L3 Apprentissage

Michèle Sebag — Benjamin Monmège LRI — LSV

9 avril 2013

Overview

Introduction

Boosting

PAC Learning Boosting

Bagging

General bagging Random Forests

Example (AT&T)

Schapire 09

- Categorizing customer's queries (Collect, CallingCard, PersonToPerson,..)
- Example queries:
 - yes I'd like to place a collect call long distance please Collect
 - operator I need to make a call but I need to bill it to my office ThirdNumber
 - yes I'd like to place a call on my master card please

CallingCard

 I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill
 BillingCredit

Example (AT&T)

Schapire 09

- Categorizing customer's queries (Collect, CallingCard, PersonToPerson,..)
- Example queries:
 - yes I'd like to place a collect call long distance please Collect
 - operator I need to make a call but I need to bill it to my office
 ThirdNumber
 - yes I'd like to place a call on my master card please

CallingCard

 I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill
 BillingCredit

Remark

- ► Easy to find rules of thumb with good accuracy IF 'card', THEN CallingCard
- ► Hard to find a single good rule

Procedure

- ► A learner (fast, reasonable accuracy, i.e. accuracy > random)
- Learn from (a subset of) training set
- Find a hypothesis
- ▶ Do this a zillion times (T rounds)
- Aggregate the hypotheses

Critical issues

- Enforce the diversity of hypotheses
- How to aggregate hypotheses

The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How Collective Wisdom Shapes Business, Economies, Societies and Nations. J. Surowiecki, 2004.

$$\mathcal{E} = \{(x_i, y_i)\}, \ x_i \in X, \ y_i \in \{-1, 1\}\} \quad (x_i, y_i) \sim D(x, y)$$

Loop

For $t = 1 \dots T$, learn h_t from \mathcal{E}_t

Result: $H = sign(\sum_t \alpha_t h_t)$

Requisite: Classifiers h_t must be diverse

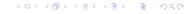
Enforcing diversity through:

- ▶ Using different training sets \mathcal{E}_t
- ▶ Using diverse feature sets
- ightharpoonup Enforce h_t decorrelation

bagging, boosting

bagging

boosting



Diversity of h_t , Stability of H

Stability: slight changes of $\mathcal E$ hardly modifies h

Stable learners

k-nearest neighbors Linear discriminant analysis (LDA)

Unstable learners

Neural nets

Decision trees

Instability: Why is it useful?

Bias of \mathcal{H} : $Err(h^*)$

$$h^* = \arg\min\{Err(h), h \in \mathcal{H}\}$$

Decreases with size/complexity of ${\cal H}$

LDA poor...

Variance:
$$h_1, \ldots h_T$$

$$H = average \{h_t\}$$

Variance
$$(H) = \frac{1}{T} \sum_{t} ||H - h_t||^2$$

Instable learners

- Large variance
- Small bias (e.g. decision trees and NN are universal approximators)
- Variance(Ensemble) decreases with size of ensemble if ensemble elements are not correlated.

Variance
$$(H) \approx \frac{1}{T} Variance(h_t)$$

Why does it work, basics

- Suppose there are 25 base classifiers
- ▶ Each one with error rate $\epsilon = .35$
- Assume classifiers are independent

Then, probability that the ensemble classifier makes a wrong prediction:

Pr (ensemble makes error)
$$=\sum_{i=13}^2 5C_{25}^i \epsilon^i (1-\epsilon)^{25-i}=.06$$

Results

Caruana and Niculesu-Mizil, ICML 2006

MODEL	1st	2ND	3RD	4TH	5тн	6тн	7 TH	8TH	9тн	10TH
BST-DT	0.580	0.228	0.160	0.023	0.009	0.000	0.000	0.000	0.000	0.000
RF	0.390	0.525	0.084	0.001	0.000	0.000	0.000	0.000	0.000	0.000
BAG-DT	0.030	0.232	0.571	0.150	0.017	0.000	0.000	0.000	0.000	0.000
SVM	0.000	0.008	0.148	0.574	0.240	0.029	0.001	0.000	0.000	0.000
ANN	0.000	0.007	0.035	0.230	0.606	0.122	0.000	0.000	0.000	0.000
KNN	0.000	0.000	0.000	0.009	0.114	0.592	0.245	0.038	0.002	0.000
BST-STMP	0.000	0.000	0.002	0.013	0.014	0.257	0.710	0.004	0.000	0.000
DT	0.000	0.000	0.000	0.000	0.000	0.000	0.004	0.616	0.291	0.089
LOGREG	0.000	0.000	0.000	0.000	0.000	0.000	0.040	0.312	0.423	0.225
NB	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.030	0.284	0.686

Overall rank by mean performance across problems and metrics (based on bootstrap analysis).

