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Next course

Tutorials/Videolectures
» http://www.iro.umontreal.ca/~bengioy/talks/icm|2012-YB-
tutorial.pdf
» Part 1: 1-56; Part 2: 79-133
» Feb. 27th (oral participation)

» Some students present part 1-2
» Other students ask questions



Overview

Bio-inspired algorithms



Bio-inspired algorithms

Facts
» 10*! neurons
» 10* connexions per neuron

» Firing time: ~ 1073 second 1071° computers




Bio-inspired algorithms, 2

Human beings are the best !
» How do we do ?

» What matters is not the number of neurons

as one could think in the 80s, 90s...
» Massive parallelism 7
» Innate skills ?

= anything we can't yet explain
» Is it the training process ?



Beware of bio-inspiration

» Misleading inspirations (imitate birds to build flying machines)
» Limitations of the state of the art

» Difficult for a machine <> difficult for a human



Synaptic plasticity

Hebb 1949 Conjecture
When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A's efficiency, as one of the cells firing B, is increased.

Learning rule

Cells that fire together, wire together

If two neurons are simultaneously excitated, their connexion weight
increases.

Remark: unsupervised learning.



Overview

Classical Neural Nets
History
Structure



History of artificial neural nets (ANN)

[

. Non supervised NNs and logical neurons

N

. Supervised NNs: Perceptron and Adaline algorithms

3. The NN winter: theoretical limitations

N

. Multi-layer perceptrons.



History
Historique du connexionnisme

Neurone formel de McCulloch & Pitts

} notions fondatrices

Loi de renforcement de Hebb

Rosenblatt
Perceptron de Rosenbla Adaline de Widrew

Réseau de Hopfield Cartes auto-organisatrices de Kohonen
Réseaux MLP Rumelhart et al.

Réseaux RBF Moody & Darken

Support Vector Machines Vapnik
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Thresholded neurons Mc Culloch et Pitt 1943

y =1 si Zwx>0 3

=0 sinon

Ingredients
> Input (dendrites) x;
» Weights w;
» Threshold 6
» Output: 1iff >, wix; > 6

Remarks
» Neurons — Logics — Reasoning — Intelligence
» Logical NNs: can represent any boolean function
» No differentiability.
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Perceptron Rosenblatt 1958

cellules cellule
dassociation de décision

y = sign(3" wix — 0)

X=(X1,...,%q) — (X1,...,Xd,1).
w=(wp,...,wg)— (wg,...wg,—0)

y = sign((w, X>)
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Learning a Perceptron

Given

» &= {(xi,yi),xi € R9, y; € {1,~-1},i=1...n}

For i=1...n, do

> If no mistake, do nothing

no mistake < (w,x) same sign as y

> |If mistake
W< W+ y.X;

Enforcing algorithmic stability:
Wil < Wy + Qry Xy

a; decreases to 0 faster than 1/t.

< y(w,x) >0
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Convergence: upper bounding the number of
mistakes

Assumptions:
» x; belongs to B(R, C) l|Ixi|| < C

> & is separable, i.e.
exists solution w* s.t. Vi=1...n, y; (w",x;) > >0



Convergence: upper bounding the number of
mistakes

Assumptions:
» x; belongs to B(R, C) x| < €

> & is separable, i.e.
exists solution w* s.t. Vi=1...n, y; (w",x;) > >0
with ||w*|| = 1.

14
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Convergence: upper bounding the number of
mistakes

Assumptions:
» x; belongs to B(R, C) x| < €

> & is separable, i.e.
exists solution w* s.t. Vi=1...n, y; (w",x;) > >0
with ||w*|| = 1.

Then The perceptron makes at most ($)2 mistakes.
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Bounding the number of misclassifications

Proof
Upon the k-th misclassification for some x;
W1 = Wi +yiX;
<Wk+1’W*> = <Wk7W*> +yi<xi7W*>
> <Wk7 W*> +90
> (Wg_1,wW*) +20
> ké

In the meanwhile:

|lwk + yixil[? < ||wi]|? + C2
kC?

w1

IA I

Therefore:
VkC > kb
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Going farther...

