### L3 Apprentissage

#### Michèle Sebag – Benjamin Monmège LRI – LSV

24 avril 2013

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @



### Clustering

#### Input

$$\mathcal{E} = \{\mathbf{x}_1, \ldots, \mathbf{x}_n\} \sim P(x)$$

#### Output

- Models
- Clusters
- Representatives

#### Assumptions, contexts

Clusters are separated by a low-density region





### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

Learning distances

### **Clustering Questions**

#### Hard or soft ?

- Hard: find a partition of the data
- Soft: estimate the distribution of the data as a mixture of components.



(本部) (本語) (本語) (語)

Parametric vs non Parametric ?

- **Parametric**: number *K* of clusters is known
- Non-Parametric: find K (wrapping a parametric clustering algorithm)

Caveat:

- Complexity
- Outliers
- Validation

### **Formal Background**

#### Notations

- Е  $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$  dataset
- Ν number of data points
- Κ number of clusters

given or optimized

- *k*-th cluster  $C_k$ Hard clustering  $\tau(i)$  index of cluster containing  $\mathbf{x}_i$
- $f_k$  k-th model Soft clustering  $\gamma_k(i) \quad Pr(\mathbf{x}_i | f_k)$

#### Solution

Hard Clustering Partition  $\Delta = (C_1, \ldots, C_k)$ Soft Clustering  $\forall i \sum_{k} \gamma_k(i) = 1$ 

### Formal Background, 2

#### Quality / Cost function

Measures how well the clusters characterize the data

- (log)likelihood
- dispersion

soft clustering hard clustering

$$\sum_{k=1}^{K} \frac{1}{|C_k|^2} \sum_{\mathbf{x}_i, \mathbf{x}_j \text{ in } C_k} d(\mathbf{x}_i, \mathbf{x}_j)^2$$

### Tradeoff Quality increases with $K \Rightarrow$ Regularization needed

to avoid one cluster per data point

### **Clustering vs Classification**

Marina Meila http://videolectures.net/ Classification Clustering Κ # classes (given) # clusters (unknown) Generalization error many cost functions Quality Focus on Test set Training set Goal Prediction Interpretation Analysis discriminant exploratory Field mature new

### **Non-Parametric Clustering**

#### **Hierarchical Clustering**

#### Principle

- agglomerative (join nearest clusters)
- divisive (split most dispersed cluster)



#### **CONS**: Complexity $\mathcal{O}(N^3)$

### Hierarchical Clustering, example



9

### Influence of distance/similarity



### **Parametric Clustering**

K is known

Algorithms based on distances

- ► K-means
- ► graph / cut

Algorithms based on models

Mixture of models: EM algorithm

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Learning distances

### K-Means

### Algorithm

- 1. Init: Uniformly draw K points  $\mathbf{x}_{i_j}$  in  $\mathcal{E}$ Set  $C_j = {\mathbf{x}_{i_j}}$
- 2. Repeat
- 3. Draw without replacement  $\mathbf{x}_i$  from  $\mathcal{E}$
- 4.  $\tau(i) = \operatorname{argmin}_{k=1...K} \{ \mathbf{d}(\mathbf{x}_i, \mathbf{C}_k) \}$  find best cluster for  $\mathbf{x}_i$
- 5.  $C_{\tau(i)} = C_{\tau(i)} \bigcup \mathbf{x}_i$  add  $\mathbf{x}_i$  to  $C_{\tau(i)}$
- 6. Until all points have been drawn
- 7. If partition  $C_1 \dots C_K$  has changed **Stabilize** Define  $\mathbf{x}_{i_k} =$  **best point** in  $C_k$ ,  $C_k = \{x_{i_k}\}$ , goto 2.

#### **Algorithm terminates**

### K-Means, Knobs

### Knob 1 : define $d(\mathbf{x}_i, C_k)$

$$\min\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$$

- average $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$
- $max\{d(\mathbf{x}_i,\mathbf{x}_j),\mathbf{x}_j\in C_k\}$

#### favors

long clusters compact clusters spheric clusters

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

#### Knob 2 : define "best" in $C_k$

- Medoid
- \* Average
  (does not belong to *E*)

$$\begin{aligned} \underset{i \in C_k}{\operatorname{argmin}} \{ \sum_{\mathbf{X}_j \in C_k} d(\mathbf{x}_i, \mathbf{x}_j) \} \\ \frac{1}{|C_k|} \sum_{\mathbf{X}_j \in C_k} \mathbf{x}_j \end{aligned}$$

### No single best choice



FIG. 1. Optimizing the diameter produces B while A is clearly more desirable.



