L3 Apprentissage

Michèle Sebag - Benjamin Monmège LRI - LSV

27 février 2013

Next course

Tutorials/Videolectures

- http://www.iro.umontreal.ca/~bengioy/talks/icml2012-YBtutorial.pdf
- Part 1: 1-56; Part 2: 79-133
- Mar. 13th (oral participation)
- Some students present part 1-2
- Other students ask questions

Hypothesis Space \mathcal{H} / Navigation

This course

	\mathcal{H}	navigation operators
Version Space	Logical	spec / gen
Decision Trees	Logical	specialisation
Neural Networks	Numerical	gradient
Support Vector Machines	Numerical	quadratic opt.
Ensemble Methods	-	adaptation \mathcal{E}

$$
h: \mathcal{X}=\mathbb{R}^{D} \mapsto \mathbb{R}
$$

Binary classification
$h(\mathbf{x})>0 \rightarrow \mathbf{x}$ classified as True else, classified as False

Overview

Linear SVM, separable case
Linear SVM, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side
Improve precision
Reduce computational cost
Theory

The separable case:
 More than one separating hyperplane

Linear Support Vector Machines

Linear Separators

$$
f(\mathbf{x})=\langle\mathbf{w}, \mathbf{x}\rangle+b
$$

Region $\hat{y}=1: f(\mathbf{x})>0$
Region $\hat{y}=-1$: $f(\mathbf{x})<0$
Criterion

$$
\forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)>0
$$

Remark

Invariant by multiplication of \mathbf{w} and b by a positive value

Canonical formulation

Fix the scale:

$$
\min _{i}\left\{y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)\right\}=1
$$

$$
\forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1
$$

Maximize the Margin

Criterion

Maximize the minimal distance (points, hyperplane). Obtain the largest possible band
Margin

$$
\begin{gathered}
\left\langle\mathbf{w}, \mathbf{x}_{+}\right\rangle+b=1 \quad\left\langle\mathbf{w}, \mathbf{x}_{-}\right\rangle+b=-1 \\
\left\langle\mathbf{w}, \mathbf{x}_{+}-\mathbf{x}_{-}\right\rangle=2
\end{gathered}
$$

Margin $=$ projection of $\mathbf{x}_{+}-\mathbf{x}_{-}$on the normal vector of the hyperplane, $\frac{\mathbf{w}}{\|w\|_{2}}$

$$
\begin{aligned}
& \Rightarrow \text { Maximize } \frac{1}{\|\mathbf{W}\|} \\
& \Leftrightarrow \text { minimize }\|\mathbf{w}\|^{2}
\end{aligned}
$$

Maximize the Margin (2)

Problem

$$
\begin{cases}\text { Minimize } & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { with the constraints } & \forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1\end{cases}
$$

Maximal Margin Hyperplane

Quadratic Optimization (reminder)

Optimize f with constraints $f_{i} \geq 0$
When f and f_{i} are convex Introduce the Lagrange multipliers $\alpha_{i}\left(\alpha_{i} \geq 0\right)$,
Consider
(penalization of the violated constraints)

$$
F(\mathbf{x}, \alpha)=f(\mathbf{x})-\sum_{i} \alpha_{i} f_{i}(\mathbf{x})
$$

Kuhn-Tucker principle (1951)

$$
F\left(\mathbf{x}_{0}, \alpha^{*}\right)=\min _{\alpha \geq 0} F\left(\mathbf{x}_{0}, \alpha\right)=\max _{x} F\left(\mathbf{x}, \alpha^{*}\right)
$$

Primal Problem

$$
L(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i} \alpha_{i}\left(y_{i}\left(\left\langle\mathbf{x}_{i}, \mathbf{w}\right\rangle+b\right)-1\right), \alpha_{i} \geq 0
$$

- Differentiate w.r.t. b : at the optimum,

$$
\frac{\partial L}{\partial b}=0=\sum \alpha_{i} y_{i}
$$

- Differentiate w.r.t. w :

$$
\frac{\partial L}{\partial \mathbf{w}}=0=\mathbf{w}-\sum \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- Replace in $L(\mathbf{w}, b, \alpha)$:

Dual problem (Wolfe)

$$
\begin{aligned}
& W(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}<\mathbf{x}_{i}, \mathbf{x}_{j}> \\
& \forall i, \alpha_{i} \geq 0 \\
& \sum_{i} \alpha_{i} y_{i}=0
\end{aligned}
$$

Quadratic form w.r.t. α
quadratic optimization is easy
Solution: α_{i}^{*}

- Compute \mathbf{w}^{*} :

$$
\mathbf{w}^{*}=\sum_{i} \alpha_{i}^{*} y_{i} \mathbf{x}_{i}
$$

- If $\left(\left\langle\mathbf{x}_{i}, \mathbf{w}^{*}\right\rangle+b\right) y_{i}>1, \alpha_{i}^{*}=0$.
- IF $\left(\left\langle\mathbf{x}_{i}, \mathbf{w}^{*}\right\rangle+b\right) y_{i}=1, \alpha_{i}^{*}>0, \quad \mathbf{x}_{i} \quad$ support vector
- Compute b^{*} :

$$
b^{*}=-\frac{1}{2}\left(\left\langle\mathbf{w}^{*}, \overline{\mathbf{x}}^{+}\right\rangle+\left\langle\mathbf{w}^{*}, \overline{\mathbf{x}}^{-}\right\rangle\right)
$$

