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Approaches

1. Optimal control

2. Reactive behavior

3. Planning
Reinforcement Learning
Optimization
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Case 3. Planning

Approaches

I Reinforcement learning

I Inverse reinforcement learning
I Policy search (= optimize the controller)

I Gradient-based
I Evolutionary robotics
I Imitation-based
I Preference-based RL

Challenges

I Design the objective function (define the optimization
problem)

I Solve the optimization problem

I Assess the validity of the solution
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Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics
Search space
Objective
Reality Gap
Co-evolution
Evolution of morphology

Intrinsic and interactive rewards
Intrinsic rewards
Interactive rewards
Programming by feedback
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Policy search, formal background
Assumption

I We know the policy search space π: State 7→ Action
For instance: Neural Nets, Decision list

I This search space Θ is parametric ≡ IRd

I There exists a computable objective function to be optimized:

θ 7→ πθ 7→ behavior 7→ F(θ)

An optimization problem

Find θ∗ = argmax{F(θ}

Specificities

I Noisy optimization (actuators, motors) and partially
observable setting

I Can (must) incorporate prior knowledge
search space structure; initialization; objective function
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Example:
swarm robots moving in column formation

Robot
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Example, foll’d

Representation

Constants
I1 blind zone
I2 sensor range
φ Vision angular range

Variables(t)
r(t), s(t) positions
θ(t) angular direction
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Example of a (almost manual) controller
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Toward defining F

9



Milestones

1. From θ to πθ trivial

2. From πθ to the robot behavior

3. From the robot behavior to evaluating F(θ)

4. From trials ({(θt ,F(θt))} to θ∗
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Milestone 1
From the controller πθ to the robot behavior

How
I In silico = in simulation

I Main approach for evolutionary robotics
I No way, says the roboticist reality gap

I In situ: embeds the policy on the robot, and sees.
I The robot breaks before long
I Makes it difficult to compute F(θ).

I Both Hod Lipson & Bongard 2006
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Milestone 1

Bottleneck: Accurate predictions

I World model: what is out there.
SLAM, Simultaneous Localization and Mapping

Long term planning

I Forward model: what will happen if robot selects action a in
state s
Local model of itself Short term planning

I Uncertainties about e.g. sensors or actuators models, initial
localization.
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Milestone 1

Bottleneck: Accurate predictions, follow’d,

I Partially observable effects
ex., in the case of swarms: there are many robots
does robot Bob know robot Alice’s plans ? If yes, centralized
resolution
Else, Alice’s behavior is impredictible (and Bob can’t predict
with certainty what will be in his vision cone).

I → non deterministic model.
thus, the behavior is a random variable; F(θ) becomes an
expectation,

IE∼πθ [F(behavior)]
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Milestone 2
From the robot behavior to F(θ)

How

I In simulation: define computable F
by trials and errors (fitness shaping)
manual (see section evolutionary robotics)

I In situ:
I Interactive
I Manual
I Measurements (e.g. data mining on the videos).
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Milestone 3
Optimisation

How

I Gradient-based approaches Direct Policy Search

I Black-box optimization Evolutionary Robotics

I Surrogate optimization Preference reinforcement learning

What is optimized

I policy ≡ θ
I Value function. (satisfies Bellman equation)

I Energy function H(s, a) (same use, but without Bellman)

π(s) = argmaxa{H(s.a)}
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Direct policy search, formal background

Assumption

I Function F(θ), to be optimized

Pros

I No divergence, even under function approximation

I Policies are much simpler to represent
(a neural net)

I Partial observability does not hurt convergence
increases computational cost and harms long-term value

Cons

I Lost convergence to the globally optimal policy

I Lost the Bellman constraint → larger variance
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Direct policy search, principles
Recall: Policy return estimate

V (s) = IE[
∑
t

γtr(st)|s0 = s]

or long term average reward

V (s) = limT→∞
1

T
IE[
∑
t

r(st)|s0 = s]

Assumption: ergodic Markov chain
(After a while, the initial state does not matter).

