.(1−x̂n)
n ) < .05

z ε

Table
z .67 1. 1.28 1.64 1.96 2.33 2.58
ε 50 32 20 10 5 2 1

18



Empirical estimates

When data abound (MNIST)

Training Test Validation

Cross validation
Fold

2 31

Run

N

2

1

N

Error =  Average (error on 

N−fold Cross Validation

of h

learned from )
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Empirical estimates, foll’d

Cross validation → Leave one out

2 31

Run 2

1

Fold

n

n

Leave one out

Same as N-fold CV, with N = number of examples.

Properties
Low bias; high variance; underestimate error if data not
independent
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Empirical estimates, foll’d

Bootstrap

Dataset

Training set

Test set.

rest of examples

with replacement

uniform sampling

Average indicator over all (Training set, Test set) samplings.
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Beware

Multiple hypothesis testing

I If you test many hypotheses on the same dataset

I one of them will appear confidently true...

More

I Video and slides: ICML 2012, Videolectures, Tutorial
Japkowicz & Shah
http://www.mohakshah.com/tutorials/icml2012/
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Testing

Hyper-parameter tuning

23



Is ĥ better than random ?

The McNemar test McNemar 47

ĥ / h∗ 1 0

1 a b a + b
0 c d c+d

a+c b+d a + b + c + d
Property
|b−c|−1
b+c follows a χ2 law with degre of freedom 1
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Chi-squared distribution with k degrees of freedom

What
Sum of k squared independent Gaussian normal variables.
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Types of test error

Type I error
The hypothesis is not significant, and the test thinks it’s significant

Type II error
The hypothesis is valid, and the test discards it.
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Comparing algorithms A and B

A B A-B

run 1 30 28 2
run 2 17 25 -8

28 25 3
17 28 -11
30 26 4

Assumption
A and B have normal distribution

Simplest case
two samples with same size, (quasi)
same variance.

Define

t =
Ā− B̄

SA,B ·
√

2
n

with SA,B =
√

1
2(S2

A + S2
B) and S2

A = 1
n

∑
(Ai − Ā)2
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Comparing algorithms A and B

t follows a Student law with (2n-2)-dof

I Compute t

I See confidence of t
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Comparing algorithms A and B

Recommended: Use paired t-test

I Apply A and B with same (training, test) sets

I Variance is lower:

Var(A− B) = Var(A) + Var(B)− 2coVar(A,B)

I Thus easier to make significant differences

What if variances are different ?
See Welch’ test:

Ā− B̄√
S2
A

NA
+

S2
B

NB
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Summary: single dataset (if we had enough data...)

The 5 x 2CV Dietterich 98

I 5 times

I split the data into 2 halves

I gives 10 estimates of error indicator

+ More independent

− Each training set is 1/2 data.

With a single dataset

I 5x2 CV

I paired t-test

I McNemar test on a validation set
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Multiple datasets

If A and B results don’t follow a normal distribution

Zi = Ai − Bi

A B |Z| rank sign
19 23 4 6th −
22 21 1 1st +
21 19 2 2nd +
25 28 3 4th −
24 22 2 2nd +
23 20 3 4th +

Wilcoxon signed rank test

1. Rank the |Zi |
2. W+ = sum of ranks when Zi > 0

3. W− = sum of ranks when Zi < 0

4. Wmin = min(W+,W−)

z =
1/4n(n + 1)−Wmin − 1/2√

1/24n(n + 1)(2n + 1)

5. z ∼ N (0, 1) n > 20
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Multiple hypothesis testing
Beware

I If you test many hypotheses on the same dataset

I one of them will appear confidently true...
increase in type I error

Corrections Over n tests, the global significance level αglobal is
related to the elementary significance level αunit :

αglobal = 1− (1− αunit)
n

I Bonferroni correction pessimistic

αunit =
αglobal

n

I Sidak correction

αunit = 1− (1− αglobal)
1
n
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How to set up my system ?

Parameter tuning

I Setting the parameters for feature extraction

I Select the best learning algorithm

I Setting the learning parameters (e.g. type of kernel, the
parameters in SVMs)

I Setting the validation parameters

Goal: find the best setting a pervasive concern

I Algorithm selection in Operational Research

I Parameter tuning in Stochastic Optimization

I Meta-Learning in Machine Learning
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From Design of Experiments to ...

Main approaches

1. Design of experiments (Latin square)

2. Anova (Analysis of variance)-like methods:
I Racing
I Sequential parameter optimization
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Parameter Tuning: A Meta-Optimization problem

Learner Dataset

Validation

performance

Optimization: the Black-Box Scenario

I Need to perform several runs to compute performance
Cross-Validation

I Need to specify the # runs and tune it optimally

I Overall cost is the total number of evaluations

I And don’t forget to tune the parameters of the
meta-optimizer!
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Parameter Tuning: A Meta-Optimization problem

Learner Dataset

Validation

performance

Learning
& valid.

parameters

Best performance

PARAMETER

TUNING

Optimization: the Black-Box Scenario

I Need to perform several runs to compute performance
Cross-Validation

I Need to specify the # runs and tune it optimally

I Overall cost is the total number of evaluations

I And don’t forget to tune the parameters of the
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Ingredients

Design Of Experiments (DOE)

I A long-known method from statistics

I Choose a finite number of parameter sets

I Compute their performance

I Return the statistically significantly best sets

Analysis of Variance (ANOVA)

I Assumes normally distributed data

I Tests if means are significantly different
for a given confidence level; generalizes T-Test

I Perform pairwise tests if ANOVA reports some difference
T-Test, rank-based tests, . . .
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DOE: Issues

Choice of sample parameter sets
I Full Factorial Design

I Discretize all parameters if continuous
I Choose all possible combinations

I Latin Hypercube Sampling: to generate k sets,
I Discretize all parameters in k values
I Repeat k times:

for each parameter, (uniformly) choose one value out of k
I For each parameter, each value is taken once

fine if no correlation

Cost

I For each parameter set, the full cost of learning validation

I Combinatorial explosion with number of parameters and
precision
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Racing algorithms

Birattari & al. 02, Yuan & Gallagher 04

Rationale

I All parameter settings are run the same number of times
whereas very bad settings could be detected earlier

Implementation
I Repeat

I Perform only a few runs per parameter set
I Statistically check all sets against the best one

at given confidence level
I Discard the bad ones

I Until only survivor, or maximum number of runs per setting
reached
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Racing algorithms

How?

Example: Initialization

I R = 0
I while R < Rmax and more than 1

set
I Compute empirical value of

performance for all sets doing r
additional runs

average, median, . . .
I Compute X% confidence intervals

Hoeffding bounds, Friedman
tests, . . .

I Remove sets whose best possible
value is worse than worse possible
value of the best empirical set.

I R+ = r
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Racing algorithms

How?

Example: Best parameter sets
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Racing algorithms: Discussion

Results

I Published results claim saving between 50 and 90% of the runs

Useful for

I Multiple algorithms on single problem for efficiency

I Single algorithm on multiple problems
to assess problem difficulties

I Multiple algorithms on multiple problems for robustness

Issues

I Nevertheless costly

I Can only find the best one in initial sample
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Validation, summary

What is the performance criterion

I Cost function

I Account for class imbalance

I Account for data correlations

Assessing a result

I Compute confidence intervals

I Consider baselines

I Use a validation set

If the result looks too good, don’t believe it
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