Summary

$$
\left.\mathcal{E}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}, i=1 . . n\right\} \quad\left(\mathbf{x}_{i}, y_{i}\right) \sim P(\mathbf{x}, y)
$$

$$
h(\mathbf{x})=\langle\mathbf{w}, \mathbf{x}\rangle+b
$$

Two goals
Role

- Data fitting $\operatorname{sign}\left(y_{i}\right)=\operatorname{sign}\left(h\left(\mathbf{x}_{i}\right)\right) \rightarrow$ maximize margin $y_{i} . h\left(\mathbf{x}_{i}\right)$
achieve learning
- Regularization : minimize $\|\mathbf{w}\|$

Support Vector Machines

General scheme

- Minimize the regularization term
- ... subject to data constraints

$$
=\operatorname{margin} \geq 1(*)
$$

$$
\begin{cases}\text { Min. } & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { s.t. } & y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1 \quad \forall i=1 \ldots n\end{cases}
$$

Constrained minimization of a convex function
\rightarrow introduce Lagrange multipliers $\alpha_{i} \geq 0, i=1 \ldots n$

$$
\operatorname{Min} \mathcal{L}(\mathbf{w}, b, \alpha)=\frac{1}{2}\|\mathbf{w}\|^{2}+\sum_{i} \alpha_{i}\left(1-y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)\right)
$$

Primal problem

- $d+1$ variables ($+n$ Lagrange multipliers)
$\left(^{*}\right)$ in the separable case; see later for non-separable case

Support Vector Machines, 2

At the optimum

$$
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{\partial \mathcal{L}}{\partial b}=\frac{\partial \mathcal{L}}{\partial \alpha}=0
$$

Dual problem
Wolfe

$$
\begin{cases}\text { Max. } & \mathcal{Q}(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \\ \text { s.t. } & \forall i, \alpha_{i} \geq 0 \\ & \sum_{i} \alpha_{i} y_{i}=0\end{cases}
$$

Support vectors

$$
\text { Examples }\left(\mathbf{x}_{i}, y_{i}\right) \text { s.t. } \alpha_{i}>0
$$

the only ones involved in the decision function

$$
\mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{i}
$$

Support vectors, examples

Support vectors, examples

MNIST data

7234567890 12 3 4 5 67890 1234567890

 Data13

Support vectors

Remarks

- Support vectors are critical examples
near-miss
- Show that the Leave-One-Out error is less than \# sv.

LOO: iteratively, learn on all examples but one, and test on the remaining one

Overview

Linear SVM, separable case

Linear SVM, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side
Improve precision
Reduce computational cost
Theory

Separable vs non-separable data

Training
Test

Linear hypotheses, non separable data

Cortes \& Vapnik 95
Non-separable data \Rightarrow not all constraints are satisfiable

$$
y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1-\xi_{\mathbf{i}}
$$

Formalization

- Introduce slack variables ξ_{i}
- And penalize them

$$
\left\{\begin{array}{lc}
\text { Minimize } & \frac{1}{2}\|\mathbf{w}\|^{2}+\mathbf{C} \sum_{\mathrm{i}} \xi_{\mathfrak{i}} \\
\text { Subject to } & \forall i, y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq 1-\xi_{\mathrm{i}} \\
& \xi_{i} \geq 0
\end{array}\right.
$$

Critical decision: adjust $C=$ error cost.

Primal problem, non separable case

Same resolution: Lagrange Multipliers α_{i} and β_{i}, with $\alpha_{i} \geq 0, \beta_{i} \geq 0$

$$
\begin{aligned}
\mathcal{L}(\mathbf{w}, b, \xi, \alpha, \beta)= & \operatorname{Min} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i} \xi_{i} \\
& -\sum_{i} \alpha_{i}\left(y_{i}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right)-1+\xi_{i}\right) \\
& -\sum_{i} \beta_{i} \xi_{i}
\end{aligned}
$$

At the optimum

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \mathbf{w}}=\frac{\partial \mathcal{L}}{\partial b}=\frac{\partial \mathcal{L}}{\partial \xi_{i}}=0 \\
\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \quad \sum_{i} \alpha_{i} y_{i}=0 \quad C-\alpha_{i}-\beta_{i}=0
\end{gathered}
$$

Likewise

- Convex (quadratic) optimization problem \rightarrow it is equivalent to solve the primal and the dual problem (expressed with multipliers α, β)

Dual problem, non separable case

$$
\operatorname{Min} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle, 0 \leq \alpha_{i} \leq C
$$

Mathematically nice problem

- $H=$ semi-definite positive $n \times n$ matrix

$$
H_{i, j}=y_{i} y_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle
$$

- Dual problem quadratic form

Minimize $\langle\alpha, e\rangle-\alpha^{T} H \alpha$
with $e=(1, \ldots, 1) \in \mathbb{R}^{n}$.

Support vectors

- Only support vectors $\left(\alpha_{i}>0\right)$ are involved in h

$$
\mathbf{w}=\sum \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- Importance of support vector \mathbf{x}_{i} : weight α_{i}
- Difference with the separable case $0<\alpha_{i}<C$ bounded influence of examples

The loss (error cost) function

Roles

- The goal is data fitting
loss function characterizes the learning goal
- while solving a convex optimization problem and makes it tractable/reproducible
The error cost
- Binary cost: $\ell(y, h(\mathbf{x}))=1$ iff $y \neq h(x)$
- Quadratic cost: $\ell(y, h(\mathbf{x}))=(y-h(x))^{2}$
- Hinge loss

$$
\ell(y, h(\mathbf{x}))=\max (0,1-y \cdot h(x))=(1-y \cdot h(x))_{+}=\xi
$$

Complexity

Learning complexity

- Worst case: $\mathcal{O}\left(n^{3}\right)$
- Empirical complexity: depends on C
- $\mathcal{O}\left(n^{2} n_{s v}\right)$ where $n_{s v}$ is the number of s.v.