Remark: Linear programming: Find w, § such that

Max §, subject to
Vi=1...n, yi{w,x;)>9§

gives the floor to Support Vector Machines...
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Adaline Widrow 1960

Adaptive Linear Element
Given

E={(x,y).xi e R%y; eR,i=1...n}

Learning Minimization of a quadratic function
w* = argmin{Err(w) = Z(y,— — (w, x))?}
Gradient algorithm

w; = w;_1 + «;VErr(w;)
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The NN winter

Historique du connexionnisme

Neurone formel de McCulloch & Pitts

} notions fondatrices

Loi de renforcement de Hebb

Ro att
Perceptron de Ro Adaline de W

Réseau de Hopfie
Réseaux MLP R
Réseaux RBF M

Support Vector Machines Vapnik

Limitation of linear hypotheses Minsky Papert 1969
The XOR problem.



10

Multi-Layer Perceptrons, Rumelhart McClelland
1986

sorties
désirées

b g

7o
+_1 erreur

@ = neurone caché

Issues

» Several layers, non linear separation, addresses the XOR
problem

» A differentiable activation function

1
ouput(x) = 1+ exp{—(w,x)}
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The

sigmoid function

_ 1

J(t) - 1+exp(—a.t)’a >0

approximates step function (binary decision)
linear close to 0

Strong increase close to 0

o'(x) = ao(x)(1 — o(x))
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Back-propagation algorithm, Rumelhart
McClelland 1986; Le Cun 1986

>

>

>

Given (x,y) a training sample uniformly randomly drawn
Set the d entries of the network to xi ... xy

Compute iteratively the output of each neuron until final
layer: output ¥;

Compare § and y Err(w) = (y — y)?
Modify the NN weights on the last layer based on the gradient
value

Looking at the previous layer: we know what we would have
liked to have as output; infer what we would have liked to
have as input, i.e. as output on the previous layer. And
back-propagate...

Errors on each j-th layer are used to modify the weights
used to compute the output of i-th layer from input of i-th
layer.
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Back-propagation of the gradient

Notations
Input x = (x1,...xq) |
From input to the first hidden layer 7{4 e 4 Outpu
(1) —Sw / Y
/ik Xk
( ) _ 1)
X =f(z") Hidde:

From layer / to layer i +1
A0 5 0,0

g Y

NN

(f: e.g. sigmoid) COCOO0C  Inputs
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Back-propagation of the gradient

Input(x,y), x € R?, y € {~1,1}
Phase 1 Propagate information forward

> For layer i=1...¢

For every neuron j on layer i
(i _ (i), (i-1)
4= >k Wi kXK

Phase 2 Compare the target output (y) to what you get (X{Z))
NB: for simplicity one assumes here that there is a single output
(the label is a scalar value).

> Error: difference between y = xl(e) and y.
Define

esrte = ()7 - y]

where f(t) is the (scalar) derivative of f at point t.
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Back-propagation of the gradient

Phase 3 retro-propagate the errors
(l 1) (i-1)
)Z kJ

Phase 4: Update weights on all layers

(k) (k) (k—1)
AWU = ag X;

where « is the learning rate (< 1.)
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Overview

Classical Neural Nets
History
Structure
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Neural nets

Ingredients
» Activation function

» Connexion topology = directed graph
feedforward (= DAG, directed acyclic graph) or recurrent

» A (scalar, real-valued) weight on each connexion

Activation(z)

» thresholded 0 if z < threshold, 1 otherwise
> linear z
» sigmoid 1/(1+e7%)

» Radius-based e’/
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Neural nets
Ingredients
» Activation function
» Connexion topology = directed graph
feedforward (= DAG, directed acyclic graph) or recurrent
> A (scalar, real-valued) weight on each connexion

Feedforward NN

Outputs

Hiddens

NCYCNY

COCOO0 I]lplltS

(C) David McKay - Cambridge Univ. Press



Neural nets

Ingredients
» Activation function

» Connexion topology = directed graph
feedforward (= DAG, directed acyclic graph) or recurrent

» A (scalar, real-valued) weight on each connexion

Recurrent NN
» Propagate until stabilisation

» Back-propagation does not apply

v

Memory of the recurrent NN: value of hidden neurons
Beware that memory fades exponentially fast

v

Dynamic data (audio, video)