BST-DT: boosting with decision tree weak classifier RF: random forest

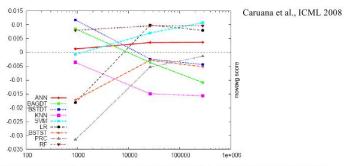
BAG-DT: bagging with decision tree weak classifier SVM: support vector machine

ANN: neural nets KNN: k nearest neighboorhood

BST-STMP: boosting with decision stump weak classifier DT: decision tree

LOGREG: logistic regression NB: naïve Bayesian

Results w.r.t. dimension



Moving average standardized scores of each learning algorithm as a function of the dimension.

The rank for the algorithms to perform consistently well:

(1) random forest (2) neural nets (3) boosted tree (4) SVMs

- (ロ) (部) (注) (注) 注 り(C

Overview

Introduction

Boosting

PAC Learning Boosting Adaboost

Bagging

General bagging Random Forests

PAC Learning: Probably Approximately Correct

Valiant 84

Turing award, 2011.

PAC Learning: Probably Approximately Correct

Setting

iid samples drawn after distribution $D(\mathbf{x}, y)$

$$\mathcal{E} = \{(x_i, y_i)\}, x_i \in X, y_i \in \{-1, 1\}\} (x_i, y_i) \sim D(x, y)$$

Strong learnability

Language (= set of target concepts) $\mathcal C$ is PAC learnable if there exists algorithm A s.t.

- For all D(x, y)
- For all $0 < \delta < 1$, with probability 1δ probably
- ▶ For all error rate $\varepsilon > 0$, approximately correct
- ▶ There exists a number *n* of samples, $n = Polynom(\frac{1}{\lambda}, \frac{1}{\varepsilon})$
- ▶ s.t. $A(\mathcal{E}_n) = \hat{h}_n$ with

$$Pr(Err(\hat{h}_n) < \epsilon) > 1 - \delta$$

 \mathcal{C} is polynomially PAC-learnable if

Computational cost learning $(\hat{h}_n) = \operatorname{Pol}(\frac{1}{\delta}, \frac{1}{\varepsilon})$

PAC Learning: Probably Approximately Correct, 2

Weak learnability

- Idem strong learnability
- ► Except that one only requires error to be < 1/2 (just better than random guessing)

$$\varepsilon = \tfrac{1}{2} - \gamma$$

Question

Kearns & Valiant 88

- ▶ Strong learnability ⇒ weak learnability
- ► Weak learnability ⇒ some stronger learnability ??

PAC Learning: Probably Approximately Correct, 2

Weak learnability

- Idem strong learnability
- ► Except that one only requires error to be < 1/2 (just better than random guessing)

$$\varepsilon = \tfrac{1}{2} - \gamma$$

Question

Kearns & Valiant 88

- ▶ Strong learnability ⇒ weak learnability
- Weak learnability ⇒ some stronger learnability ??

Yes!

Strong learnability Weak learnability

- PhD Rob. Schapire 89
- ▶ Yoav Freund, MLJ 1990: The strength of weak learnability
- ► Adaboost: Freund & Schapire 95

Overview

Introduction

Boosting

PAC Learning Boosting Adaboost

Bagging

General bagging Random Forests

Weak learnability ⇒ Strong learnability

Thm

Schapire MLJ 1990

Given algorithm able to learn with error $\eta=1/2-\gamma$ with complexity c

under any distribution D(x, y)

then there exists algorithm with complexity Pol(c), able to learn with error ε .