Usage complexity

- $\mathcal{O}\left(n_{s v}\right)$

Overview

Linear SVM, separable case
Linear SVM, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side
Improve precision
Reduce computational cost
Theory

Non-separable data

Representation change

$$
\mathbf{x} \in \mathbb{R}^{2} \rightarrow \text { polar coordinates } \in \mathbb{R}^{2}
$$

Principle

$$
\Phi: X \mapsto \Phi(X) \subset \mathbb{R}^{D}
$$

Intuition

- In a high-dimensional space, every dataset is linearly separable \rightarrow Map data onto $\Phi(X)$, and we are back to linear separation

Glossary

- X : input space
- $\Phi(X)$: feature space

The kernel trick

Remark

- Generalization bounds do not depend on the dimension of input space X but on the capacity of the hypothesis space \mathcal{H}.
- SVMs only involve scalar products $\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle$.

Intuition

- Representation change is only "virtual"
$\Phi: X \mapsto \Phi(X)$
- Consider scalar product in $\Phi(X)$
- ... and compute it in X

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right)\right\rangle
$$

Example: polynomial kernel

Principle

$$
\begin{gathered}
\mathbf{x} \in \mathbb{R}^{3} \mapsto \Phi(\mathbf{x}) \in \mathbb{R}^{10} \\
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \\
\Phi(\mathbf{x})=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{3}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3}, \sqrt{2} x_{2} x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right)
\end{gathered}
$$

Why $\sqrt{2}$?

Example: polynomial kernel

Principle

$$
\mathbf{x} \in \mathbb{R}^{3} \mapsto \Phi(\mathbf{x}) \in \mathbb{R}^{10}
$$

$$
\begin{aligned}
& \mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \\
& \Phi(\mathbf{x})=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{3}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3}, \sqrt{2} x_{2} x_{3}, x_{1}^{2}, x_{2}^{2}, x_{3}^{2}\right)
\end{aligned}
$$

Why $\sqrt{2}$?
because

$$
\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle=\left(1+\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle\right)^{2}=K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

Primal and dual problems unchanged

Primal problem

$$
\begin{cases}\text { Min. } & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { s.t. } & y_{i}\left(\left\langle\mathbf{w}, \Phi\left(\mathbf{x}_{i}\right)\right\rangle+b\right) \geq 1 \quad \forall i=1 \ldots n\end{cases}
$$

Dual problem

$$
\begin{cases}\text { Max. } & \mathcal{Q}(\alpha)=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \\ \text { s.t. } & \forall i, \alpha_{i} \geq 0 \\ & \sum_{i} \alpha_{i} y_{i}=0\end{cases}
$$

Hypothesis

$$
h(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

Example, polynomial kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(a\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle+1\right)^{b}
$$

- Choice of a, b : cross validation
- Domination of high/low degree terms ?
- Importance of normalization

Example, Radius-Based Function kernel (RBF)

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)
$$

- No closed form Φ
- $\Phi(X)$ of infinite dimension For x in \mathbb{R}

$$
\left.\Phi(x)=\exp \left(-\gamma x^{2}\right)\right)\left[1, \sqrt{\frac{2 \gamma}{1!}} x, \sqrt{\frac{(2 \gamma)^{2}}{2!}} x^{2}, \sqrt{\frac{(2 \gamma)^{3}}{3!}} x^{3}, \ldots\right]
$$

- Choice of γ ? (intuition: think of $H, H_{i, j}=y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$)

String kernels

Watkins 99, Lodhi 02

Notations

- s a string on alphabet Σ
- $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ an ordered index sequence $\left(i_{j}<i_{j+1}\right)$, avec $\ell(\mathbf{i})=i_{n}-i_{1}+1$
- $s[\mathbf{i}]$ substring of s, extraction pattern is \mathbf{i} $s=B I C Y C L E, \mathbf{i}=(1,3,6), s[\mathbf{i}]=B C L$

Definition

$$
K_{n}\left(s, s^{\prime}\right)=\sum_{u \in \Sigma^{n}} \sum_{\mathbf{i s . t . s}[\mathbf{i}]=u} \sum_{\mathbf{j} s . t . s^{\prime}[\mathbf{j}]=u} \varepsilon^{\ell(\mathbf{i})+\ell(\mathbf{j})}
$$

with $0<\varepsilon<1$ (discount)

String kernels, followed

Φ : projection on \mathbb{R}^{D} où $D=|\Sigma|^{n}$

$$
\begin{array}{|c|cccc|}
\hline & \text { CH } & \text { CA } & \text { CT } & \text { AT } \\
\text { CHAT } & \varepsilon^{2} & \varepsilon^{3} & \varepsilon^{4} & \varepsilon^{2} \\
\text { CARTOON } & 0 & \varepsilon^{2} & \varepsilon^{4} & \varepsilon^{3} \\
\hline
\end{array}
$$

Prefer the normalized version

$$
\left.\kappa_{(} s, s^{\prime}\right)=\frac{K\left(s, s^{\prime}\right)}{\sqrt{K(s, s) K\left(s^{\prime} s^{\prime}\right)}}
$$