26
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Structure / Connexion graph / Topology

Prior knowledge
» Invariance under translation, rotation,.. op
» — Complete £ consider (op(xi), yi)

> or use weight sharing: convolutionnal networks

INPUT festuremaps  feature maps  feature maps feaiure maps OUTPUT
24 a@nzxiz 12@exs 12 26@1x1

28028 (Fand

100,000 weights — 2,600 parameters
Details

» http://yann.lecun.com/exdb/lenet/ Demos
> http://deeplearning.net/tutorial /lenet.html
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Hubel & Wiesel 1968

Visual cortex of the cat
» cells arranged in such a way that

» ... each cell observes a fraction of the visual field
receptive field

» the union of which covers the whole field

Characteristics
» Simple cells check the presence of a pattern

» More complex cells consider a larger receptive field, detect the
presence of a pattern up to translation/rotation
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Sparse connectivity
layer m+ |
layer m
layer m-|

» Reducing the number of weights
> Layer m: detect local patterns

» Layer m+ 1: non linear aggregation, more global field
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Convolutional NN: shared weights

» Reducing the number of weights

» through adapting the gradient-based update: the update is
averaged over all occurrences of the weight.



Max pooling: reduction and invariance

» Partitioning

» Return the max value in the subset invariance

Global scheme

Inpuc layer (51) 4 feacure maps

(C1) 4 feature maps (52) & feature maps  (C2) 6 feature maps

| convolution layer | sub-sampling layer | convolution layer | sub-sampling layer | fully connected MLP |
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Properties

Good news

» MLP, RBF: universal approximators
For every decent function f (= f2 has a finite integral on every
compact of RY)

for every € > 0,
there exists some MLP/RBF g such that ||f — g|| < e.

Bad news
» Not a constructive proof (the solution exists, so what ?)

» Everything is possible — no guarantee (overfitting).
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Key issues

Model selection
> Selecting number of neurons, connexion graph

> Which learning criterion overfitting
More # Better

Algorithmic choices a difficult optimization problem
» Initialisation w small !
» Decrease the learning rate with time
» Enforce stability through relaxation

Wpeo < (1 - a)wold + AW peo
» Stopping criterion

Start by normalization of data

X X — average

variance



The curse of NNs

@ The NIPS community has suffered of an acute convexivitis epidemic
» ML applications seem to have trouble moving beyond logistic
regression, SVMs, and exponential-family graphical models.

» For a new ML model, convexity is viewed as a virtue
» Convexity is sometimes a virtue
b But it is often a limitation

b ML theory has essentially never moved beyond convex models
% the same way control theory has not really moved beyond linear systems

b Often, the price we pay for insisting on convexity is an
unbearable increase in the size of the model, or the scaling
properties of the optimization algorithm [O(n~2), O(n~3)...]

http://videolectures.net/eml07_lecun wia/

24
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Pointers
URL

> course:
http://neuron.tuke.sk/math.chtf.stuba.sk/pub/
vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf

» FAQ: http://www.faqgs.org/faqs/ai-faq/neural-nets/
partl/preamble.html

> applets
http://www.lri.fr/~marc/EEAAX/Neurones/tutorial/

» codes: PDP++/Emergent (www.cnbc.cmu.edu/PDP++/);
SNNS http:

//wwwu-ra.informatik.uni-tuebingen.de/SgNNS/...

Also see

» NEAT & HyperNEAT Stanley, U. Texas
When no examples available: e.g. robotics.


http://neuron.tuke.sk/math.chtf.stuba.sk/pub/vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf
http://neuron.tuke.sk/math.chtf.stuba.sk/pub/vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf
http://www.faqs.org/faqs/ai-faq/neural-nets/part1/preamble.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part1/preamble.html
http://www.lri.fr/~marc/EEAAX/Neurones/tutorial/
www.cnbc.cmu.edu/PDP++/
http://www-ra.informatik.uni-tuebingen.de/SgNNS/
http://www-ra.informatik.uni-tuebingen.de/SgNNS/

26

Overview

Applications
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Applications

1. Pattern recognition

» Signs (letters, figures)
» Faces
» Pedestrians

2. Control (navigation)

3. Language
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Intuition

Design, the royal road
» Decompose a system into building blocks

» which can be specified, implemented and tested independently.

