Reinforcement Learning

Michele Sebag ; TP : Herilalaina Rakotoarison
TAO, CNRS — INRIA — Université Paris-Sud

[]
universite

PARIS-SACLAY

Jan. 7th, 2019
Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

UNIVERSITE

~ S PARIS
Creia— P &5

U MONDE NUMERIQU

Where we are

MDP Main Building block

General settings

Model-based

Model-free

Finite | Dynamic Programming

Infinite (optimal control)

This course: Function approximation

Discrete RL

Continuous RL

2/4

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

«O0)>» «Fr «

it
v

1PN G4
3/41

Why function approximation ?

Exploration needed: in each state, try every action.
Impossible

» In continuous state space

sin(3x)
1 | | I | J

-0.4 -0.2 0 0.2 0.4 0.6

Why function approximation ?

Exploration needed: in each state, try every action.
Impossible

> In large finite state space

More Playing Atari with Deep Reinforcement Learning, Mnih et al., 2015.

https://www.cs.toronto.edu/ vmnih/docs/dqn.pdf

Learning or Optimizing the Value ?

A learning problem (1/2)

Notations
> State space S C R/
» Action space A
» Transition model p(s,a,s’) — [0, 1]
> Reward r(s) bounded

Goal
Build V:S— R

Remind: Supervised Machine Learning

E = {(xi,yi),x; € X (instance space) ,y; €) (label space) ,i=1...n}

» Classification: Y = {—1,1} or {1,...k}
» Regression) =R

A learning problem (2/2)

Assume we have the training set
E={(s,V*(s)),i=1...n}
Then
» Find a hypothesis space H

» Find an optimization criterion £ (data fitting)

» Solve the optimization problem

V* = arg opt[L(V)]
VeH

8/41

A learning problem (2/2)

Assume we have the training set
E={(s,V*(s)),i=1...n}
Then
» Find a hypothesis space H

» Find an optimization criterion £ (data fitting + regularization)

» Solve the optimization problem

V* = arg opt[L(V)]
VeH

8/41

Not a standard learning problem (1/2)

Standard supervised ML criteria

n

LV)=3"(V*(si) — V(s:))* + R(V)

i=1

Minimize the average error.

But

In RL, one error is enough to lose the game... to fall down from the cliff...

kill the robot...

to

Not a standard learning problem (1/2)
Standard supervised ML criteria
* 2
LV)= (V'(s) = V(1)) + R(V)
Minimize the average error with respect to independent identically distributed

Si.

But
A wrong move, or the transition error can send you off the road... and then the

error might be cumulative.

Optimizing a pseudo-value: TD-Gammon, 1

14 15 16 1
r1

l

12 11 10 9

The game of Backgammon Gerald Tesauro, 89-95

> State: vector of handcrafted features (e.g., number of White or Black
checkers at each location) S CcRP

» Data: set of games

> A game: sequence of states xi,...xr7

11/41

TD-Gammon, 2.

Where does the value come from ?

Assumptions
o= .5 value of initial state
1 if x7 is a winning state

if xr is a losing state
And for other states ?

Value is supposed to be continuous

12/41

TD-Gammon, 3. Learning the value

Search space H Neural Nets W, weight vector in RY

Learning criterion

Minimize (V(x7) —yr)*+ > (V(xe) = V(xe41)?
‘
Learning procedure: weight update

Aw = a(V(xe+1) — V(%)) Z N,V (k)

k=1

Learning by Self-play: lteratively, 200,000 games
» Play using V; as value function
> Use games to retrain weight vector W;

» Increment i

13 /41

Example: TD-Gammon Tesauro, 1992-1995

T E—
__—
L:>

) ——

Y v
A A

=

466000 estimated state value
R — . f . .
- (= prob of winning)

. se—

= Action selection

S = by a shallow search
=

Start with a random Network

Play millions of games against itself
Learn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions

Approximating Value (gradient)

15 /41

Finding a representation

Using basis functions

(;51 . ¢K :S— R
> Usually ¢ are normalized,

Fuzzy memberships

Radius-basis functions

And then, back to Dynamic Programming.