FIG. 2. The inferior clustering B is found by optimizing the 2-median measure.

### K-Means, Discussion

#### PROS

- Complexity  $\mathcal{O}(K \times N)$
- Can incorporate prior knowledge

initialization

(ロ) (四) (三) (三) (三) (三) (○) (○)

### CONS

- Sensitive to initialization
- Sensitive to outliers
- Sensitive to irrelevant attributes

### *K*-Means, Convergence

#### For cost function

$$\mathcal{L}(\Delta) = \sum_{k} \sum_{i,j \ / \ au(i) = au(j) = k} d(\mathbf{x}_i, \mathbf{x}_j)$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

▶ for 
$$d(\mathbf{x}_i, C_k) =$$
 average  $\{d(\mathbf{x}_i, \mathbf{x}_j), \mathbf{x}_j \in C_k\}$ 

▶ for "best" in 
$$C_k$$
 = average of  $\mathbf{x}_j \in C_k$ 

K-means converges toward a (local) minimum of  $\mathcal{L}$ .

### **K-Means**, **Practicalities**

#### Initialization

- Uniform sampling
- Average of  $\mathcal{E}$  + random perturbations
- Average of  $\mathcal{E}$  + orthogonal perturbations
- Extreme points: select  $\mathbf{x}_{i_1}$  uniformly in  $\mathcal{E}$ , then

Select 
$$x_{i_j} = argmax\{\sum_{k=1}^{j} d(\mathbf{x}_i, x_{i_k})\}$$

(ロ) (四) (三) (三) (三) (三) (○) (○)

#### Pre-processing

Mean-centering the dataset

### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Learning distances

### **Model-based clustering**

#### Mixture of components

• Density 
$$f = \sum_{k=1}^{K} \pi_k f_k$$

► *f<sub>k</sub>*: the *k*-th component of the mixture

$$\blacktriangleright \gamma_k(i) = \frac{\pi_k f_k(x)}{f(x)}$$

• induces 
$$C_k = \{\mathbf{x}_j \mid k = argmax\{\gamma_k(j)\}\}$$

#### Nature of components: prior knowledge

- Most often Gaussian:  $f_k = (\mu_k, \Sigma_k)$
- Beware: clusters are not always Gaussian...



### Model-based clustering, 2

#### Search space

• Solution : 
$$(\pi_k, \mu_k, \Sigma_k)_{k=1}^{\mathcal{K}} = \theta$$

Criterion: log-likelihood of dataset

$$\ell(\theta) = \log(\Pr(\mathcal{E})) = \sum_{i=1}^{N} \log \Pr(\mathbf{x}_i) \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \log(\pi_k f_k(\mathbf{x}_i))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

to be maximized.

### Model-based clustering with EM

Formalization

- Define  $z_{i,k} = 1$  iff  $\mathbf{x}_i$  belongs to  $C_k$ .
- $E[z_{i,k}] = \gamma_k(i)$  prob. **x**<sub>i</sub> generated by  $\pi_k f_k$
- Expectation of log likelihood

$$E[\ell(\theta)] \propto \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log(\pi_k f_k(\mathbf{x}_i))$$
$$= \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log \pi_k + \sum_{i=1}^{N} \sum_{k=1}^{K} \gamma_i(k) \log f_k(\mathbf{x}_i)$$

### EM optimization

E step Given  $\theta$ , compute

$$\gamma_k(i) = \frac{\pi_k f_k(\mathbf{x}_i)}{f(x)}$$

M step Given  $\gamma_k(i)$ , compute

$$heta^* = (\pi_k, \mu_k, \Sigma_k)^* = \operatorname{argminE}[\ell(\overline{ heta})]^{ imes \mathbb{P} \times \mathbb{$$