Why looking for another option ?
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Intuition

Design, the royal road
» Decompose a system into building blocks

» which can be specified, implemented and tested independently.

Why looking for another option ?

» When the first option does not work or takes too long (face
recognition)

» when dealing with an open world

Proof of concept

» speech & hand-writing recognition: with enough data,
machine learning yields accurate recognition algorithms.

» hand-crafting — learning
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Recognition of letters

YO e
N=PFRNRw N e
MRENNMD ~ =] n
g Broe fo TN Se 0 ~1 W\
S2LOPR=DI
NV -~~~ 0
S QO kot~ pwo
AN Q& —(J oo ol = o
R Lo nNdO =S
NI ON SR —

o

Tig. 4. Size-normalized examples from the MNIST database.
Features

» Input size d: +100

» — large weight vectors :-(

» Prior knowledge: invariance through (moderate) translation,
rotation of pixel data
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Convolutionnal networks

C3:1. maps 186@10x10
S4: 1. maps 16@5x5

G1: feature maps
INPUT

8@28x28
32x32 @26x 82:1 maps
B@14x14

|
Full conAection ‘ Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

Lecture http://yann.lecun.com/exdb/lenet/

> Y. LeCun and Y. Bengio. Convolutional networks for images,
speech, and time-series. In M. A. Arbib, editor, The

Handbook of Brain Theory and Neural Networks. MIT Press,
1995.
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Face recognition

- Interactive Agents

- Security Systems

- Video Compression

- Image Database Analysis

Viola and Jones, Robust object detection using a boosted cascade of simple features, CVPR 2001
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Face recognition

Variability
» Pose
» Elements: glasses, beard...
> Light
» Expression

» Orientation

Occlusions
http://www.ai.mit.edu/courses/6.891/lectnotes/lect12/lect12-
slides-6up.pdf
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Face recognition, 2

Ioput imoge pyraunid — Brtocted window  CowrectLghting  Histoaram equdlization
(20 Ly 20 pixels)

TR

» One equation — 1 NN
» NN are fast

MNewral setwork
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Face recognition, 3

Oval mask for ignoring
background pixels:

Original windows
Best fit linear function:

Lighting corrected window:
(linenr function subtracted)

Histogram equalized window:

The steps in preprocessing a window. First, a linear function is fit to the intensity values in the window,
and then subtracted out, correcting for some extreme lighting conditions. Then, histogram equalization is
applied, to correct for different camera gains and to improve contrast. For each of these steps, the mapping
is computed based on pixels inside the oval mask, while the mapping is applicd to the entire window,
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Navigation, control

Housing for
PC workstation

Lectures, Video
http://www.cs.nyu.edu/~yann/research/dave/index.html
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Continuous language models

Principle
> Input: 10,000-dim boolean input
» Hidden neurons: 500 continuous neurons

» Goal: from a text window (w; ... w;;2k), predict

» The grammatical tag of the central word w;
» The next word wjiokt1

» Rk: Hidden layer: maps a text window on R
Bengio et al. 2001

(words)
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Continuous language models, Collobert et al.

Improving Word Embedding

@ Rare words are not trained properly
? Sentences with similar words should be tagged in the same way:

+ The cat sat on the mat
+ The feline sat on the mat

[wm sat ] [ wora feline ]
! I

Lookup Table

Ty~ E—

Lookup Table
i, ~~_-> I

? Wordnet

+ pull together linked words
+ push apart other pair of words

videolectures

2008
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Continuous language models, Collobert et al. 2008

Language Model: Think Massive

%{E Language Model: “is a sentence actually english or not?"”
Implicitly captures: + syntax  + semantics

%# Bengio & Ducharme (2001) Probability of next word given previous
words. Overcomplicated — we do not need probabilities here

% English sentence windows: Wikipedia (~ 6310 words)
Non-english sentence windows: middle word randomly replaced

%ﬁ Multi-class margin cost:

Z Z max (0, 1 — f(s, wy) + f(s, w))

s€S weD

&: sentence windows D: dictionary
w?: true middle word in s
(s, w): network score for sentence s and middle word w
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Continuous language models, Collobert et al. 2008

Language Model: Embedding

france jesus xbox reddish scratched
454 1973 6909 11724 29869
spain christ playstation vellowish smashed
italy god dreamcast greenish ripped
russia resurrection psNUMBER brownish brushed
poland prayer snes bluish hurled
england vahweh wii creamy grabbed
denmark josephus nes whitish tossed
germany moses nintendo blackish squeezed
portugal sin gamecube silvery blasted
sweden heaven psp greyish  tangled
austria salvation amiga paler slashed

Dictionary size:

30,000 words. Even rare words are

well embedded.