Proof (sketch)

▶ Learn *h*

under D(x, y)

- ▶ Define D'(x,y): $D(x,y) \land \left(Pr(h(x) \neq y) = \frac{1}{2}\right)$
- ▶ Learn *h*′

under D'(x, y)

- ▶ Define D''(x,y): $D(x,y) \land (h(x) \neq h'(x))$
- ► Learn h"

under D''(x, y)

▶ Use Vote(h, h', h'')

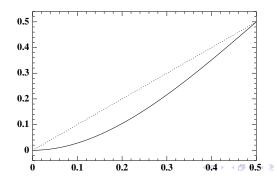
Proof (sketch)

Vote(h, h', h'') true if h and h' true, or ((h or h' wrong), and h'' true)

$$Pr(Vote(h, h', h'') \ OK) = Pr(h \ OK \ and \ h' \ OK) + Pr(h \ or \ h' \ \neg OK).Pr(h'' \ OK)$$

$$\geq 1 - (3\eta^2 - 2\eta^3)$$

$$Err(h) < \eta \Rightarrow Err(Vote(h, h', h'')) < 3\eta^2 - 2\eta^3$$



17

Overview

Introduction

Boosting

PAC Learning Boosting Adaboost

Bagging

General bagging Random Forests

Adaboost

Freund Schapire 95

http://videolectures.net/mlss09us_schapire_tab/

Given

algorithm A, weak learner

$$\mathcal{E} = \{(x_i, y_i)\}, x_i \in \mathcal{X}, y_i \in \{-1, 1\}, i = 1 \dots n\}$$

Iterate

- ▶ For t = 1, ..., T
 - ▶ Define distribution D_t on $\{1, ... n\}$ focussing on examples misclassified by h_{t-1}
 - ▶ Draw \mathcal{E}_t after D_t or use example weights
 - ▶ Learn h_t

$$Pr_{x_i \sim D_t}(h_t(x_i) \neq y_i) = \varepsilon$$

Return: weighted vote of h_t

Adaboost

Init: D_1 uniform distribution

$$D_1(i)=\frac{1}{n}$$

Define D_{t+1} as follows

$$D_{t+1}(i) = \frac{1}{Z_t}D_t(i) \times \begin{cases} exp(-\alpha_t) & \text{if } h_t(x_i) = y_i \\ exp(\alpha_t) & \text{if } h_t(x_i) \neq y_i \end{cases}$$
$$= \frac{1}{Z_t}D_t(i) \times exp(-\alpha_t h_t(x_i)y_i)$$

With

- \triangleright Z_t : normalisation term

Adaboost

Init: D_1 uniform distribution

$$D_1(i)=\frac{1}{n}$$

Define D_{t+1} as follows

$$D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \times \begin{cases} exp(-\alpha_t) & \text{if } h_t(x_i) = y_i \\ exp(\alpha_t) & \text{if } h_t(x_i) \neq y_i \end{cases}$$
$$= \frac{1}{Z_t} D_t(i) \times exp(-\alpha_t h_t(x_i) y_i)$$

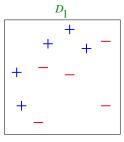
With

- \triangleright Z_t : normalisation term

Final hypothesis

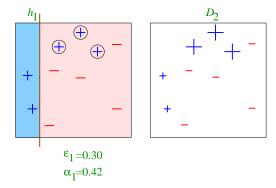
$$H(x) = sign\left(\sum_t \alpha_t h_t(x)\right)$$

Toy Example

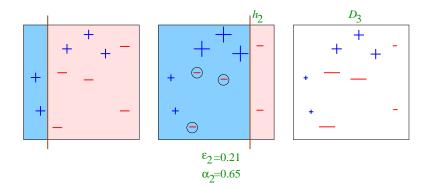


weak classifiers = vertical or horizontal half-planes

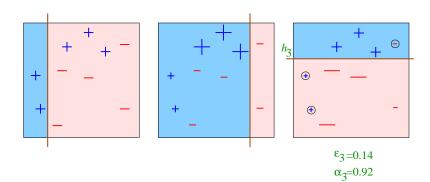
Round 1



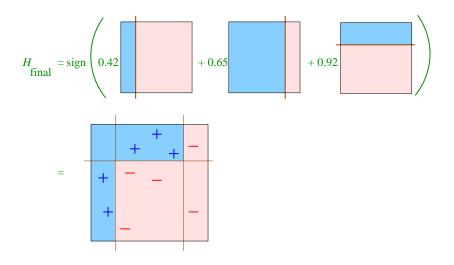
Round 2



Round 3



Final Classifier



Bounding training error

Thm

Let $\varepsilon_t = \frac{1}{2} - \gamma_t$ Then Freund Schapire 95 γ_t edge

$$Err_{train}(H) \leq \prod_{t} \left[2\sqrt{\varepsilon_{t}(1 - \varepsilon_{t})} \right]$$
$$= \prod_{t} \sqrt{1 - 4\gamma_{t}^{2}}$$
$$< exp\left(-2\sum_{t} \gamma_{t}^{2} \right)$$

