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Clustering

Input
E={x1,...,Xn} ~ P(x)
Output
» Models ﬁ’(x)
» Clusters Partition

> Representatives

Assumptions, contexts
Clusters are separated by a low-density region




Overview

Clustering
K-Means
Generative models
Expectation Maximization
Selecting the number of clusters
Stability



Clustering Questions

Hard or soft 7

» Hard: find a partition of the data

» Soft: estimate the distribution of the data as a
mixture of components.

Parametric vs non Parametric ?

» Parametric: number K of clusters is known

» Non-Parametric: find K
(wrapping a parametric clustering algorithm)

Caveat:

» Complexity
» Qutliers

» Validation



Formal Background

Notations
& {x1,...xy} dataset
N number of data points
K number of clusters given or optimized
Cx k-th cluster Hard clustering

7(i)  index of cluster containing x;

fr k-th model Soft clustering
’yk(i) Pr(x,-|fk)

Solution

Hard Clustering Partition A = (G, ... C)
Soft Clustering Vi >, (i) =1



Formal Background, 2

Quality / Cost function

Measures how well the clusters characterize the data

> (log)likelihood soft clustering
> dispersion hard clustering
AN
RV
Side X des)
k=1 X,‘,Xj n Ck
Tradeoff

Quality increases with K = Regularization needed
to avoid one cluster per data point



Clustering vs Classification

Marina Meila http://videolectures.net/
Classification Clustering
K # classes (given)  # clusters (unknown)
Quality  Generalization error  many cost functions
Focus on Test set Training set
Goal Prediction Interpretation
Analysis discriminant exploratory

Field mature new



Non-Parametric Clustering

Hierarchical Clustering

Principle

» agglomerative (join nearest clusters)

» divisive (split most dispersed cluster)

CONS: Complexity O(N3)



Hierarchical Clustering, example
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Influence of distance/similarity

I—u [ r_l
e . . L . L.
Euclidean Vector angle Pearson
( . .
Yoilxi—xI)? Euclidean distance
Soxix! .
dix,x)=¢ 1— —IIXIII-HIX’IH Cosine angle
(xi—x)(x]=x")
1— 20X pegreon
[Ix=X].[[x"=X"1|

10
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Parametric Clustering

K is known

Algorithms based on distances
> K-means
» graph / cut

Algorithms based on models

> Mixture of models: EM algorithm
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K-Means

Algorithm

1.

No oA~ wbd

Init:
Uniformly draw K points x;, in &
Set G = {x;;}
Repeat
Draw without replacement x; from &
7(i) = argming=1. k{d(x;,Cx)} find best cluster for x;
CT(,-) = CT(,-) UX,’ add x; to CT(,')
Until all points have been drawn

If partition C ... Cx has changed Stabilize
Define xj, = best point in G, Cx = {x; }, goto 2.

Algorithm terminates
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K-Means, Knobs

Knob 1 : define d(x;, Cx)

» min{d(x;,x;),x; € Cx}
> average{d(x;,x;),x; € Cx}
» max{d(x;,x;),x; € Cx}

Knob 2 : define “best” in Cy
» Medoid

* Average
(does not belong to &)

favors

long clusters
compact clusters

spheric clusters

argmin;{zxjeck d(x,x;)}

1 )
TG Exjeck X;
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No single best choice

Fig. 1. Optimizing the diameter produces B while A is clearly more desirable.

Fic. 2. The inferior clustering B is found by optimizing the 2-median measure.
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K-Means, Discussion

PROS
» Complexity O(K x N)

» Can incorporate prior knowledge

CONS
» Sensitive to initialization
» Sensitive to outliers

» Sensitive to irrelevant attributes

initialization
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K-Means, Convergence

» For cost function
L) =>" > d(xi, x;)
k ij /[ m()=T(j)=k
» for d(x;, Cx) = average {d(x;,x;),x; € Cy}
» for “best” in Ci = average of x; € Cj

K-means converges toward a (local) minimum of L.
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K-Means, Practicalities

Initialization

» Uniform sampling
> Average of & + random perturbations
> Average of £ + orthogonal perturbations
» Extreme points: select x;, uniformly in &, then
J
Select x; = argmax{z d(xi, xi, )}
k=1

Pre-processing

» Mean-centering the dataset
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Model-based clustering

Mixture of components

v

Density f = Z,’le Tk fi
fi: the k-th component of the mixture
7k fi(x)

7k(i) = Tf(x)
induces Cx = {x; / k = argmax{v«(j)}}

v

v

v

Nature of components: prior knowledge

» Most often Gaussian: fx = (uk, Xk)

> Beware: clusters are not always Gaussian...