I V (s) does not depend on s
I One can estimate the percentage of time spent in state s

q(θ, s) = Prθ(S = s)

Another policy return estimate
expected average reward

V = IEθ[r(S)] =
∑
s

r(s)q(θ, s)
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Direct policy search, Algorithm

1. F(θ) = IEθ[r(S)] =
∑

s r(s)q(θ, s)

2. Compute or estimate the gradient, ∇F(θ)

3. Use it: (can do better)

θt+1 = θt + α∇F(θ)
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Computing the derivative

∇V = ∇(
∑
s

r(s)q(θ, s)) =
∑
s

r(s)∇q(θ, s)

Then:

∇V = IEθ[r(S)
∇q(θ,S)

q(θ,S)
]

Unbiased estimate of the gradient ( ̂integral = empirical sum)

∇̂V =
1

N

∑
i

r(si )
∇q(θ, si )

q(θ, si )
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Computing the derivative, foll’d

Using trajectories ((st , r(st))):
Given observations et rewards,

∇q(θ, st)

q(θ, st)
=

t−1∑
i=0

∇pθ(si , si+1)

pθ(si , si+1)

where pθ(si , sj) is the probability of going from si to sj with πθ.

Eligibility trace

z0 = 0; zt = zt−1 +
∇pθ(st−1, st)

pθ(st−1, st)
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Computing the derivative, foll’d

Approximations truncated: biased

zt =
t−1∑

k=t−n

∇pθ(sk , sk+1)

pθ(sk , sk+1)

or

zt = βzt−1 +
∇pθ(st−1, st)

pθ(st−1, st)

Quality

∇̂βV =
1

T

∑
t

r(st)zt

Baxter Bartlett 2001

limβ→1∇̂βV = ∇V

Role of β: tradedoff bias/variance.
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Discussion

Pros

I Many achievements: fine manipulation (peg-in-hole), learning
biped walking with integrated trajectory generation and
execution, first results using a real humanoid robot.

Cons

I Finite state space

I Adversely affected by reward variance
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Evolutionary Robotics, Milestones

1. Select the search space Θ

2. Define the objective function F(θ)
Sky is the limit: controller; morphology of the robot; co-operation

of several robots...

3. Define a computable objective function
in simulation, in-situ, reality gap

4. Optimize: Evolutionary Computation (EC); variants thereof

5. Test the found solution
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1. Search Space

Neural Nets

I Universal approximators; continuity; generalization hoped for.

I Fast computation

I Can include priors in the structure

I Feedforward: reactive; Recurrent, with internal state

Critical issues

I Find the structure;
(structured EC much more difficult)
See NEAT and HyperNEAT Stanley Miikkulainen, 2002

NeuroEvolution of Augmented Topology
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1. Search Space, foll’d

Classifier Systems
if (true) then leftSpeed=2; rightSpeed=2;
if (leftSensor>threshold) then rightSpeed=0;
if (rightSensor>threshold) then leftSpeed=0;
if (leftSensor>threshold) and

(rightSensor>threshold) then leftSpeed=-2; rightSpeed=-2;

Finite State Automata
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1. Search Space, foll’d

Genetic Programming: trees made of

I Nodes (operators) N
I Leaves (operands) T

Search space Ω = Trees(N , T )
Examples :

•


N = {+,×}
T = {X ,R}
Ω = Polynoms of X .

•


N = { if-then-else, while-do, repeat-until,..}
T = {expressions, instructions}
Ω = Programs

Key issues:

I Variable length genoms

I MORE 6= BETTER
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2. Objective

The promise: no need to decompose the goal

I Behavioral robotics hand crafted decomposition

I Evolutionary robotics emergence of a structure
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In practice: bootstrap

I All initial (random) individuals are just incompetent

I Fitness landscape: Needle in the Haystack ? (doesn’t work)

I Start with something simple

I Switch to more complex during evolution

I Example: visual recognition
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2. Objective, foll’d

I Fonctional vs behavioral
state of controller vs distance walked

I Implicit vs explicit
Survival vs Distance to socket

I Internal vs external information
Sensors, ground truth

I Co-evolution: e.g. predator/prey
performance depends on the other robots

State of art

I Standard: function, explicit, external variables

I In-situ: behavioral, implicit, internal variables

I Interactive: behavioral, explicit, external variables
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2. Objective, foll’d
Fitness shaping

I Obstacle avoidance

I Obstacle avoidance, and move !