String kernels, followed

Application 1
Document mining

- Pre-processing matters a lot (stop-words, stemming)
- Multi-lingual aspects
- Document classification
- Information retrieval

Application 2, Bio-informatics

- Pre-processing matters a lot
- Classification (secondary structures)

Extension to graph kernels http://videolectures.net/gbr07_vert_ckac/

Application to musical analysis

- Input: Midi files
- Pre-processing, rythm detection
- Representation: the musical worm (tempo, loudness)
- Output: Identification of performer styles

Using String Kernels to Identify Famous Performers from their Playing Style, Saunders et al., 2004

Kernels: key features

Absolute \rightarrow Relative representation

- $\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \propto$ angle of \mathbf{x} and \mathbf{x}^{\prime}
- More generally $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ measures the (non-linear) similarity of x and x^{\prime}
- \mathbf{x} is described by its similarity to other examples

Necessary condition: the Mercer condition
K must be positive semi-definite

$$
\forall g \in L_{2}, \int K\left(\mathbf{x}, \mathbf{x}^{\prime}\right) g(\mathbf{x}) g\left(\mathbf{x}^{\prime}\right) d \mathbf{x} \geq 0
$$

Why ?

Related to Φ Mercer condition holds $\rightarrow \exists \phi_{1}, \phi_{2}, .$.

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{i=1}^{\infty} \lambda_{i} \phi_{i}(\mathbf{x}) \phi_{i}\left(\mathbf{x}^{\prime}\right)
$$

with ϕ_{i} eigen functions, $\lambda_{i}>0$ eigen values
Kernel properties: let K, K^{\prime} be p.d. kernels and $\alpha>0$, then

- αK is a p.d. kernel
- $K+K^{\prime}$ is a p.d. kernel
- $K . K^{\prime}$ is a p.d. kernel
- $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\operatorname{limit}_{p \rightarrow \infty} K_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is p.d. if it exists
- $K(A, B)=\sum_{\mathbf{x} \in A, \mathbf{x}^{\prime} \in B} K\left(x, x^{\prime}\right)$ is a p.d. kernel

Overview

Linear SVM, separable case
Linear SV/M, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side
Improve precision
Reduce computational cost
Theory

Multi-class discrimination

Input
Binary case
$\left.\mathcal{E}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{-1,1\}, i=1 . . n\right\} \quad\left(\mathbf{x}_{i}, y_{i}\right) \sim P(\mathbf{x}, y)$
Multi-class case
$\left.\mathcal{E}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x}_{i} \in \mathbb{R}^{d}, y_{i} \in\{1 \ldots k\}, i=1 . . n\right\} \quad\left(\mathbf{x}_{i}, y_{i}\right) \sim P(\mathbf{x}, y)$
Output: $\hat{h}: \mathbb{R}^{d} \mapsto\{1 \ldots k\}$.

Multi-class learning: one against all

First option: k binary learning problems
Pb 1: class $1 \rightarrow+1$, classes $2 \ldots k \rightarrow-1$
Pb 2: class $2 \rightarrow+1$, classes $1,3, \ldots k \rightarrow-1$

Prediction

$$
h(\mathbf{x})=i \text { iff } h_{i}(\mathbf{x})=\operatorname{argmax}\left\{h_{j}(\mathbf{x}), j=1 \ldots k\right\}
$$

Justification
If \mathbf{x} belongs to class 1 , one should have

$$
h_{1}(\mathbf{x}) \geq 1, h_{j}(\mathbf{x})<-1, j \neq 1
$$

Where is the difficulty ?

What we get (one vs all)

What we want

Multi-class learning: one vs one

Second option: $\frac{k(k-1)}{2}$ binary classification problems $\mathrm{Pb} i, j$ class $i \rightarrow+1$, class $j \rightarrow-1$

Prediction

- Compute all $h_{i, j}(\mathbf{x})$
- Count the votes

Classes	winner				
12	1				
13	1				
14	1				
23	2				
24	4	class	12	3	4
34	3	\# votes	31	1	

NB: One can also use the $h_{i, j}(\mathbf{x})$ values.

Multi-class learning: additionnal constraints

Another option
Vapnik 98; Weston, Watkins 99

$$
\begin{cases}\text { Minimise } & \frac{1}{2} \sum_{j=1}^{k}\left\|\mathbf{w}_{j}\right\|^{2}+C \sum_{i=1}^{n} \sum_{\ell=1, \ell \neq y_{i}}^{k} \xi_{i, \ell} \\ \text { Subject to } & \forall i, \forall \ell \neq y_{i}, \\ & \left(\left\langle w_{y_{i}}, \mathbf{x}_{i}\right\rangle+b_{y_{i}}\right) \geq\left(\left\langle w_{\ell}, \mathbf{x}_{i}\right\rangle+b_{\ell}\right)+2-\xi_{i, \ell} \\ & \xi_{i, \ell} \geq 0\end{cases}
$$

Hum!

- $n \times k$ constraints: $n \times k$ dual variables

Recommendations

In practice

- Results are in general (but not always !) similar
- 1 -vs- 1 is the fastest option

Overview

Linear SVM, separable case
Linear SV/M, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side
Improve precision
Reduce computational cost
Theory

Regression

Input

$$
\left.\mathcal{E}=\left\{\left(x_{i}, y_{i}\right)\right\}, x_{i} \in \mathbb{R}^{d}, y_{i} \in \mathbb{R}, i=1 . . n\right\} \quad\left(x_{i}, y_{i}\right) \sim P(x, y)
$$

Output : $\hat{h}: \mathbb{R}^{d} \mapsto \mathbb{R}$.