Analysis

▶ If A weak learner, $\exists \gamma \ s.t. \ \forall t, \ \gamma_t > \gamma > 0$

$$Err_{train}(H) < exp\left(-2\gamma^2 T\right)$$

▶ Does not require γ or T to be known a priori

Note

$$F(x) = \sum_t \alpha_t h_t(x)$$

Step 1: final distribution

$$D_{T}(i) = D_{1}(i) \prod_{t} \left[\frac{1}{Z_{t}} \exp\left(-y_{i} \sum_{t} \alpha_{t} h_{t}(x_{i})\right) \right]$$
$$= \frac{1}{n} \prod_{t} \left[\frac{1}{Z_{t}} \right] \exp\left(-y_{i} F(x_{i})\right)$$

Step 2

$$\mathit{Err}_{train}(H) \leq \prod_t Z_t$$

$$Err_{train}(H) = \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } H(x_i) \neq y_i \\ 0 & \text{otherwise} \end{cases}$$

Step 2

$$Err_{train}(H) \leq \prod_{t} Z_{t}$$

$$Err_{train}(H) = \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } H(x_i) \neq y_i \\ 0 & \text{otherwise} \end{cases}$$
$$= \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } y_i F(x_i) < 0 \\ 0 & \text{otherwise} \end{cases}$$

Step 2

$$Err_{train}(H) \leq \prod_t Z_t$$

$$Err_{train}(H) = \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } H(x_{i}) \neq y_{i} \\ 0 & \text{otherwise} \end{cases}$$
$$= \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } y_{i}F(x_{i}) < 0 \\ 0 & \text{otherwise} \end{cases}$$
$$\leq \frac{1}{n} exp(-y_{i}F(x_{i}))$$

Step 2

$$Err_{train}(H) \leq \prod_t Z_t$$

as

$$Err_{train}(H) = \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } H(x_{i}) \neq y_{i} \\ 0 & \text{otherwise} \end{cases}$$

$$= \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } y_{i}F(x_{i}) < 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\leq \frac{1}{n} exp(-y_{i}F(x_{i}))$$

$$= \sum_{i} D_{T}(i) \prod_{t} Z_{t}$$

(□) (□) (□) (□)

Step 2

$$\mathit{Err}_{train}(H) \leq \prod_t Z_t$$

$$Err_{train}(H) = \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } H(x_i) \neq y_i \\ 0 & \text{otherwise} \end{cases}$$

$$= \frac{1}{n} \sum_{i} \begin{cases} 1 & \text{if } y_i F(x_i) < 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\leq \frac{1}{n} exp(-y_i F(x_i))$$

$$= \sum_{i} D_T(i) \prod_{t} Z_t$$

$$= \prod_{t} Z_t$$

Step 3

$$Z_t = 2\sqrt{\varepsilon_t(1-\varepsilon_t)}$$

Because

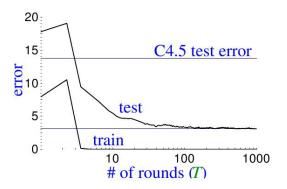
$$Z_{t} = \sum_{i} D_{t}(i) exp \left(-\alpha_{t} y_{i} h_{t}(x_{i})\right)$$

$$= \sum_{i} \int_{h_{t}(x_{i}) \neq y_{i}} D_{t}(i) e^{\alpha_{t}} + \sum_{i} \int_{h_{t}(x_{i}) = y_{i}} D_{t}(i) e^{-\alpha_{t}}$$

$$= \varepsilon_{t} e^{\alpha_{t}} + (1 - \varepsilon_{t}) e^{-\alpha_{t}}$$

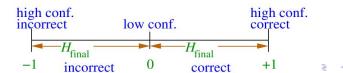
$$= 2\sqrt{\varepsilon_{t}(1 - \varepsilon_{t})}$$

Training error \neq test error ! (overfitting ?) Observed



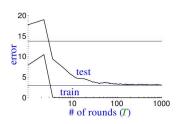
Why?