I Obstacle avoidance, and (non circular) move !!

Finally Floreano Nolfi 2000

F =

∫
Texp.

V (1−
√

∆v)(1− i)

I V sum of wheel speed ri ∈ [−0.5, 0.5]
→ move

I ∆v = |r1 + r2|
→ ahead

I i maximum (normalised) of sensor values
→ obstacle avoidance

Behavioral, internal variables, explicit33



Result analysis

I First generations
I Most rotate
I Best ones slowly go forward
I No obstacle avoidance
I Perf. depends on starting point

I After ≈ 20 gen.
I Obstacle avoidance
I No rotation

I Thereafter, gradually speed up
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Result analysis

I Max. speed 48mm/s (true max = 80)
Inertia, bad sensors

I Never stuck in a corner
contrary to Braitenberg

Going further

I Changing environment

I Changing robotic platform

I From simulation to real-world

Fast adaptation
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Explore and recharge

Not a reactive behavior

I Battery gets empty in 20s in
white zone

I recharges in black zone

I But no reward in black zone

36



Explore and recharge, 2

I A ground sensor
→ sees whether the ground is white or black

I 2 sensors passive mode
→ ambiant light

Search space: Elman network

I Optimize weights

I Recurrent NN, thus with
internal state

I Optimize in situ

37



Explore and recharge, 2

Performance

F =

∫
White zone

V (1− i)

I Lifetime requires a good recharge strategy

I V cumulative wheel speed ri ∈ [−0.5, 0.5]
→ move

I i maximum (normalised) of sensor values
→ obstacle avoidance

Behavioral, internal, explicit + implicit
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Result analysis

During evolution

Fitness (best and average) Lifetime

Inspecting best behavior
methods inspired from neurophysiology/ethology

Instrumenting the robot

Battery and motor state along lifetime
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Reality gap

I What if simulator does not reflect the robot
or the environment ?

I Optimizes the wrong function
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Reality gap, 2
Against in-situ

Finally
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Co-Evolution

Competitive co-evolution

I Goal: survival

I Model: predator-prey Lotka-Volterra

∂N1

∂t
= N1(r1 − b1N2),

∂N2

∂t
= N2(−r1 + b2N1)

I → population sizes oscillate

I Simulation: fixed population size, performance varies

I Fitness computed by turnament
global, random, with best individuals, . . .
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Predator-prey

Floreano et Nolfi, 97-99

I Predator: sees; is slow
RN 8+5 → 2 recurrent

I Prey: is blind; is twice as fast
RN 8 → 2 recurrent
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Fitness

I Round robin turnament, all predators and preys

I Stops when predator catches the prey (ad hoc sensor)

I .. or after 500 cycles, ≈ 50s

I performance (each) + = duration of turnament

Predators must minimize performance Preys must maximize
performance

Behavioral, implicit, internal/external
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First results

I First predators very bad

I Beware of the Red Queen ! Paredis 97

I The final best can be caught by previous best ones!
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Hall of fame

Intuition
Also compete with best ancestors
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Hall of fame, 2

Turnament among all individuals in all generations
Black ≡ predator wins, white ≡ prey wins

Ideal situation / Without Hall of Fame / With Hall of Fame

Final best are better than (almost) all ancestors.
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Carl Sims

Goal

I Evolve both morphology and controller

I using a grammar (oriented graph)

I Heavy computational cost
simulation, several days on Connection Machine – 65000 proc.