22

### **Maximization step**

 $\pi_k$ : Fraction of points in  $C_k$ 

$$\pi_k = \frac{1}{N} \sum_{i=1}^N \gamma_k(i)$$

 $\mu_k$ : Mean of  $C_k$ 

$$\mu_k = \frac{\sum_{i=1}^N \gamma_k(i) \mathbf{x}_i}{\sum_{i=1}^N \gamma_k(i)}$$

 $\Sigma_k$ : Covariance

$$\Sigma_k = \frac{\sum_{i=1}^N \gamma_k(i)(\mathbf{x}_i - \mu_k)(\mathbf{x}_i - \mu_k)'}{\sum_{i=1}^N \gamma_k(i)}$$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Learning distances

### Choosing the number of clusters

K-means constructs a partition whatever the K value is.

Selection of K

Bayesian approaches

Tradeoff between accuracy / richness of the model

Stability

Varying the data should not change the result

Gap statistics

Compare with null hypothesis: all data in same cluster.

### **Bayesian approaches**

Bayesian Information Criterion

$$BIC( heta) = \ell( heta) - rac{\# heta}{2} \log N$$

Select  $K = \operatorname{argmax} BIC(\theta)$ where  $\#\theta = \operatorname{number}$  of free parameters in  $\theta$ :

 $\blacktriangleright$  if all components have same scalar variance  $\sigma$ 

$$\#\theta = K - 1 + 1 + Kd$$

• if each component has a scalar variance  $\sigma_k$ 

$$\#\theta = K - 1 + K(d+1)$$

• if each component has a full covariance matrix  $\Sigma_k$ 

$$#\theta = K - 1 + K(d + d(d - 1)/2)$$

イロト イロト イヨト イヨト 二日

### **Gap statistics**

#### Principle: hypothesis testing

- 1. Consider hypothesis  $H_0$ : there is no cluster in the data.  $\mathcal{E}$  is generated from a no-cluster distribution  $\pi$ .
- Estimate the distribution f<sub>0,K</sub> of L(C<sub>1</sub>,...C<sub>K</sub>) for data generated after π. Analytically if π is simple Use Monte-Carlo methods otherwise
- 3. Reject  $H_0$  with confidence  $\alpha$  if the probability of generating the true value  $\mathcal{L}(C_1, \ldots, C_K)$  under  $f_{0,K}$  is less than  $\alpha$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Beware: the test is done for all K values...

### Gap statistics, 2

#### Algorithm

Assume  $\mathcal{E}$  extracted from a no-cluster distribution, e.g. a single Gaussian.

- 1. Sample  ${\mathcal E}$  according to this distribution
- 2. Apply K-means on this sample
- 3. Measure the associated loss function

Repeat : compute the average  $\overline{\mathcal{L}}_0(K)$  and variance  $\sigma_0(K)$ Define the gap:

$$Gap(K) = \overline{\mathcal{L}}_0(K) - \mathcal{L}(C_1, \dots C_K)$$

Rule Select min K s.t.

$$Gap(K) \geq Gap(K+1) - \sigma_0(K+1)$$

What is nice: also tells if there are no clusters in the data...

### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

Axiomatisation

Data Streaming

Application: Autonomic Computing

Learning distances

### Stability

### Principle

- Consider  $\mathcal{E}'$  perturbed from  $\mathcal{E}$
- Construct  $C'_1, \ldots C'_K$  from  $\mathcal{E}'$
- Evaluate the "distance" between  $(C_1, \ldots, C_K)$  and  $(C'_1, \ldots, C'_K)$
- ► If small distance (stability), K is OK

### Distortion $D(\Delta)$

Define 
$$S$$
  $S_{ij} = \langle \mathbf{x}_i, \mathbf{x}_j \rangle$   
 $(\lambda_i, v_i)$  i-th (eigenvalue, eigenvector) of  $S$   
 $X$   $X_{i,j} = 1$  iff  $\mathbf{x}_i \in C_j$   
 $D(\Lambda) = \sum ||\mathbf{x}_i|^2 = tr(S) = tr(X'SX)$ 

$$D(\Delta) = \sum_{i} ||\mathbf{x}_i - \mu_{\tau(i)}||^2 = tr(S) - tr(X'SX)$$

Minimal distortion  $D^* = tr(S) - \sum_{k=1}^{K-1} \lambda_k$  and the set of the set