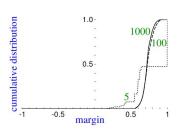
► Explanation based on the margin



25

The margin





	# rounds										
	5	100	1000								
train error	0.0	0.0	0.0								
test error	8.4	3.3	3.1								
$\%$ margins ≤ 0.5	7.7	0.0	0.0								
minimum margin	0.14	0.52	0.55								

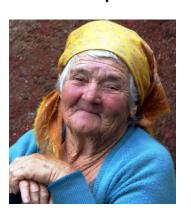
Analysis

- 1. Boosting \Rightarrow larger margin
- Larger margin ⇒ lower generalization error
 Why: if margin is large, hypothesis can be approximated by a
 simple one.

Intuition about Margin

Infant

Elderly



Man

7

Woman

Partial conclusion

Adaboost is:

- a way of boosting a weak learner
- a margin optimizer
- (other interpretations related to the minimization of an exponential loss)

However

- ... if Adaboost minimizes a criterion, it would make sense to directly minimize this criterion...
- but direct minimization degrades performances....

Main weakness: sample noise

Noisy examples are rewarded.

<u>Application: Boosting for Text Categorization</u>

[with Singer]

- weak classifiers: very simple weak classifiers that test on simple patterns, namely, (sparse) n-grams
 - find parameter α_t and rule h_t of given form which minimize Z_t
 - use efficiently implemented exhaustive search
- "How may I help you" data:
 - 7844 training examples
 - 1000 test examples
 - categories: AreaCode, AttService, BillingCredit, CallingCard, Collect, Competitor, DialForMe, Directory, HowToDial, PersonToPerson, Rate, ThirdNumber, Time, TimeCharge, Other.

Weak Classifiers

rnd	term	AC	AS	ВС	CC	СО	СМ	DM	DI	НО	PP	RA	3N	TI	тс	ОТ
1	collect	ī	T	T	T	L	T	-	T	T	T	T	T	T	T	T
		•	•	•						•		•		•		
											I		•			•
2	card	T	-	•	1	-	_	-	-	_	-	•	T	■	•	-
		1	_	_	_	_	_	_	_	_	_	_	_	_	_	
3	my home	-	_	_	_	_	_	_	_	_	_	_	I	_	_	_
		ı		-	_							-				•
		-	_	_	_	_	_	_	_	_	_	_	-	_	_	
4	person ? person	ī	T	_	_	-	_	_	T	_		ī	-	T	_	
		-					•		•			•		•		_
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	
5	code	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		T	_	_	_	_	_	_	_	_	_	_	_	_	_	
6	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		_	_	T	_	_	_	_	_	_	_	_	_	_	_	

More Weak Classifiers

rnd	term	AC	AS	ВС	CC	СО	СМ	DM	DI	НО	PP	RA	3N	ΤI	ТС	ОТ
7	time	-	-	_	T	-	_	_	-	_	T	_	_	I		_
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
8	wrong number	I	T	1	-	-	T	-	T	•	I	I	•	T	T	T
		-	_	_	_	_	_	_	_	_	_	_	_	_	_	
9	how	•	_	-	-	-	_	•	_	_	T	_	-	-	_	_
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	
10	call	-	-	_	_	_	_	_	-	_	_	_	_	_	_	-
		_	_	_	-	_	_	_	_	_	_	_	-	_	_	_
11	seven	T	-	_	_	-	-	_	-	•	_	_	-	_	T	-
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
12	trying to	-	-	-	-	-	_	_	-	_	-	-	-	•	T	_
		-	_	_	_	_	_	_	_	_	_	_	_	_	_	
13	and	-	_	_	-	-	_	_	_	_	_	_	-	-	_	_
		_	_	-	_	_	_	_	_	_	_	_	_	_	_	

More Weak Classifiers

rnd	term	AC	AS	ВС	CC	СО	СМ	DM	DI	НО	PP	RA	3N	TI	тс	ОТ
14	third	_	T	-	T	T	T	-	T	T	-	T	l	T	T	_
		_	_	_		_	_				_		_	_	_	
15	to	1	_	-	-	_	_	_	_	_	_	_	_	_	_	_
		_	_	_	_	_	_	_	_	_	-	_	_	-	_	
16	for	-	_	-	-	-	_	_	_	-	_	_	•	T	•	_
		_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
17	charges	•	-	-	-	_	-	-	-	•	_	_	-	T	1	•
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
18	dial	1	-	-	-	-	-	-	-	-	T	_	-	•	T	_
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	
19	just	-	-	_	-	-	_	_	-	_	_	_	-	_	_	_
		_	_	_	_	_	_	_	_	_	_	_	_	_	_	