I Evolving locomotion (walk, swim, jump)

I and competitive co-evolution (catch an object)
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The creatures, Karl Sims

more ?
http://www.youtube.com/watch?v=JBgG VSP7f8
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Contexte

53



I. Getting motivated. Internal rewards

Delarboulas et al., PPSN 2010
Requirements

1. No simulation

2. On-board training
I Frugal (computation, memory)
I No ground truth

3. Providing “interesting results”
“Human − robot communication”

Goal: self-driven Robots : Defining instincts
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Starting from (almost) nothing

Robot ≡ a data stream

t → x [t] = (sensor [t],motor [t])

Trajectory = {x [t], t = 1 . . .T} Robot trajectory

Computing the quantity of information of the stream
Given x1, . . . xn, visited with frequency p1 . . . pn,

Entropy(trajectory) = −
n∑

i=1

pi log pi

Conjecture
Controller quality ∝ Quantity of information of the stream
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Building sensori-motor states

Avoiding trivial solutions...
If sensors and motors are continuous / high dimensional

I then all vectors x [t] are different

I then ∀i , pi = 1/T ; Entropy = log T

... requires generalization
From the sensori-motor stream sequence of points in IRd

to clusters sensori-motor states

Clusters in sensori-motor space (IR2)

Trajectory →
x1x2x3x1...
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Clustering

k-Means

1. Draw k points x [ti ]

2. Define a partition C in k subsets Ci Voronöı cells

Ci = {x/d(x , x [ti ]) < d(x , x [tj ]), j 6= i}

ε-Means

1. Init : C = {} Initial site list

2. For t = 1 to T loop on trajectory
I If d(x [t], C) > ε, C ← C ∪ {x [t]}
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Curiosity Instinct

Search space

I Neural Net, 1 hidden layer.

Definition

I Controller F + environment → Trajectory

I Apply Clustering on Trajectory

I For each Ci , compute its frequency pi

F(F ) = −
n∑

i=1

pi ∗ log(pi )
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Curiosity instinct: Maximizing Controller IQ

Properties

I Penalizes inaction: a single state → entropy = 0

I Robust w.r.t. sensor noise (outliers count for very little)

I Computable online, on-board (use ε-clustering)

I Evolvable onboard

Limitations: does not work if

I Environment too poor
(in desert, a single state → entropy = 0)

I Environment too rich
(if all states are distinct, Fitness(controller) = log T )

both under and over-stimulation are counter-effective.
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From curiosity to discovery

Intuition

I An individual learns sensori-motor states (x [ti ] center of Ci )

I The SMSs can be transmitted to offspring

I giving the offspring an access to “history”

I The offspring can try to “make something different”

fitness(offspring) = Entropy(Trajectory(ancestors
⋃

offspring))

NB: does not require to keep the trajectory of all ancestors.
One only needs to store {Ci , ni}
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From curiosity to discovery

Cultural evolution transmits genome + “culture”

1. parent = (controller genome, (C1, n1), . . . (CK , nK ))

2. Perturb parent controller → offspring controller

3. Run the offspring controller and record x [1], . . . x [T ]

4. Run ε-clustering variant.

Fitness(offspring) = −
∑̀
i=1

pi log pi
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ε-clustering variant

Algorithm

1. Init : C = {(C1, n1), . . . (CK , nK ))} Initial site list

2. For t = 1 to T loop on trajectory
I If d(x [t], C) > ε, C ← C ∪ {x [t]}

3. Define pi = ni/
∑

j nj

Fitness(offspring) = −
∑̀
i=1

pi log pi
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Validation

Experimental setting
Robot = Cortex M3, 8 infra-red sensors, 2 motors.
Controller space = ML Perceptron, 10 hidden neurons.

Medium and Hard Arenas
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Validation, 2

Plot points in hard arena visited 10 times or more by the 100
best individuals.

PPSN 2010
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Partial conclusions

Entropy-minimization

I computable on-board;
no need of prior knowledge/ground truth

I yields “interesting” behavior

I needs stimulating environment

See also

I Robust Intrinsic Motivation
Baranes & Oudeyer 05,07; Oudeyer, NIPS 2012
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Reinforcement Learning and Rewards

Sutton Barto 1998

Prior knowledge in RL

I In the form of a Reward function R : S ×A 7→ R
I Find Policy π Maximizing E

[∑∞
t=0 γ

tR
(
st , π(st)

)]

Bottlenecks

I Rewards ≡ ground truth challenges in-situ
I In a swarm context R can be

I Centralized: R : (S ×A)× · · · × (S ×A) 7→ R
(global vision, tractability issues)

I Decentralized: R1 : (S ×A) 7→ R, . . . ,RN : (S ×A) 7→ R
I Tractable: Every robot optimize its own reward
I Trials and Errors process to tune it
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Inverse Reinforcement Learning?