@ o, 0
;?Qﬂ * t?’%o
¢ Wé\ QQ“ -
o % » . A Ofﬁ R
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Model-based clustering, 2

Search space

» Solution : (7, ,uk,Zk) =10
Criterion: log-likelihood of dataset

N K
0(0) = log(Pr(& Z log Pr(x;) o Z Z log (i fi(x;))

i=1 k=1

to be maximized.
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Model-based clustering with EM
Formalization

> Define z; , = 1 iff x; belongs to Cx.
> Elzj ] = (i) prob. x; generated by 7 fy
» Expectation of log likelihood

E[(0)] o< oy iy ilk) log(mifi(xi))

=N Sk (k) log mk + Sy ST (k) log fi(x;)

EM optimization

E step Given 8, compute

M step Given (i), compute

0* = (mx, i, L) = argminE[¢(0)]
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Maximization step

my: Fraction of points in Cy

1. Mean of Cy
SN (i)xi
SN ()

Hk =

> «: Covariance

s _ iy ) — ) (xi — ju)
k

S (i)
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Choosing the number of clusters

K-means constructs a partition whatever the K value is.
Selection of K
» Bayesian approaches
Tradeoff between accuracy / richness of the model
» Stability
Varying the data should not change the result

» Gap statistics
Compare with null hypothesis: all data in same cluster.
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Bayesian approaches

Bayesian Information Criterion

mcw)zzwy—ﬁﬁmgN

Select K = argmax BIC(6)
where #6 = number of free parameters in 6:

» if all components have same scalar variance o
#9=K—-1+1+ Kd
» if each component has a scalar variance o
#0=K -1+ K(d+1)
» if each component has a full covariance matrix X,

#0=K—1+K(d+d(d—1)/2)
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Gap statistics

Principle: hypothesis testing

1. Consider hypothesis Hp: there is no cluster in the data.
& is generated from a no-cluster distribution 7.

2. Estimate the distribution fy x of L(Cy, ... Ck) for data
generated after 7. Analytically if 7 is simple
Use Monte-Carlo methods otherwise

3. Reject Hy with confidence « if the probability of generating
the true value £( Gy, ... Ck) under fy i is less than a.

Beware: the test is done for all K values...



Gap statistics, 2

Algorithm

Assume & extracted from a no-cluster distribution,
e.g. a single Gaussian.

1. Sample & according to this distribution
2. Apply K-means on this sample
3. Measure the associated loss function

Repeat : compute the average £o(K) and variance oo(K)
Define the gap:

Gap(K) = Eo(K) - ,C(C]_, “on CK)
Rule Select min K s.t.

Gap(K) > Gap(K + 1) — oo(K + 1)

What is nice: also tells if there are no clusters in the data...
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Stability
Principle

» Consider &£ perturbed from £

» Construct Ci, ... Cj from &'

» Evaluate the “distance” between (Cy,...Ck) and (Cf,... Cy)
» If small distance (stability), K is OK

Distortion D(A)

Define S S; = <x;,x; >
(Ai,vi)  i-th (eigenvalue, eigenvector) of S
X X,',J': 1iffX,’€C:,'
D) = 3 lIxi — ey 12 = £r(S) — tr(X'SX)

Minimal distortion D* = tr(S) — S K A,
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Stability, 2

Results

» A has low distortion = (1, ..

. k) close to space (vi, ... vk).

» A1, and Ay have low distortion = “close”

» (and close to “optimal” clustering)

Counter-example

Meila ICML 06

©
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Overview

Axiomatisation



23

Kleinberg’'s axiomatic framework for clustering

Given & = {x1,...,Xp,X; € X}, a clustering builds a partition I
depending on distance d. Let denote ' = f(d).

1 10 10
10 0 1
10 1 0

M= ({1}7 {27 3})
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Kleinberg’'s axiomatic framework for clustering

Properties
Scale invariance

Va > 0, f(ad) = f(d)

Richness
Range(f) = Power set of £

Consistency
If f(d) =T and d’ is a [-enhancing transformation of d, then
f(d)y=Tr

where d’ is [-enhancing if
» d'(xi,x;) < d(x;,x;) if x; and x; in same cluster of I
> dl(X,',Xj) > Cl’(X,‘,XJ') otherwise
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Examples

Run single linkage till you get k clusters

» Scale invariance Yes, consistency Yes, richness No

Run single linkage till distances > ¢ - max; jd(x;,x;), ¢ > 0
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Examples

Run single linkage till you get k clusters

» Scale invariance Yes, consistency Yes, richness No

Run single linkage till distances > ¢ - max; jd(x;,x;), ¢ > 0

» Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances exceed some threshold r
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Examples