Finding Outliers

examples with most weight are often outliers (mislabeled and/or ambiguous)

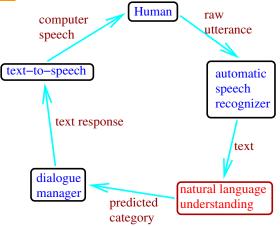
- I'm trying to make a credit card call (Collect)
- hello (Rate)
- yes I'd like to make a long distance collect call please (CallingCard)
- calling card please (Collect)
- yeah I'd like to use my calling card number (Collect)
- can I get a collect call (CallingCard)
- yes I would like to make a long distant telephone call and have the charges billed to another number (CallingCard DialForMe)
- yeah I can not stand it this morning I did oversea call is so bad (BillingCredit)
- yeah special offers going on for long distance (AttService Rate)
- mister allen please william allen (PersonToPerson)
- yes ma'am I I'm trying to make a long distance call to a non dialable point in san miguel philippines (AttService Other)

Application: Human-computer Spoken Dialogue

[with Rahim, Di Fabbrizio, Dutton, Gupta, Hollister & Riccardi]

- application: automatic "store front" or "help desk" for AT&T Labs' Natural Voices business
- caller can request demo, pricing information, technical support, sales agent, etc.
- interactive dialogue

How It Works



- NLU's job: classify caller utterances into 24 categories (demo, sales rep, pricing info, yes, no, etc.)
- weak classifiers: test for presence of word or phrase

Overview

Introduction

Boosting

PAC Learning Boosting

Bagging

General bagging Random Forests

◆□ → ◆圖 → ◆ 差 → → を ● ・ ● ・ ◆ 9 へ ○

Bagging

Breiman96

Enforcing diversity through bootstrap: iterate

Draw

 $\mathcal{E}_t = n$ examples uniformly drawn with replacement from \mathcal{E}

▶ Learn h_t from \mathcal{E}_t

Finally:

$$H(x) = \text{Vote}(\{h_t(x)\})$$

Bagging vs Boosting

Bagging: h_t independent

Visualization

parallelisation is possible

Boosting: h_t depends from the previous hypotheses $(h_t \text{ covers up } h_1 \dots h_{t-1} \text{ mistakes}).$

In the 2d plane: distance, error

Boosting

Dietterich Margineantu 97

Bagging

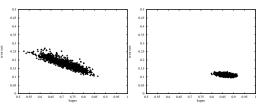


Figure 1: Kappa-Error diagrams for Ada Boost (left) and bagging (right) on the Expf domain.

Analysis

Assume

- \triangleright \mathcal{E} drawn after distribution P
- $ightharpoonup \mathcal{E}_t$ uniformly sampled from \mathcal{E}_t , h_t learned from \mathcal{E}_t
- ▶ Error of H, average of the h_t :

$$H(x) = \mathbb{E}_{\mathcal{E}_t}[h_t(x)]$$

Error

Direct error:

$$e = \mathbb{E}_{\mathcal{E}}\mathbb{E}_{X,Y}[(Y - h(X))^2]$$

Bagging error

$$e_B = \mathbb{E}_{X,Y}[(Y - H(X))^2]$$

Rewriting e:

$$e = \mathbb{E}_{X,Y}[Y^2] - 2\mathbb{E}_{X,Y}[YH] + \mathbb{E}_{X,Y}\mathbb{E}_{\mathcal{E}}[h^2]$$

and with Jensen inequality, $\mathbb{E}[Z^2] \geq \mathbb{E}[Z]^2$

$$e \ge e_B$$

Overview

Introduction

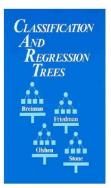
Boosting

PAC Learning Boosting Adapoost

Bagging

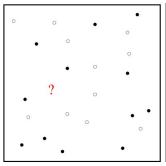
General bagging Random Forests

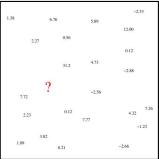
Random Forests

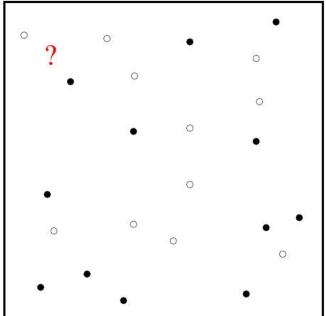


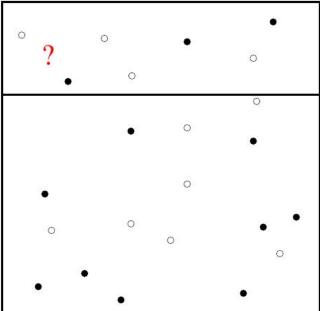
 $http://videolectures.net/sip08_biau_corfao/$