Regression with Support Vector Machines

Intuition

- Find h deviating by at most ε from the data
- ... while being as flat as possible
loss function
regularization

Formulation

$$
\begin{cases}\text { Min. } & \frac{1}{2}\|\mathbf{w}\|^{2} \\ \text { s.t. } & \forall i=1 \ldots n \\ & \left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \geq y_{i}-\varepsilon \\ & \left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \leq y_{i}+\varepsilon\end{cases}
$$

Regression with Support Vector Machines, followed

Using slack variables

$$
\begin{cases}\text { Min. } & \frac{1}{2}\|\mathbf{w}\|^{2}+\mathbf{C} \sum_{i}\left(\xi_{i}^{+}+\xi_{i}^{-}\right) \\ \text {s.t. } & \forall i=1 \ldots n \\ & \left(\left\langle\mathbf{w}, \mathbf{x}_{\boldsymbol{i}}\right\rangle+b\right) \geq y_{i}-\varepsilon-\xi_{i^{-}}^{-} \\ & \left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \leq y_{i}+\varepsilon+\xi_{i}^{+}\end{cases}
$$

Regression with Support Vector Machines, followed
Primal problem

$$
\begin{aligned}
\mathcal{L}(\mathbf{w}, b, \xi, \alpha, \beta)= & \operatorname{Min} \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i}\left(\xi_{i}^{+}+\xi_{i}^{-}\right) \\
& -\sum_{i} \alpha_{i}^{+}\left(y_{i}+\varepsilon+\xi_{i}^{+}-\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b\right) \\
& -\sum_{i} \alpha_{i}^{-}\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle+b-y_{i}+\varepsilon+\xi_{i}^{-}\right) \\
& -\sum_{i} \beta_{i}^{+} \xi_{i}^{+}-\sum_{i} \beta_{i}^{-} \xi_{i}^{-}
\end{aligned}
$$

Dual problem

$$
\begin{cases}\mathcal{Q}\left(\alpha^{+}, \alpha^{-}\right)= & \sum_{i} y_{i}\left(\alpha_{i}^{+}-\alpha_{i}^{-}\right)-\varepsilon \sum_{i}\left(\alpha_{i}^{+}+\alpha_{i}^{-}\right) \\ & +\sum_{i, j}\left(\alpha_{i}^{+}-\alpha_{i}^{-}\right)\left(\alpha_{j}^{+}-\alpha_{j}^{-}\right)\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \\ \text { s.t. } & \forall i=1 \ldots n \\ & \sum^{2}\left(\alpha_{i}^{+}-\alpha_{i}^{-}\right)=0 \\ & 0 \leq \alpha_{i}^{+} \leq C \\ & 0 \leq \alpha_{i}^{-} \leq C\end{cases}
$$

Regression with Support Vector Machines, followed Hypothesis

$$
h(\mathbf{x})=\sum\left(\alpha_{i}^{+}-\alpha_{i}^{-}\right)\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle+b
$$

With no loss of generality you can replace everywhere

$$
\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle \rightarrow K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

Beware

High-dimensional regression

$$
\left.\mathcal{E}=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x}_{i} \in \mathbb{R}^{D}, y_{i} \in \mathbb{R}, i=1 . . n\right\} \quad\left(\mathbf{x}_{i}, y_{i}\right) \sim P(\mathbf{x}, y)
$$

A very slippery game if $D \gg n$
curse of dimensionality
Dimensionality reduction mandatory

- Map x onto \mathbb{R}^{d}
- Central subspace:

$$
\pi: X \mapsto S \subset \mathbb{R}^{d}
$$

with S minimal such that y and \mathbf{x} are independent conditionally to $\pi(x)$.

Find $h, \mathbf{w}: y=h(\mathbf{w}, \mathbf{x})$

Sliced Inverse Regression

Bernard-Michel et al, 09

More:
http://mistis.inrialpes.fr/learninria/ S. Girard

Overview

Linear SVM, separable case
Linear SV/M, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side
Improve precision
Reduce computational cost
Theory

Novelty Detection

Input

$$
\left.\mathcal{E}=\left\{\left(x_{i}\right)\right\}, x_{i} \in X, i=1 . . n\right\} \quad\left(x_{i}\right) \sim P(x)
$$

Context

- Information retrieval

- Identification of the data support
estimation of distribution

Critical issue

- Classification approaches not efficient: too much noise

One-class SVM

Formulation

$$
\begin{cases}\text { Min. } & \frac{1}{2}\|\mathbf{w}\|^{2}-\rho+\mathbf{C} \sum_{\mathrm{i}} \xi_{\mathrm{i}} \\ \text { s.t. } & \forall i=1 \ldots n \\ & \left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq \rho-\xi_{\mathrm{i}}\end{cases}
$$

Dual problem

$$
\begin{cases}\text { Min. } & \sum_{i, j} \alpha_{i} \alpha_{j}\left\langle\mathbf{x}_{i}, \mathbf{x}_{j}\right\rangle \\ \text { s.t. } & \forall i=1 \ldots n \quad 0 \leq \alpha_{i} \leq C \\ & \sum_{i} \alpha_{i}=0\end{cases}
$$

Implicit surface modelling

Schoelkopf et al, 04
Goal: find the surface formed by the data points

$$
\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle \geq \rho \text { becomes }-\varepsilon \leq\left(\left\langle\mathbf{w}, \mathbf{x}_{i}\right\rangle-\rho\right) \leq \varepsilon
$$

Overview

Linear SVM, separable case
Linear SV/M, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side Improve precision
Reduce computational cost
Theory

Normalisation / Scaling

Needed to prevent attributes to steal the game

	Height	Gender	Class
x_{1}	150	F	1
x_{2}	180	M	0
x_{3}	185	M	0
$\stackrel{\Delta}{\mathbf{x}_{1}}$			
		$\stackrel{0}{x}^{0}{ }^{\circ}{ }_{3}$	

\Rightarrow Normalization

$$
\text { Height } \rightarrow \frac{\text { Height }-150}{180-150}
$$

Beware

Usual practice

- Normalize the whole dataset
- Learn on the training set
- Test on the test set

Beware

Usual practice

- Normalize the whole dataset
- Learn on the training set
- Test on the test set

NO!