Run single linkage till you get k clusters

> Scale invariance Yes, consistency Yes, richness No

Run single linkage till distances > ¢ - max; jd(x;,x;), ¢ > 0

» Scale invariance Yes, consistency No, richness Yes

Run single linkage until distances exceed some threshold r

» Scale invariance No, consistency Yes, richness Yes
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Impossibility result

Thm
» There is no consistent way of choosing a level of granularity

» There exists no f satisfying all three axioms

e® LI}
. . se oo

d d’ enhancing I d"“ rescaling d’
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Overview

Data Streaming
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Part 2. Data Streaming

» When: data, specificities
> What: goals
» How: algorithms

More: see Joao Gama's tutorial,
http://wiki.kdubiq.org/summerschool2008/index.php/Main/Materials
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Motivations

Electric Power Network

£ DA
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Data

Input
» Continuous flow of (possibly corrupted) data, high speed
» Huge number of sensors, variable along time (failures)
» Spatio-temporal data
Output
» Cluster: profiles of consumers
» Prediction: peaks of demand

» Monitor Evolution: Change detection, anomaly detection
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Where is the problem ?

Standard Data Analysis

> Select a sample

» Generate a model (clustering, neural nets, ..

)
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Where is the problem ?

Standard Data Analysis

> Select a sample

» Generate a model (clustering, neural nets, ...

Does not work...

» World is not static

» Options, Users, Climate, ... change



Specificities of data

Domain

» Radar: meteorological observations

» Satellite: images, radiation
» Astronomical surveys: radio
> Internet: traffic logs, user queries, ...

» Sensor networks

Telecommunications

v

Features
» Most data never seen by humans

> Need for REAL-TIME monitoring, (intrusion, outliers,
anomalies,,,)

NB: Beyond ML scope: data are not iid (independent identically
distributed)

40



A3

Data streaming Challenges

Maintain Decision Models in real-time
» incorporate new information comply with speed
» forget old/outdated information

> detect changes and adapt models accordingly

Unbounded training sets Prefer fast approximate answers...
» Approximation: Find answer with factor 1 & ¢
» Probably correct: Pr(answer correct ) =1 -6
» PAC: €, (Probably Approximately Correct)
» Space ~ O(1/€e2log(1/6))
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Data Mining vs Data Streaming

Traditional Stream
Nr. of Passes Multiple Single
Processing Time | Unlimited Restricted
Memory Usage Unlimited Restricted
Type of Result Accurate | Approximate
Distributed No Yes
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What: queries on a data stream

v

Sample

» Count number of distinct values / attribute

v

Estimate sliding average (number of 1's in a sliding window)

v

Get top-k elements

Application: Compute entropy of the stream

H(x) = piloga(pi)

useful to detect anomalies
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Sampling
Uniform sampling: each one out of n examples is sampled with
probability 1/n.
What if we don't know the size ?
Standard

» Sample instances at periodic time intervals
» Loss of information

Reservoir Sampling

v

Create buffer size k

v

Insert first k elements

v

Insert i-th element with probability k/i

v

Delete a buffer element at random
Limitations
» Unlikely to detect changes/anomalies

» Hard to parallelize
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Count number of values

Problem

Domain of the attribute is {1,... M}

Piece of cake if memory available... What if the memory available
is log(M) ?

Flajolet-Martin 1983

Based on hashing: {1,... M} — {0,...2L} with L = log(M).

x — hash(x) =y — position least significant bit, Isb(x)



Count number of values, followed

Init: BITMAP({0,...L}) =0
Loop: Read x, BITMAP(Isb(x)) =1

BITMAP
L-1
x Ll
ojofojofolo 2ol 1rdobaj 2yl afalala
L - et S
7 fringe of 0/1s Il
pslen around logid) position <<
logl(d log(d)
Result

R = position of rightmost 0 in H
M ~ 2R /7735
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Decision Trees for Data Streaming

Principle
Grow the tree if evidence best attribute > second best

Algorithm parameter: confidence ¢ (user-defined)
While true
Read example, propagate until a leaf
If enough examples in leaf
Compute IG for all attributes;

N V)
- 2n
Keep best if 1G(best) - 1G(second best ) > ¢

Mining High Speed Data Streams, Pedro Domingos, Geoffrey
Hulten, KDD-00
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Open issues

What’s new
Forget about iid;
Forget about more than linear complexity (and log space)

Challenges
Online, Anytime algs
Distributed alg.
Criteria of performance
Integration of change detection
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Overview

Application: Autonomic Computing
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Autonomic Computing

Considering current technologies, we expect that the total number of
device administrators will exceed 220 millions by 2010.
Gartner 6/2001

in Autonomic Computing Wshop, ECML / PKDD 2006
Irina Rish & Gerry Tesauro.
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Autonomic Computing

The need

» Main bottleneck of the deployment of complex systems:
shortage of skilled administrators

Vision
» Computing systems take care of the mundane elements of
management by themselves.