Classification / Regression



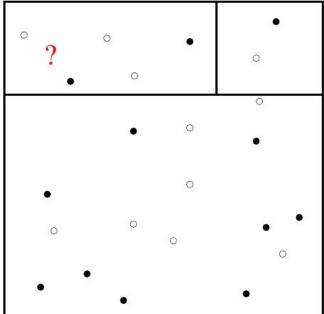


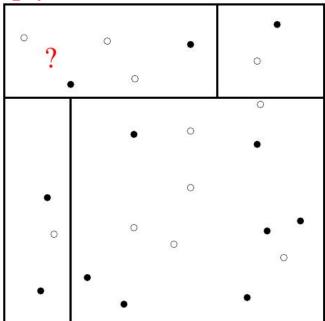


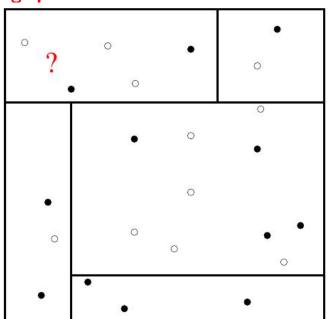


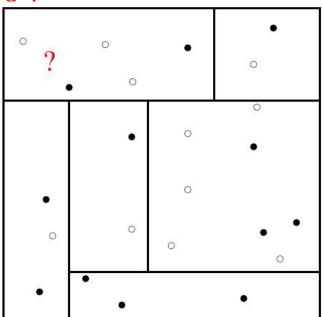
37

(**E** ► E •0 q (

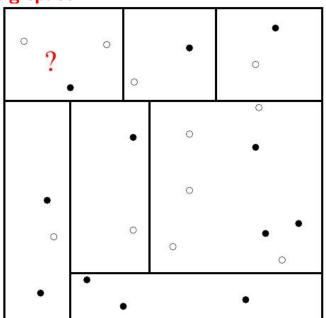


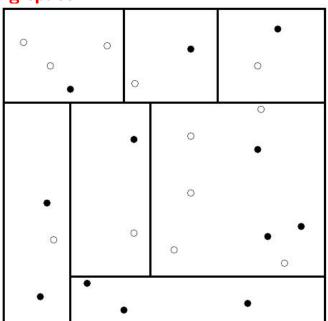




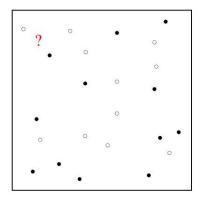


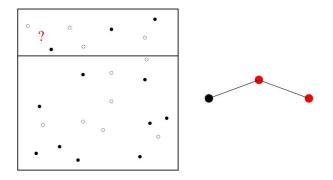
41

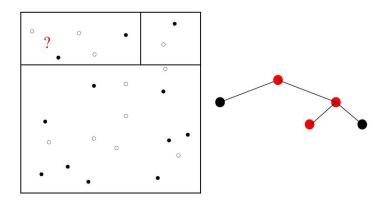


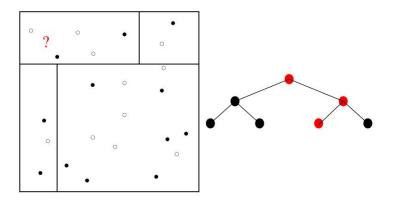


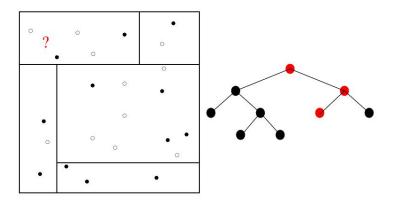
43

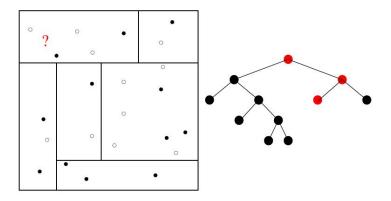


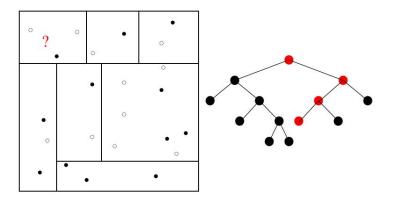












Random forests

 $Breiman 00 \hspace{1.5cm} stat.berkeley.edu/users/breiman/Random Forests \\$

Principle

- Randomized trees
- Average

Properties

- ► Fast, easy to implement
- Excellent accuracy
- No overfitting % number of features