Ng Russell 00, Abbeel Ng 04, Kolter et al. 07, ..

Prior knowledge in Inverse Reinforcement Learning

I Expert demonstrates a good behavior {st , at , st+1}

Abbeel & Ng 04

I From this, learn a reward function R

∀a 6= at ,Action Value(st , at) ≥ Action Value(st , a)

I Then apply standard RL!
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What if no idea about a good behavior

Alan Winfield & Wenguo Liu 08

each point is a robot
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Preference-based Policy Learning

Step 1: use expert’s feedback to learn the goal (PPL)
Akrour et al. 2011

I Prior knowledge: pairwise preferences over behaviors

I Expert become a critic instead of a performer
I Iterate

I Agents: Demonstrate a behavior
I Expert: Compare behavior with previous ones (better/worse)
I Agents: Optimize expert preferences model + exploration

term

Step 2: reduce expert’s burden (APRIL) Akrour et al. 2012

I A hundred of demonstrations to find a satisfying π in our
exp.

I How can we reduce ”Expert Sample Complexity”?

I Active Learning!?
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Step 1. Preference-based Policy Learning

1. Demonstrate two policies

2. Ask the user her preference

3. Train a preference model J t SVM ranking

4. Self-train: find a policy π maximizing Jt
5. ... +αt Novelty adaptive exploration wrt archive

6. Demonstrate π, iterate

I αt increases when success
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Which space ?

Environment helps!

I Parametric Representation
policy π in IRD NN weight vector

I Behavioral Representation
π → trajectory → histogram of sensorimotor states IRd

Comments

I Expert interested in robot behavior (not in NN weights)

I Mapping IRD 7→ IRd non Lipschitz
small variations in IRD → large variations in IRd

→ Learn the expert’s preference model in IRd
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Modelling the expert’s preferences

Akrour et al., 2011

A system of values V

I For i-th sensorimotor state, a weight v [i ]

I Map π onto its sms histogram pπ[i ] 1 . . . d

V (π) = 〈v , pπ〉

Rank-based learning Joachims 05

Given π(1) ≺ . . . ≺ π(k), minimize

1

2
||w ||2

subject to

〈w , p`π〉 < 〈w , p`+1
π 〉+ 1 ` = 1 . . . k − 1
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Validation

Getting out of a maze

Comments

I PPLd reaches the goal after 39 interactions (saves 3/4
interactions)

I PPLD inefficient; Novelty search (Stanley 2010) inefficient.
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Validation, 2

Coordinated exploration of an arena
Two independent robots, operated with same controller; goal is to
maximize the number of zones simultaneously visited by both
robots.
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Validation, cont’d

Comments

I More challenging goal
no visual primitive (see other robot, see an obstacle

I PPLd efficient (saves 9/10 interactions)

I PPLD inefficient; Novelty search (Stanley 2010) very
inefficient (large search space).
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Step 2. Active Preference-based Reinforcement
Learning
Why an active component

What if we choose u = arg max Jw (u)?

I Does not favor discovery of novel sensori-motor states

I No notion of Information Gain

Proposal
Select u maximizing Expected Utility of Selection ( EUS) of
candidate u w.r.t Ut Viappiani & Boutilier 10
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Implementation

EUS Intractable (in practice, dim(u) > 1000)

Version space of consistent estimates

I All preference constraints
define a version space

I A candidate behavior u
splits the VS in two

I w + and w− solution of the
associated ranking problem

Approximated Expected Utility of Selection

AEUS(u;Ut) =
〈w +,u〉

F +
+
〈w−,u∗t 〉

F−

Policy selection criteria

πt = arg max
π

Eu∼π[AEUS(u)]
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APRIL Algorithm

I π0 ← random

I u0 = demonstration of π0

I Archive U0 = {u0}
I FORt = 0→ T (while Expert cooperates)

(R) Select πt+1 = arg max{IEu∼π[AEUS(u;Ut)]}
(R) Demonstrate ut+1 from policy πt+1 to the expert
(E) Expert ranks ut+1 and archive Ut is updated.

