
Master Recherche IAC
TC2: Apprentissage Statistique & Optimisation

Alexandre Allauzen − Anne Auger − Michèle Sebag
LIMSI − LRI

Oct. 4th, 2012

This course

Bio-inspired algorithms

Classical Neural Nets
History
Structure

Bio-inspired algorithms

Facts

I 1011 neurons

I 104 connexions per neuron

I Firing time: ∼ 10−3 second 10−10 computers

Bio-inspired algorithms, 2

Human beings are the best !
I How do we do ?

I What matters is not the number of neurons
as one could think in the 80s, 90s...

I Massive parallelism ?
I Innate skills ? = anything we can’t yet explain
I Is is the training process ?

Synaptic plasticity

Hebb 1949 Conjecture
When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.

Learning rule
Cells that fire together, wire together
If two neurons are simultaneously excitated, their connexion weight
increases.

Remark: unsupervised learning.

This course

Bio-inspired algorithms

Classical Neural Nets
History
Structure

History of artificial neural nets (ANN)

1. Non supervised NNs and logical neurons

2. Supervised NNs: Perceptron and Adaline algorithms

3. The NN winter: theoretical limitations

4. Multi-layer perceptrons.

History

Thresholded neurons Mc Culloch et Pitt 1943

Ingredients
I Input (dendrites) xi
I Weights wi

I Threshold θ
I Output: 1 iff

∑
i wixi > θ

Remarks
I Neurons → Logics → Reasoning → Intelligence
I Logical NNs: can represent any boolean function
I No differentiability.

Perceptron Rosenblatt 1958

y = sign(
∑

wixi − θ)

x = (x1, . . . , xd) 7→ (x1, . . . , xd , 1).
w = (w1, . . . ,wd) 7→ (w1, . . .wd ,−θ)

y = sign(〈w, x〉)

Learning a Perceptron

Given

I E = {(xi , yi), xi ∈ IRd , yi ∈ {1,−1}, i = 1 . . . n}

For i = 1 . . . n, do

I If no mistake, do nothing
no mistake ⇔ 〈w, x〉 same sign as y

⇔ y〈w, x〉 > 0

I If mistake
w← w + y .xi

Enforcing algorithmic stability:

wt+1 ← wt + αty .x`

αt decreases to 0 faster than 1/t.

Convergence: upper bounding the number of
mistakes

Assumptions:

I xi belongs to B(IRd ,C) ||xi || < C

I E is separable, i.e.
exists solution w∗ s.t. ∀i = 1 . . . n, yi 〈w∗, xi 〉 > δ > 0

with ||w∗|| = 1.

Then The perceptron makes at most (Cδ)2 mistakes.

Convergence: upper bounding the number of
mistakes

Assumptions:

I xi belongs to B(IRd ,C) ||xi || < C

I E is separable, i.e.
exists solution w∗ s.t. ∀i = 1 . . . n, yi 〈w∗, xi 〉 > δ > 0
with ||w∗|| = 1.

Then The perceptron makes at most (Cδ)2 mistakes.

Convergence: upper bounding the number of
mistakes

Assumptions:

I xi belongs to B(IRd ,C) ||xi || < C

I E is separable, i.e.
exists solution w∗ s.t. ∀i = 1 . . . n, yi 〈w∗, xi 〉 > δ > 0
with ||w∗|| = 1.

Then The perceptron makes at most (Cδ)2 mistakes.

Bouding the number of misclassifications
Proof
Upon the k-th misclassification for some xi

wk+1 = wk + yixi
〈wk+1,w

∗〉 = 〈wk ,w
∗〉 + yi 〈xi ,w∗〉

≥ 〈wk ,w
∗〉 + δ

≥ 〈wk−1,w
∗〉 + 2δ

≥ kδ

In the meanwhile:

||wk+1||2 = ||wk + yixi ||2 ≤ ||wk ||2 + C 2

≤ kC 2

Therefore: √
kC > kδ

Going farther...

Remark: Linear programming: Find w, δ such that

Max δ, subject to
∀ i = 1 . . . n, yi 〈w, xi 〉 > δ

gives the floor to Support Vector Machines...

Adaline Widrow 1960

Adaptive Linear Element
Given

E = {(xi , yi), xi ∈ IRd , yi ∈ IR, i = 1 . . . n}

Learning Minimization of a quadratic function

w∗ = argmin{Err(w) =
∑

(yi − 〈w, xi 〉)2}

Gradient algorithm

wi = wi−1 + αi∇Err(wi)

The NN winter

Limitation of linear hypotheses Minsky Papert 1969
The XOR problem.

Multi-Layer Perceptrons, Rumelhart McClelland
1986

Issues

I Several layers, non linear separation, addresses the XOR
problem

I A differentiable activation function

ouput(x) =
1

1 + exp{−〈w, x〉}

The sigmoid function
I σ(t) = 1

1+exp(−a .t) , a > 0

I approximates step function (binary decision)
I linear close to 0
I Strong increase close to 0
I σ′(x) = aσ(x)(1− σ(x))

Back-propagation algorithm, Rumelhart McClelland
1986; Le Cun 1986

Intuition
I Given (x, y) a training sample uniformly randomly drawn
I Set the d entries of the network to x1 . . . xd
I Compute iteratively the output of each neuron until final

layer: output ŷ ;
I Compare ŷ and y Err(w) = (ŷ − y)2

I Modify the NN weights on the last layer based on the gradient
value

I Looking at the previous layer: we know what we would have
liked to have as output; infer what we would have liked to
have as input, i.e. as output on the previous layer. And
back-propagate...