30

### Stability, 2

Results

- $\Delta$  has low distortion  $\Rightarrow (\mu_1, \dots \mu_K)$  close to space  $(v_1, \dots v_K)$ .
- $\Delta_1$ , and  $\Delta_2$  have low distortion  $\Rightarrow$  "close"
- (and close to "optimal" clustering)

Meila ICML 06

#### Counter-example





### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

#### Axiomatisation

- Data Streaming
- Application: Autonomic Computing

#### Learning distances

### Kleinberg's axiomatic framework for clustering

Given  $\mathcal{E} = {\mathbf{x}_1, ..., \mathbf{x}_n, \mathbf{x}_i \in X}$ , a clustering builds a partition  $\Gamma$  depending on distance d. Let denote  $\Gamma = f(d)$ .

$$\left(\begin{array}{rrrr} 1 & 10 & 10 \\ 10 & 0 & 1 \\ 10 & 1 & 0 \end{array}\right)$$

 $\Gamma = (\{1\}, \{2, 3\}).$ 

# Kleinberg's axiomatic framework for clustering Properties

Scale invariance

$$\forall \alpha > \mathbf{0}, f(\alpha d) = f(d)$$

#### Richness

$$Range(f) =$$
 Power set of  $\mathcal{E}$ 

#### **Consistency** If $f(d) = \Gamma$ and d' is a $\Gamma$ -enhancing transformation of d, then

$$f(d') = \Gamma$$

where d' is  $\Gamma$ -enhancing if

- $d'(\mathbf{x}_i, \mathbf{x}_j) \leq d(\mathbf{x}_i, \mathbf{x}_j)$  if  $\mathbf{x}_i$  and  $\mathbf{x}_j$  in same cluster of  $\Gamma$
- $d'(\mathbf{x}_i, \mathbf{x}_j) \geq d(\mathbf{x}_i, \mathbf{x}_j)$  otherwise

### **Examples**

#### Run single linkage till you get k clusters

Scale invariance Yes, consistency Yes, richness No

**Run single linkage till distances**  $> c \cdot max_{i,j}d(\mathbf{x}_i, \mathbf{x}_j)$ , c > 0

### **Examples**

#### Run single linkage till you get k clusters

Scale invariance Yes, consistency Yes, richness No

**Run single linkage till distances**  $> c \cdot max_{i,j}d(\mathbf{x}_i, \mathbf{x}_j)$ , c > 0

Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances exceed some threshold r

### **Examples**

#### Run single linkage till you get k clusters

Scale invariance Yes, consistency Yes, richness No

**Run single linkage till distances**  $> c \cdot max_{i,j}d(\mathbf{x}_i, \mathbf{x}_j)$ , c > 0

Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances exceed some threshold r

Scale invariance No, consistency Yes, richness Yes

### Impossibility result

#### Thm

- There is no consistent way of choosing a level of granularity
- There exists no f satisfying all three axioms



### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

#### Axiomatisation

### Data Streaming

Application: Autonomic Computing

#### Learning distances

### Part 2. Data Streaming

- When: data, specificities
- What: goals
- How: algorithms

More: see Joao Gama's tutorial,

http://wiki.kdubiq.org/summerschool2008/index.php/Main/Materials

### **Motivations**



Electric Power Network

◆□> ◆□> ◆臣> ◆臣> 臣 の�?

### Data

#### Input

- Continuous flow of (possibly corrupted) data, high speed
- Huge number of sensors, variable along time (failures)
- Spatio-temporal data

#### Output

- Cluster: profiles of consumers
- Prediction: peaks of demand
- Monitor Evolution: Change detection, anomaly detection

### Where is the problem ?

Standard Data Analysis

- Select a sample
- ► Generate a model (clustering, neural nets, ...)

### Where is the problem ?

Standard Data Analysis

- Select a sample
- ▶ Generate a model (clustering, neural nets, ...)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Does not work...