ENDFOR
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Experimental Validation of AEUS
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d = 50 d = 100

I Sample w∗ ∈ d-dimensional
L2-unit-sphere

I S = {u1, . . . u1000} sampled unif.
from L1-unit-sphere

I Find arg maxu∈S 〈w∗, u〉 using
minimal number of pairwise
comparisons

I Compare AEUS with SEUS
(SEUS = sample 10,000 w in
the VS to approx. EUS)

I Result: AEUS matches closely
SEUS !
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Policy Learning Tasks
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APRIL vs IRL on Cancer problem APRIL vs IRL on Mountain Car APRIL vs PPL on Cancer problem

APRIL vs IRL

I Two RL benchmarks: Mountain Car and Cancer Treatment

I What’s the cost of not having a demonstration as input?

I 15 pairwise comparisons!

APRIL vs PPL

I Huge gain compared to non-active variant
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Relaxing Expertise Requirements
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The art of programming

1970s Specifications Languages & thm proving

1990s Programming by Examples Pattern recognition & ML

2010s Interactive Learning and Optimization
I Optimizing coffee taste Herdy, 96
I Visual rendering Brochu et al., 10
I Choice query Viappiani et al., 10
I Information retrieval Joachims et al., 12
I Robotics

Akrour et al., 12; Wilson et al., 12; Knox et al. 13; Saxena et al

13

ICML 14, Active Detection via Adaptive Submodularity, Chen et al.
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Programming by feedback

Knowledge-constrained Computation, memory-constrained

1. Computer presents the expert with a pair of behaviors yt1 , yt2

2. Expert emits preferences yt1 � yt2

3. Computer learns expert’s utility function

4. Computer searches for behaviors with best utility

5. Goto 1
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Relaxing Expertise Requirements: The RL trend

Expert

I Associates a reward to each state RL

I Demonstrates a (nearly) optimal behavior Inverse RL

I Compares and revises agent demonstrations Co-active PL

I Compares demonstrations Preference PL, PF

Ex-
per-
tise
↘

Agent

I Computes optimal policy based on rewards RL

I Imitates verbatim expert’s demonstration IRL

I Imitates and modifies IRL

I Learns the expert’s utility IRL, CPL

I Learns, and selects demonstrations CPL, PPL, PF

I Accounts for the expert’s mistakes PF

Au-
ton-
omy
↗
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Programming by feedback

Lessons learned from early work

I Asks few preference queries
Not active preference learning: Sequential model-based optimization

I Accounts for preference noise
I Expert changes his mind
I Expert makes mistakes
I ...especially at the beginning

An alternative Wilson et al., 2012

I Agent demonstrates sub-behaviors

I Demonstrations start in interesting starting points ∼ π∗

86



Formal setting

X Search space, solution space controllers, IRD

Y Evaluation space, behavior space trajectories, IRd

Φ : X 7→ Y

Utility function

U∗ Y 7→ IR U∗(y) = 〈w∗, y〉 behavior space
U∗X X 7→ IR U∗X (x) = IEy∼Φ(X )[U∗(y)] search space

Requisites

I Evaluation space: simple to learn from few queries

I Search space: sufficiently expressive
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Programming by Feedback

Ingredients

I Modelling the expert’s competence

I Learning the expert’s utility

I Selecting the next best behaviors
I Which optimization criterion
I How to optimize it
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Modelling the expert’s competence

Noise model δ ∼ U[0,M]
Given preference margin z = 〈w∗, y− y′〉

P(y ≺ y′ | w∗, δ) =


0 if z < −δ
1 if z > δ
1+z

2 otherwise

Prob of error

1/2

 delta−delta

Preference margin Z
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Learning the expert’s utility function

Data Ut = {y0, y1, . . . ; (yi1 � yi2), i = 1 . . . t}
I trajectories yi
I preferences yi1 � yi2

Learning: find θt posterior on W W = linear fns on Y

Proposition: Given Ut ,

θt(w) ∝
∏

i=1,t P(yi1 � yi2 | w)

=
∏

i=1,t

(
1
2 + wi

2M

(
1 + log M

|wi |

))
with wi = 〈w, yi1 − yi2〉, capped to [−M,M].