Good practice

- Normalize the training set (Scale ${ }_{\text {train }}$)
- Learn from the normalized training set
- Scale the test set according to Scale ${ }_{\text {train }}$ and test

Imbalanced datasets

Typically

- Normal transactions: 99.99\%
- Fraudulous transactions: not many

Practice

- Define asymmetrical penalizations

$$
\begin{array}{ll}
\text { std penalization } & C \sum_{i} \xi_{i} \\
\text { asymmetrical penalizations } & C_{+} \sum_{i, y_{i}=1} \xi_{i}+C_{-} \sum_{i, y_{i}=-1} \xi_{i}
\end{array}
$$

Other options ?

Overview

Linear SVM, separable case
Linear SV/M, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side Improve precision
Reduce computational cost
Theory

Data sampling

Simple approaches

- Uniform sampling
often efficient
- Stratified sampling same distribution as in \mathcal{E}

Incremental approaches

- Partition $\mathcal{E} \rightarrow \mathcal{E}_{1}, \ldots \mathcal{E}_{N}$
- Learn from $\mathcal{E}_{1} \rightarrow$ support vectors $S V_{1}$
- Learn from $\mathcal{E}_{2} \cup S V_{1} \rightarrow$ support vectors $S V_{2}$
- etc.

Data sampling, followed

Select examples

- Use k-nearest neighbors
- Train SVM on k-means (prototypes)
- Pb about distances

Hierarchical methods

- Use unsupervised learning and form clusters learning, J. Gama
- Learn a hypothesis on each cluster
- Aggregate hypotheses

Reduce number of variables

Select candidate s.v. $\mathcal{F} \subset \mathcal{E}$

$$
w=\sum \alpha_{i} y_{i} \mathbf{x}_{i} \text { with }\left(\mathbf{x}_{i}, y_{i}\right) \in \mathcal{F}
$$

Optimize α_{i} on \mathcal{E}

$$
\begin{cases}\text { Min. } & \frac{1}{2} \sum_{i, j, \in \mathcal{F}} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+C \sum_{\ell=1}^{n} \xi_{\ell} \\ \text { t.q. } & \forall \ell=1 \ldots n, \\ & \left(\left\langle w, \mathbf{x}_{\ell}\right\rangle+b\right) \geq 1-\xi_{\ell} \\ & \xi_{\ell} \geq 0\end{cases}
$$

Sources

- Vapnik, The nature of statistical learning, Springer Verlag 1995; Statistical Learning Theory, Wiley 1998
- Cristianini \& Shawe Taylor, An introduction to Support Vector Machines, Cambridge University Press, 2000.
- http://www.kernel-machines.org/tutorials
- Videolectures + ML Summer Schools
- Large scale Machine Learning challenge, ICML 2008 wshop: http://largescale.ml.tu-berlin.de/workshop/

Overview

Linear SVM, separable case
Linear SVM, non separable case
The kernel trick
The Kernel principle
Examples
Discussion
Extensions
Multi-class discrimination
Regression
Novelty detection
On the practitioner side
Improve precision
Reduce computational cost
Theory

Reminder

Vapnik, 1995, 1998

Input

$\left.\mathcal{E}=\left\{\left(x_{i}, y_{i}\right)\right\}, x_{i} \in \mathbb{R}^{m}, y_{i} \in\{-1,1\}, i=1 . . n\right\} \quad\left(x_{i}, y_{i}\right) \sim P(x, y)$
Output : $\hat{h}: \mathbb{R}^{m} \mapsto\{-1,1\}$ ou \mathbb{R}. $\quad \hat{h}$ approximates y
Criterion : ideally, minimize the generalization error

$$
\operatorname{Err}(h)=\int \ell(y, \hat{h}(x)) d P(x, y)
$$

$\ell=$ loss function: $1_{y \neq \hat{h}(x)},(y-\hat{h}(x))^{2}$
$P(x, y)=$ joint distribution of the data.

The Bias-Variance Tradeoff

Choice of a model: The space \mathcal{H} where we are looking for \hat{h}.
Bias: Distance between y and $h^{*}=\operatorname{argmin}\{\operatorname{Err}(h), h \in \mathcal{H}\}$.
the best we can hope for
Variance: Distance between \hat{h} and h^{*}
between the best h^{*} and the \hat{h} we actually learn
Note:
Only the empirical risk (on the available data) is given

$$
E r r_{e m p, n}(\hat{h})=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, \hat{h}\left(x_{i}\right)\right)
$$

Principle:

$$
\operatorname{Err}(\hat{h})<\operatorname{Err}_{e m p, n}(\hat{h})+\mathcal{B}(n, \mathcal{H})
$$

If \mathcal{H} is "reasonable", Err ${ }_{\text {emp }, n} \rightarrow$ Err when $n \rightarrow \infty$

Statistical Learning

Statistical Learning Theory

Learning from a statistical perspective.
Goal of the theory
in general
Model a real / artificial phenomenon, in order to:

* understand
* predict
* exploit

General

A theory: hypotheses \rightarrow predictions

- Hypotheses on the phenomenon
here, Learning
- Predictions about its behavior errors

Theory \rightarrow algorithm

- Optimize the quantities allowing prediction
- Nothing practical like a good theory!