- World is not static
- Options, Users, Climate, ... change

41

### **Specificities of data**

#### Domain

- Radar: meteorological observations
- Satellite: images, radiation
- Astronomical surveys: radio
- Internet: traffic logs, user queries, ...
- Sensor networks
- Telecommunications

#### Features

- Most data never seen by humans
- Need for REAL-TIME monitoring, (intrusion, outliers, anomalies,,,)

NB: Beyond ML scope: data are not iid (independent identically distributed)

### **Data streaming Challenges**

#### Maintain Decision Models in real-time

incorporate new information

comply with speed

(ロ) (四) (三) (三) (三) (三) (○) (○)

- forget old/outdated information
- detect changes and adapt models accordingly

Unbounded training sets Prefer fast approximate answers...

- Approximation: Find answer with factor  $1 \pm \epsilon$
- Probably correct:  $Pr(answer correct) = 1 \delta$
- PAC:  $\epsilon, \delta$  (Probably Approximately Correct)
- Space  $\approx \mathcal{O}(1/\epsilon^2 \log(1/\delta))$

### Data Mining vs Data Streaming

|                 | Traditional | Stream      |
|-----------------|-------------|-------------|
| Nr. of Passes   | Multiple    | Single      |
| Processing Time | Unlimited   | Restricted  |
| Memory Usage    | Unlimited   | Restricted  |
| Type of Result  | Accurate    | Approximate |
| Distributed     | No          | Yes         |

### What: queries on a data stream

- Sample
- Count number of distinct values / attribute
- Estimate sliding average (number of 1's in a sliding window)
- Get top-k elements

#### Application: Compute entropy of the stream

$$H(x) = \sum p_i \log_2(p_i)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

useful to detect anomalies

### Sampling

Uniform sampling: each one out of n examples is sampled with probability 1/n. What if we don't know the size ? Standard

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

- Sample instances at periodic time intervals
- Loss of information

#### **Reservoir Sampling**

- Create buffer size k
- Insert first k elements
- Insert *i*-th element with probability k/i
- Delete a buffer element at random

#### Limitations

- Unlikely to detect changes/anomalies
- Hard to parallelize

### **Count number of values**

#### Problem

Domain of the attribute is  $\{1, \ldots, M\}$ Piece of cake if memory available... What if the memory available is log(M) ? Flajolet-Martin 1983

Based on hashing:  $\{1, \ldots, M\} \mapsto \{0, \ldots, 2^L\}$  with L = log(M).

 $x \rightarrow hash(x) = y \rightarrow position least significant bit, lsb(x)$ 

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

### Count number of values, followed



Result

R = position of rightmost 0 in H $M \approx 2^R / .7735$ 

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

### **Decision Trees for Data Streaming**

#### Principle

Grow the tree if evidence best attribute  $> {\sf second}\ {\sf best}$ 

#### Algorithm

parameter: confidence  $\delta$  (user-defined)

(ロ) (四) (三) (三) (三) (○) (○)

While true

Read example, propagate until a leaf

If enough examples in leaf

Compute IG for all attributes;

$$\label{eq:expansion} \begin{split} \epsilon &= \sqrt{\frac{R^2 \ln(1/\delta)}{2n}} \\ \text{Keep best if IG(best) - IG(second best }) > \epsilon \end{split}$$

Mining High Speed Data Streams, Pedro Domingos, Geoffrey Hulten, KDD-00

### **Open issues**

#### What's new

Forget about iid;

Forget about more than linear complexity (and log space)

#### Challenges

Online, Anytime algs Distributed alg. Criteria of performance Integration of change detection

### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

#### Axiomatisation

Data Streaming

#### Application: Autonomic Computing

#### Learning distances

### **Autonomic Computing**



Considering current technologies, we expect that the total number of device administrators will exceed 220 millions by 2010.

Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006 Irina Rish & Gerry Tesauro.

### **Autonomic Computing**

#### The need

Main bottleneck of the deployment of complex systems: shortage of skilled administrators

#### Vision

- Computing systems take care of the mundane elements of management by themselves.
- Inspiration: central nervous system (regulating temperature, breathing, and heart rate without conscious thought)

#### Goal

## Computing systems that manage themselves in accordance with high-level objectives from humans

Kephart & Chess, IEEE Computer 2003

### **Toward Autonomic Grid**

#### EGEE, Enabling Grids for E-sciencE 2001-2011

- 50 countries
- 300 sites
- 80,000 CPUs
- 5Petabytes storage
- 10,000 users
- 300,000 jobs/ day