» Inspiration: central nervous system (regulating temperature,
breathing, and heart rate without conscious thought)

Goal
Computing systems that manage themselves in accordance
with high-level objectives from humans

Kephart & Chess, IEEE Computer 2003
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Toward Autonomic Grid

EGEE, Enabling Grids for E-sciencE 2001-2011

» 50 countries

» 300 sites

80,000 CPUs
5Petabytes storage
10,000 users
300,000 jobs/ day

v

v

v

v

http://public.eu-egee.org/
EGEE-IIl : WP Grid Observatory

» Job scheduling
> Job profiling



Data Streaming for Job Profiling

X. Zhang, C. Furtlehner, M.S., ECML 08; KDD 09

Position of the problem

» Jobs arrive and are processed

Want to detect outliers and anomalies J— 4 = :

>
» Want to predict the traffic / \mmfméﬂmim e |
dimension the system e |
> The job distribution is non-stationary e, er
F‘_Ema 1

Preliminary step: Clustering
the jobs

N~
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Clustering with Message Passing Algorithm:
Affinity Propagation

Frey and Dueck, Science 2007 Affinity Propagation w.r.t.
State of art

K-means K-centers AP
exemplar artefact actual point actual point
parameter K K s* (penalty)
algorithm greedy search | greedy search | message passing
performance not stable not stable stable
complexity N x K N x K N?log(N)
WHEN 7? When averages don't make sense
WHY ? Stable, minimal distortion

CONS Computational complexity
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Affinity Propagation

Given
E={e,e,...,en} elements
d(e;, &) their dissimilarity
Findo:&— & o(ej), exemplar representing e;
such that:
N
o = argmax Z S(ei,o(er))
i=1
where { gg::z; - _g*(e,,ej) if i #j s penalty
parameter

Particular cases
> s* = 0o, only one exemplar 1 cluster

> s* =0, every point is an exemplar N clusters



Hierarchical Affinity Propagation

ECML 2008

‘WEIGHTED
AFFINITY
PROPAGATION

% / exemplars

%i exemplars /

W subsets AFFINITY
PROPAGATION

Thm

Let h be the height of the tree, b the branching factor, Ny the size
of each subproblem, K the average number of examplars for each
sub problem. Then

h+2

C(h) oc N1

=3
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Extending AP to Data Streaming

StrAP : sketch
1. Job j; arrives

2. Does it fit the current model M; ?

» YES: update M,
» NO:

3. Has the distribution changed ?
» YES: build M;;1 from M, and the reservoir

Stream Model: M; = {(ji, ni, X;, ti)}
> j; examplar job
» n; number of jobs represented by j;

» 3 ; sum of distortions incurred by j;

> t; last time step when a job was affected to j;

Jt+ — Reservoir



Has the distribution changed ?

Page-Hinkley statistical change detection test

a0 - -

W“‘M; _

“ 0 pe= %2;;1 Pe

o me=0 g (Ipe = Pel +9)
y A 1 PHy = max{my} — m;

. Whom ) |

osammncemcsseacy gt A A

L L L L L L L L L
o 100 200 300 400 500 600 700 800 900 1000
time t

D. Hinkley. Inference about the change-point in a sequence of random
variables. Biometrika, 1970

E. Page. Continuous inspection schemes. Biometrika, 1954



EGEE Job Streaming

Dynamics of the distribution: schedule of restarts

' W]

Becuzacy (0
e |

Accuracy (succ/failed jobs)

Snapshots

z

B
18

H
g

exemplarshawn

2 i . 2%
asajobvector ey Sy =xemplar shown
505 . 258 job vactor

o 139

5

8

20

Percentage of jobs assigned

Percentage of jobs assigned

El

Clusters

4 s
Clusters
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The EGEE traffic: months at a glance

A posteriori
build super-examplars from examplars
aggregate the traffic

__|‘_ T wa e e
o= .

Super Clusters

each s.e. a row
along time
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EGEE Job Streaming, end

Further work

1. List / Interpret outliers.
Build a catalogue of situations

2. From job clustering to day clustering
A day is a histogram of job clusters

3. Sequence modelling
Caveat: nature of random variables

4. Fueling Job scheduling with realistic distribution models.
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Overview

Learning distances
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