Ut(y) = IEw∼θt [〈w, y〉]
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Best demonstration pair (y , y ′)
inspiration, Viappiani Boutilier, 10

EUS: Expected utility of selection (greedy)

EUS(y, y′) = IEθt [〈w, y − y ′〉 > 0] . Uw∼θt ,y>y ′(y)
+ IEθt [〈w, y − y ′〉 < 0] . Uw∼θt ,y<y ′(y′)

EPU: Expected posterior utility (lookahead)

EPU(y, y′) = IEθt [〈w, y − y ′〉 > 0] . maxy“Uw∼θt ,y>y ′(y′′)
+ IEθt [〈w, y − y ′〉 < 0] . maxy“Uw∼θt ,y<y ′(y′′)

= IEθt [〈w, y − y ′〉 > 0] . Uw∼θt ,y>y ′(y∗)
+ IEθt [〈w, y − y ′〉 < 0] . Uw∼θt ,y<y ′(y′∗)

Therefore
argmax EPU(y, y′) ≤ argmax EUS(y, y′)
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Optimization in demonstration space

NL: noiseless N: noisy

Proposition

EUSNL(y, y′)− L ≤ EUSN(y, y′) ≤ EUSNL(y, y′)

Proposition

max EUSNL
t (y, y′)− L ≤ max EPUN

t (y, y′) ≤ max EUSNL
t (y, y′) + L

Limited loss incurred (L ∼ M
20 )
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Optimization in solution space

1. Find best y, y′ → Find best y
to be compared to best behavior so far y∗t

The game of hot and cold

2. Expectation of behavior utility → utility of expected
behavior
Given the mapping Φ: search 7→ demonstration space,

IEΦ[EUSNL(Φ(x), y∗t )] ≥ EUSNL(IEΦ[Φ(x)], y∗t )

3. Iterative solution optimization

I Draw w0 ∼ θt and let x1 = argmax {〈w0, IEΦ[Φ(x)]〉}
I Iteratively, find xi+1 = argmax {〈IEθi [w], IEΦ[Φ(x)]〉}, with θi

posterior to IEΦ[Φ(xi )] > y∗t .

Proposition. The sequence monotonically converges toward a
local optimum of EUSNL
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Experimental validation

I Sensitivity to expert competence
Simulated expert, grid world

I Continuous case, no generative model
The cartpole

I Continuous case, generative model
The bicycle

I Training in-situ
The Nao robot
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Sensitivity to simulated expert incompetence
Grid world: discrete case, no generative model
25 states, 5 actions, horizon 300, 50% transition motionless

ME Expert competence
MA > ME Computer estimate of expert’s competence
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a cumulative (dis)advantage phenomenon
The number of expert’s mistakes increases as the computer

underestimates the expert’s competence.

For low MA, the computer learns faster, submits more relevant demonstrations

to the expert, thus priming a virtuous educational process.
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Continuous Case, no Generative Model

The cartpole
State space IR2, 3 actions
Dem. space IR9, dem. length 3,000
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Two interactions required on average to solve the cartpole
problem.
No sensitivity to noise.
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Continuous Case, with Generative Model

The bicycle
Solution space IR210 (NN weight vector)
State space IR4, action space IR2, dem. length ≤ 30, 000.
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Optimization component: CMA-ES Hansen et al., 2001

15 interactions required on average to solve the problem for low
noise.
versus 20 queries, with discrete action in state of the art.
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Discussion and Perspectives

Feasibility of Programming by Feedback for simple tasks

An old research agenda

One could carry through the organization of an
intelligent machine with only two interfering inputs,
one for pleasure or reward, and the other for pain or
punishment.

Next

I Identifying the sub-behaviors responsible for the expert’s
like/dislikes (options)

I Accounting for the variance of Uy∼Φ(x)(y)
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