Theoretical analysis difficult

KDD 2009 – Orange

Targets

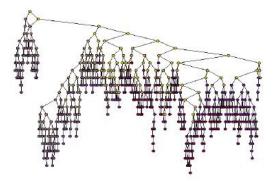
- 1. Churn
- 2. Appetency
- 3. Up-selling

Core Techniques

- 1. Feature Selection
- 2. Bounded Resources
- 3. Parameterless methods

Random tree

- ▶ In each node, uniformly select a subset of attribute
- Compute the best one
- ▶ Until reaching max depth



Tree aggregation

- ▶ *h_t*: random tree
- ► Fast and straightforward parallelization

Analysis

Biau et al. 10

$$\mathcal{E} = \{(x_i, y_i)\}, \ x_i \in [0, 1]^d, \ y_i \in \mathbb{R}, i = 1..n\} \ (x_i, y_i) \sim P(x, y)$$

Goal: estimate

$$r(x) = \mathbb{E}[Y|X = x]$$

Criterion

consistency

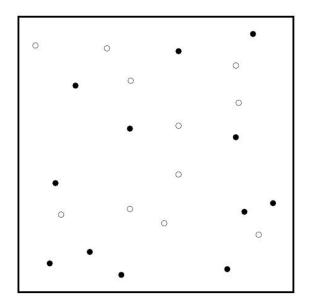
$$\mathbb{E}[(r_n(X)-r(X))^2]$$

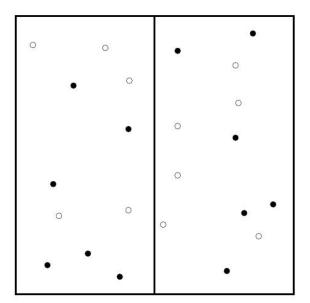
Set $k_n \ge 2$, iterate $\log_2 k_n$ fois:

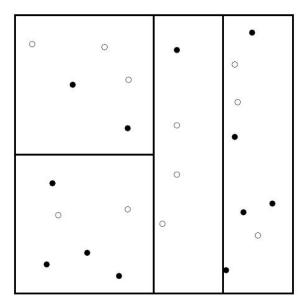
▶ Select in each node a feature s.t.

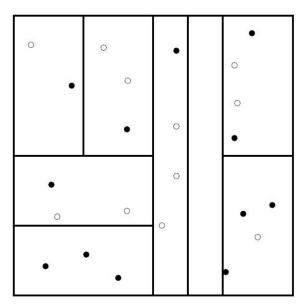
 $Pr(feature. j selected) = p_{n,j}$

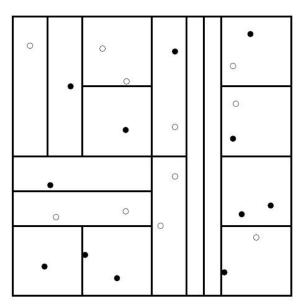
► Split: feature j < its median











Analysis

- ▶ Each tree has $2^{\log_2 k_n} = k_n$ leaves
- ▶ Each leaf covers $2^{-\lfloor log_2 k_n \rfloor} = 1/k_n$ volume
- Assuming x_i uniformly drawn in $[0,1]^d$, number of examples per leaf is $\approx \frac{n}{k_a}$
- ▶ If $k_n = n$, very few examples per leaf

$$r_n(x) = \mathbb{E}\left[\frac{\sum_i y_i \mathbf{1}_{x_i,x} \text{ in same leaf}}{\sum_i \mathbf{1}_{x_i,x} \text{ in same leaf}}\right]$$

Consistency

Thm

 r_n is consistent if $p_{nj} \log k_n \to \infty$ for all j and $k_n/n \to 0$ when $n \to \infty$.