Continuous language models, Collobert et al. 2008

MTL: Semantic Role Labeling

wiz-15

Wsz=100

& SAL
& SRL+POS
- SRL4CHUNE
SRL+POSSCHUNK
+ SRL+POS4CHUNK+NER
= SRLISTNONYMS
€ SRL+POSSCHUNK+NER+SYNO N YRS
SRL+LANG MODEL
3 SRL+POS4CHUNK+NER+LANG MODEL

£ SRL

3 SRL+POS

- SRL4CHUNK
SRL+POSHCHUNK

- SRL+POSHCHUNK+NER

-3 SRL4SYNONYMS

¥ SRL+POS+CHUNK+NER+SYNDNYMS
SRL+LANG MODEL

-3 SRL+POSHCHUNKSNER+LANG MODEL

TestErmor
TestErmar

Fogdtar o,
S A= '
20ogf0tGa, B

=

"8 o ]
9900900922 PO

Tr i ki Y k2 T = T T
Epock

% We get: 14.50%. State-of-the-art: 16.54% — Pradhan et al. (2004)

%& 20ll« faster than state-of-the-art. ~ .01s to label a WSJ sentence.
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Continuous language models, Collobert et al. 2008

MTL: Unified Network for NLP

Improved results with Multi-Task Learning (MTL)

Task | Alone MTL
SRL 18.40% 14.30%
POS 2.95% 2.91%

Chunking — error rate| 5.4% 4.9%
Chunking — Fl-score | 91.5% 93.6%

%’ POS: state-of-the-art ~ 3%

{;? Chunking: Best system had 93.48% Fl-score at CoNLL-2000
challenge http://www.cnts.ua.ac.be/conl12000/chunking. State-of-the
art is 94.1%. We get 94.9% by using POS features.
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Continuous language models, Collobert et al. 2008

Summary

@ We developed a deep neural network architecture for NLP

§ Advantages

General to any NLP tagging task
State-of-the-art performance

MNo hand designed features

Joint training

Can exploit massive unlabeled data

Extremely fast: 0.02s for all tags of a sentence

E R T

? Inconvenients
+ Neural networks are a powerful tool: hard to handle

? Early Impacts
+ Easy to apply to other tasks or languages: extending to Japanese
+ Fast: developed a semantic search system
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Overview

Advances
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Réseaux profonds

Bengio 2006
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Echo State Networks Jaeger 2001

K input N internal units L output
units i . units

o S

NIPS 2005 Wshop, Reservoir Computing
= Echo State Network, [Jaeger 2001]
|J Liquid State Machine, [Maas 2002]
Structure
» N neurones cachés
» Connexions: aléatoires matrice G

p(xi, xj) connectés =r, r <<1

» Poids: aléatoires: 1, -1, 0.
» Stabilité: max. valeur propre de G (damping factor) < 1
» Neurones de sortie: combinaison linéaire.



~3Y

Echo State Networks, 2

K input N internal units L output
units

units
a
s

A revolution
» The end of micro-management for NN (only p and \)

» Training (e.g. for regression) through quadratic optimization

More:
On computational power and the Order Chaos: Phase Transition in

Reservoir Computing, Benjamin Schrauder, Lars Biising and Robert
Legenstein, NIPS 2008.
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Zone de compétence des Echo State Networks

Tache
> Input: une séquence de bits
» Output désiré: la parité des 7 derniers bits (non séparables,

mémoire nécessaire)

A m=1 B =3

0

-1 1
log(a)

2

» K: nombre de connexions d'un neurone
» o: les poids sont gaussiens, tirés comme N(0, o).
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