#### http://public.eu-egee.org/

#### EGEE-III : WP Grid Observatory

- Job scheduling
- Job profiling

### **Data Streaming for Job Profiling**

X. Zhang, C. Furtlehner, M.S., ECML 08; KDD 09

#### Position of the problem

- Jobs arrive and are processed
- Want to detect outliers and anomalies
- Want to predict the traffic / dimension the system
- The job distribution is non-stationary





Preliminary step: Clustering the jobs

(ロ) (同) (E) (E) (E)

### Clustering with Message Passing Algorithm: Affinity Propagation

Frey and Dueck, Science 2007 Affinity Propagation w.r.t. State of art

|             | K-means       | K-centers     | AP                       |
|-------------|---------------|---------------|--------------------------|
| exemplar    | artefact      | actual point  | actual point             |
| parameter   | K             | K             | s <sup>*</sup> (penalty) |
| algorithm   | greedy search | greedy search | message passing          |
| performance | not stable    | not stable    | stable                   |
| complexity  | N 	imes K     | N 	imes K     | $N^2 log(N)$             |

WHEN ? WHY ? CONS When averages don't make sense Stable, minimal distortion Computational complexity

### **Affinity Propagation**

Given  $\mathcal{E} = \{e_1, e_2, ..., e_N\}$ elements  $d(e_i, e_i)$ their dissimilarity Find  $\sigma : \mathcal{E} \mapsto \mathcal{E}$  $\sigma(e_i)$ , exemplar representing  $e_i$ such that:  $\sigma = \operatorname{argmax} \sum_{i=1}^{n} S(e_i, \sigma(e_i))$ where  $\begin{cases} S(e_i, e_j) = -d^2(e_i, e_j) & \text{if } i \neq j \\ S(e_i, e_i) = -s^* \end{cases}$ s\*: penalty parameter

#### Particular cases

*s*<sup>\*</sup> = ∞, only one exemplar
 *s*<sup>\*</sup> = 0, every point is an exemplar
 N clusters

(ロ) (四) (三) (三) (三) (○) (○)

### **Hierarchical Affinity Propagation**



#### Thm

Let *h* be the height of the tree, *b* the branching factor,  $N_0$  the size of each subproblem, *K* the average number of examplars for each sub problem. Then

$$C(h) \propto N^{rac{h+2}{h+1}}$$

### **Extending AP to Data Streaming**

#### StrAP : sketch

- 1. Job  $j_t$  arrives
- 2. Does it fit the current model  $\mathcal{M}_t$ ?
  - ▶ YES: update  $M_t$
  - NO:

 $j_t \rightarrow \mathsf{Reservoir}$ 

- 3. Has the distribution changed ?
  - YES: build  $\mathcal{M}_{t+1}$  from  $\mathcal{M}_t$  and the reservoir

#### **Stream Model**: $\mathcal{M}_t = \{(j_i, n_i, \Sigma_i, t_i)\}$

- *j<sub>i</sub>* examplar job
- *n<sub>i</sub>* number of jobs represented by *j<sub>i</sub>*
- $\Sigma_i$  sum of distortions incurred by  $j_i$
- t<sub>i</sub> last time step when a job was affected to j<sub>i</sub>

### Has the distribution changed ?



#### Page-Hinkley statistical change detection test

D. Hinkley. Inference about the change-point in a sequence of random variables. Biometrika, 1970

E. Page. Continuous inspection schemes. Biometrika, 1954

### **EGEE Job Streaming**

Dynamics of the distribution: schedule of restarts

Accuracy (succ/failed jobs)



#### Snapshots





### The EGEE traffic: months at a glance

#### A posteriori

build super-examplars from examplars aggregate the traffic

each s.e. a row along time



### EGEE Job Streaming, end

#### **Further work**

- List / Interpret outliers. Build a catalogue of situations
- 2. From job clustering to day clustering A day is a histogram of job clusters
- 3. Sequence modelling Caveat: nature of random variables
- 4. Fueling Job scheduling with realistic distribution models.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

### Overview

#### Clustering

K-Means Generative models Expectation Maximization Selecting the number of clusters Stability

#### Axiomatisation

- Data Streaming
- Application: Autonomic Computing

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

#### Learning distances