Vapnik

General

A theory: hypotheses \rightarrow predictions

- Hypotheses on the phenomenon
here, Learning
- Predictions about its behavior

Theory \rightarrow algorithm

- Optimize the quantities allowing prediction
- Nothing practical like a good theory!

Vapnik

Strength/Weaknesses

+ Stronger Hypotheses \rightarrow more precise predictions
BUT if the hypotheses are wrong, nothing will work

What Theory do we need?

Approach in expectation

- A set of data
one example
breast cancer
- \bar{x}^{+}: average of positive examples
- \bar{x}^{-}: average of negative examples
- $h(x)=+1$ iff $d\left(x, \bar{x}^{+}\right)<d\left(x, \bar{x}^{-}\right)$

Estimate the generalization error

- Data \rightarrow Training set, test set
- Learn \bar{x}^{+}et \bar{x}^{-}on the training set, measure the errors on the test set

Classical Statistics vs Statistical Learning

Classical Statistics

- Mean error

We want guarantees

- PAC Model Probably Approximately Correct
- What is the probability that the error is greater than a given threshold?

Example

Assume

$$
\operatorname{Err}(h)>\varepsilon
$$

What is the probability that $\operatorname{Err}_{\text {emp, } n}(h)=0$?

$$
\begin{aligned}
\operatorname{Pr}\left(E r r_{e m p, n}(h)=0, \operatorname{Err}(h)>\varepsilon\right) & =(1-\operatorname{Err}(h))^{n} \\
& <(1-\varepsilon)^{n} \\
& <\exp (-\varepsilon n)
\end{aligned}
$$

Example

Assume

$$
\operatorname{Err}(h)>\varepsilon
$$

What is the probability that $E r r_{e m p, n}(h)=0$?

$$
\begin{aligned}
\operatorname{Pr}\left(E r r_{e m p, n}(h)=0, \operatorname{Err}(h)>\varepsilon\right) & =(1-\operatorname{Err}(h))^{n} \\
& <(1-\varepsilon)^{n} \\
& <\exp (-\varepsilon n)
\end{aligned}
$$

Hence, in order to guarantee a risk δ

$$
\operatorname{Pr}\left(E r r_{e m p, n}(h)=0, \operatorname{Err}(h)>\varepsilon\right)<\delta
$$

Example

Assume

$$
\operatorname{Err}(h)>\varepsilon
$$

What is the probability that $E r r_{e m p, n}(h)=0$?

$$
\begin{aligned}
\operatorname{Pr}\left(E r r_{e m p, n}(h)=0, \operatorname{Err}(h)>\varepsilon\right) & =(1-\operatorname{Err}(h))^{n} \\
& <(1-\varepsilon)^{n} \\
& <\exp (-\varepsilon n)
\end{aligned}
$$

Hence, in order to guarantee a risk δ

$$
\operatorname{Pr}\left(\operatorname{Err}_{\text {emp }, n}(h)=0, \operatorname{Err}(h)>\varepsilon\right)<\delta
$$

The error should not be greater than

$$
\varepsilon<\frac{1}{n} \ln \frac{1}{\delta}
$$

Statistical Learning

Principle

- Find a bound on the generalization error
- Minimize the bound.

Note

\hat{h} should be considered as a random variable, depending on the training set \mathcal{E} and the number of examples n.

Results

- deviation of the empirical error

$$
\operatorname{Err}\left(\widehat{h_{n}}\right) \leq \operatorname{Err}_{e m p, n}\left(\widehat{h_{n}}\right)+\mathcal{B}_{1}(n, \mathcal{H})
$$

- bias-variance

$$
\operatorname{Err}\left(\widehat{h_{n}}\right) \leq \operatorname{Err}\left(h^{*}\right)+\mathcal{B}_{2}(n, \mathcal{H})
$$

Approaches

Minimization of the empirical risk

- Model selection: Choose hypothesis space \mathcal{H}
- Choose $\widehat{h}_{n}=\operatorname{argmin}\left\{\operatorname{Err}_{n}(h), h \in \mathcal{H}\right\}$
beware of overfitting
Minimization of the structual risk
Given $\mathcal{H}_{1} \subset \mathcal{H}_{2} \subset \ldots \subset \mathcal{H}_{k}$,

$$
\text { Find } \widehat{h}_{n}=\operatorname{argmin}\left\{\operatorname{Err}_{n}(h)+\operatorname{pen}(n, k), h \in \mathcal{H}_{k}\right\}
$$

Which penalization?
Regularization

$$
\text { Find } \widehat{h}_{n}=\operatorname{argmin}\left\{\operatorname{Err}_{n}(h)+\lambda\|h\|, h \in \mathcal{H}\right\}
$$

λ is identified by cross-validation

Structural Risk Minimization

Tool 1. Hoeffding bound

Hoeffing 1963
Let $X_{1} \ldots, X_{n}$ be independent random variables, and assume X_{i} takes values in [a_{i}, b_{i}]
Let $\bar{X}=\left(X_{1}+\cdots+X_{n}\right) / n$ be their empirical mean.