I Errors on each i-th layer are used to modify the weights
used to compute the output of i-th layer from input of i-th
layer.

Back-propagation of the gradient

Notations
Input x = (x1, . . . xd)
From input to the first hidden layer

z
(1)
j =

∑
wjkxk

x
(1)
j = f (z

(1)
j)

From layer i to layer i + 1

z
(i+1)
j =

∑
w

(i)
jk x

(i)
k

x
(i+1)
j = f (z

(i+1)
j)

(f : e.g. sigmoid)

Back-propagation of the gradient

Input(x, y), x ∈ IRd , y ∈ {−1, 1}
Phase 1 Propagate information forward

I For layer i = 1 . . . `
For every neuron j on layer i

z
(i)
j =

∑
k w

(i)
j ,k x

(i−1)
k

x
(i)
j = f (z

(i)
j)

Phase 2 Compare

I Error: difference between ŷj = x
(`)
j and yj .

Modify ŷj by

esortiej =
∂h

∂t
(z`j)[ŷj − yj]

Back-propagation of the gradient

Phase 3 retro-propagate the errors

e
(i−1)
j =

∂h

∂t
(z

(i−1)
j)

∑
k

w
(i)
kj e

(i)
k

Phase 4: Update weights on all layers

∆w
(k)
ij = αe

(k)
i x

(k−1)
j

where α is the learning rate (< 1.)

This course

Bio-inspired algorithms

Classical Neural Nets
History
Structure

Neural nets

Ingredients

I Activation function

I Connexion topology = directed graph
feedforward (≡ DAG, directed acyclic graph) or recurrent

I A (scalar, real-valued) weight on each connexion

Activation(z)

I thresholded 0 si z < seuil , 1 sinon

I linear z

I sigmoid 1/(1 + e−z)

I Radius-based e−z
2/σ2

Neural nets
Ingredients

I Activation function
I Connexion topology = directed graph

feedforward (≡ DAG, directed acyclic graph) or recurrent
I A (scalar, real-valued) weight on each connexion

Feedforward NN

(C) David McKay - Cambridge Univ. Press

Neural nets

Ingredients

I Activation function

I Connexion topology = directed graph
feedforward (≡ DAG, directed acyclic graph) or recurrent

I A (scalar, real-valued) weight on each connexion

Recurrent NN

I Propagate until stabilisation

I Back-propagation does not apply

I Memory of the recurrent NN: value of hidden neurons
Beware that memory fades exponentially fast

I Dynamic data (audio, video)

Structure / Connexion graph / Topology

Prior knowledge

I Invariance under translation, rotation,.. op

I → Complete E consider (op(xi), yi)

I or use weight sharing: convolutionnal networks

100,000 weights → 2,600 parameters Details

I http://yann.lecun.com/exdb/lenet/ Demos

I http://deeplearning.net/tutorial/lenet.html

Hubel & Wiesel 1968

Visual cortex of the cat

I cells arranged in such a way that

I ... each cell observes a fraction of the visual field
receptive field

I the union of which covers the whole field

Characteristics

I Simple cells check the presence of a pattern

I More complex cells consider a larger receptive field, detect the
presence of a pattern up to translation/rotation

Sparse connectivity

I Reducing the number of weights

I Layer m: detect local patterns

I Layer m + 1: non linear aggregation, more global field

Convolutional NN: shared weights

I Reducing the number of weights

I through adapting the gradient-based update: the update is
averaged over all occurrences of the weight.

Max pooling: reduction et invariance

I Partitioning

I Return the max value in the subset invariance

Global scheme

Properties

Good news

I MLP, RBF: universal approximators

For every (decent) function f (= f 2 has a finite integral on every
compact of IRd) for every ε > 0, there exists some MLP/RBF g
such that ||f − g || < ε.

Bad news

I Not a constructive proof (the solution exists, and then ?)

I Everything is possible; → no guarantee (overfitting).

Key issues
Model selection

I Selecting number of neurons, connexion graph

I Which learning criterion overfitting
More 6⇒ Better

Algorithmic choices a difficult optimization problem

I Initialisation w small !

I Decrease the learning rate with time

I Enforce stability through relaxation

wneo ← (1− α)wold + αwneo

I Stopping criterion

Start by normalization of data
x 7→ x − average

variance

The curse of NNs

http://videolectures.net/eml07 lecun wia/

Pointers
URL

I course:
http://neuron.tuke.sk/math.chtf.stuba.sk/pub/

vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf

I FAQ: http://www.faqs.org/faqs/ai-faq/neural-nets/
part1/preamble.html

I applets
http://www.lri.fr/~marc/EEAAX/Neurones/tutorial/

I codes: PDP++/Emergent (www.cnbc.cmu.edu/PDP++/);
SNNS http:

//www-ra.informatik.uni-tuebingen.de/SgNNS/...

Also see
I NEAT & HyperNEAT Stanley, U. Texas

When no examples available: e.g. robotics.

http://neuron.tuke.sk/math.chtf.stuba.sk/pub/vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf
http://neuron.tuke.sk/math.chtf.stuba.sk/pub/vlado/NN_books_texts/Krose_Smagt_neuro-intro.pdf
http://www.faqs.org/faqs/ai-faq/neural-nets/part1/preamble.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part1/preamble.html
http://www.lri.fr/~marc/EEAAX/Neurones/tutorial/
www.cnbc.cmu.edu/PDP++/
http://www-ra.informatik.uni-tuebingen.de/SgNNS/
http://www-ra.informatik.uni-tuebingen.de/SgNNS/

	Bio-inspired algorithms
	Classical Neural Nets
	History
	Structure