Theorem

$$
\operatorname{Pr}(|\bar{X}-\mathrm{E}[\bar{X}]| \geq \varepsilon) \leq 2 \exp \left(-\frac{2 \varepsilon^{2} n^{2}}{\sum_{i=1}^{n}\left(b_{i}-a_{i}\right)^{2}}\right)
$$

where $\mathrm{E}[\bar{X}]$ is the expectation of \bar{X}.

Hoeffding Bound (2)

Application: if

$$
\operatorname{Pr}\left(\left|\operatorname{Err}(g)-\operatorname{Err}_{n}(g)\right|>\varepsilon\right)<2 e^{-2 n \varepsilon^{2}}
$$

then with probability at least $1-\delta$

$$
\operatorname{Err}(g) \leq \operatorname{Err}_{n}(g)+\sqrt{\frac{\log 2 / \delta}{2 n}}
$$

but this does not say anything about $\hat{h}_{n} \ldots$
Uniform deviations

$$
\left|\operatorname{Err}\left(\hat{h}_{n}\right)-\operatorname{Err}_{n}\left(\hat{h}_{n}\right)\right| \leq \sup _{h \in H}\left|\operatorname{Err}(h)-\operatorname{Err}_{n}(h)\right|
$$

- if \mathcal{H} is finite, consider the sum of $\left|\operatorname{Err}(h)-\operatorname{Err}_{n}(h)\right|$
- sif \mathcal{H} is infinite, consider its trace on the data

Statistical Learning. Definitions

Vapnik 92, 95, 98
Trace of \mathcal{H} on $\left\{x_{1}, \ldots x_{n}\right\}$

$$
\operatorname{Tr}_{x_{1}, . . x_{n}}(\mathcal{H})=\left\{\left(h\left(x_{1}\right), . . h\left(x_{n}\right)\right), h \in \mathcal{H}\right\}
$$

Growth Function

$$
S(\mathcal{H}, n)=\sup _{\left(x_{1}, . . . x_{n}\right)}\left|\operatorname{Tr}_{x_{1}, . . x_{n}}(\mathcal{H})\right|
$$

Statistical Learning. Definitions (2)

Capacity of an hypothesis space \mathcal{H}
If the training set is of size n, and some function of \mathcal{H} can have "any behavior" on n examples, nothing can be said!
\mathcal{H} shatters $\left(x_{1}, \ldots x_{n}\right)$ iff

$$
\forall\left(y_{1}, \ldots y_{n}\right) \in\{1,-1\}^{n}, \exists h \in \mathcal{H} \text { s.t. } \forall i=1 \ldots n, h\left(x_{i}\right)=y_{i}
$$

Vapnik Cervonenkis Dimension $\mathrm{VC}(\mathcal{H})=\max \left\{n ;\left(x_{1}, \ldots x_{n}\right)\right.$ shattered by $\left.\mathcal{H}\right\}$

$$
V C(\mathcal{H})=\max \left\{n / S(\mathcal{H}, n)=2^{n}\right\}
$$

A shattered set

3 points in \mathbb{R}^{2}
$\mathcal{H}=$ lines of the plane

Growth Function of linear functions over \mathbb{R}^{20}

THe growth function is exponental w.r.t. n for $n<d=V C(\mathcal{H})$, then polynomial (in n^{d}).

Theorem, separable case

$\forall \delta>0$, with probability at least $1-\delta$

$$
\operatorname{Err}(h) \leq \operatorname{Err}_{n}(h)+\sqrt{2 \frac{\log (S(H, 2 n))+\log (2 / \delta)}{n}}
$$

Idea 1: Double sample trick
Consider a second sample \mathcal{E}^{\prime}

$$
\begin{aligned}
\operatorname{Pr}\left(\sup _{h}\left(\operatorname{Err}(h)-\operatorname{Err}_{n}(h)\right) \geq \varepsilon\right) \leq & \\
& 2 \operatorname{Pr}\left(\sup _{h}\left(\operatorname{Err}_{n}^{\prime}(h)-\operatorname{Err}_{n}(h)\right) \geq \varepsilon / 2\right)
\end{aligned}
$$

where $\operatorname{Err}_{n}^{\prime}(h)$ is the empirical error on \mathcal{E}^{\prime}.

Double sample trick

- There exists h s.t.
- A: $\operatorname{Err}(h)=0$
- B: $\operatorname{Err}(h) \geq \varepsilon$
- C: $E r r_{\mathcal{E}^{\prime}} \geq \frac{\varepsilon}{2}$

$$
\begin{aligned}
P(A(h) \& C(h)) & \geq P(A(h) \& B(h) \& C(h)) \\
& =P(A(h) \& B(h)) . P(C(h) \mid A(h) \& B(h)) \\
& \geq \frac{1}{2} P(A(h) \& B(h))
\end{aligned}
$$

Tool 2. Sauer Lemma

Sauer Lemma
If $d=V C(\mathcal{H})$

$$
S(\mathcal{H}, n)=\sum_{i=1}^{d}\binom{n}{i}
$$

For $n>d$,

$$
S(H, n) \leq\left(\frac{e n}{d}\right)^{d}
$$

Idea 2: Symmetrization
Count the permutations that swap \mathcal{E} et \mathcal{E}^{\prime}.
Summary

$$
\operatorname{Err}(h) \leq E r r_{n}(h)+\mathcal{O}\left(\sqrt{\frac{d \log n}{n}}\right)
$$