16 /41

RoboCup soccer keepaway
Stone, Sutton & Kuhlmann, 2005

Random

Learned

Hand-coded

Ntone. Sutton & Kuhlmann., 200

How Is the state encoded?
In 13 continuous state variables

11 distances among
the players, ball,
and the center of
the field

2 angles to takers
along passing lanes

The Feature-Construction Pipeline

N "
- , > ACTIon

Sparse, coarse, |. Linear > val
tile coding .| map 6 , values

/13con‘rinuous
state variables B

Huge binary feature vector
(about 400 1's and 40,000 O's)

Full
soccer

Parametric action-value function

Find
v(s,0) = V*(s)

q(s,a,0) = Q(s, a)

Search spaces

> Linear approximation: (many) handcrafted features, and then find linear
weights

» NN approximation Deep Reinforcement Learning

What matters
> Linear Learning complexity required to scale up to large problems
» Self-play to acquire examples in critical regions

> Online learning; dealing with non-stationary target value function

21/41

Mean-square error, 1

Optimization problem

L) = (v(s,0) = V'(s))’

seS

Any difficulties with this formulation ?

22 /41

Mean-square error, 1

Optimization problem

L) =Y P(s) (v(s,0) = V*(s))’

seS

22 /41

Mean-square error, 1

Optimization problem

* 2
L(0) = P(s)(v(s,0) — V*(s))
seS
Why using distribution P ?
> v(s,0) is an approximation: it has to make errors
» Not all errors are equally harmful: harmful errors must weight more.

> P might reflect a uniform distribution;
or the distribution associated to the current policy = (on-policy learning);
or to another policy used to acquire data (off-policy learning)

» Most generally, a new point (s¢, Vi(s:)) is drawn and 0, is updated using
stochastic gradient.

Mean-square error, 2

0t+1 = 9t — %ant (Vt(st) — V(S, Gt))2

=0: + o (Vi(st) — v(s,0t)) . Vo, v(s, 0:)
Requirements
> v(s,0:) must be an unbiased estimate of the desired V;(s:).
> not the case in general (except for Monte-Carlo); but practical.
» The approximation of the value function must allow for optimization, to

define the policy by greedification:

#(s) = argmax(4(s, 2,67))
acA

23 /41

Learning Criteria

Notations

» For state s, push value toward backed-up value v

Backed-up value
Dynamic programming

s— E[r(s) +yV(s)]
Monte-Carlo

.
s r(s)+ Z’ytrt

=1
TD(0)
se = r(se) + yV(st41)

24 /41

Learning Criteria

Dynamic programming

s— E[r(s) +yV(s)]

Learning Criteria

-
s r(s)+ nytrt

t=1

Monte-Carlo

s
: @

26 /41

Learning Criteria

st = r(st) + 7V (se1)

Temporal Difference

27 /41

Semi-gradient Q-learning

Watkins 89
Loss function Bellman optimality equation

2

LO)=E || R+1+7~y max q(St+1,3,0) —q(S¢, Ae, 0)

target value

> target depends on 6, let us ignore this and

> only take the derivative wrt g(St, As, 6):

aq(si‘v Ata Gf)

Al = (Rtﬂ + max q(St+1,a,0:) — q(Se, A, 0t)) - 90,

28 /41

Semi-gradient SARSA

Sutton 89, Rummery 94
Loss function Bellman expectation equation

2

L(O)=E Rev1 + vq(Ses1, Aes1,0) —q(St, A, 0)

target value

> again target depends on 6 and we ignore this,
» taking the derivative wrt q(S:, A¢, 0):

8q(Sfa Afa at)

A0y = (Ret1 +vq(Ser1, Avs1,0:) — q(Se, A, 0:)) - 90
t

Remark
» This is an on-policy algorithm: it approximates g™ not Q™.
» Therefore 7 should incorporate some exploration (be e-greedy)

https://www.youtube.com /watch?v=ggqnxyjaKe4: on-policy performs better
but finds poorer policies. (next slide).

29 /41

Cliff-walking example (on-policy vs off-policy)

Actions

S

T h e

Cliff

0,

safe path

optimal path

Cliff-walking example (on-policy vs off-policy)

- safe path

- optimal path

S

The Cliff G

v/

Sarsa (on-policy)

M both algorithms
are e— d
f /\M \d&u\/ V\J \/V\”V\ /N | e EmIeedy

% £=0.1
Q-learning (off-policy) .

~25-
Reward _s0-
per
epsiode
~75-
~100
0

| | 1 |
100 200 300 400 500
Episodes

Approximating Value (decision tree)

32 /41

Fitted Q iteration

Ernst et al. 2005
Principle iterating over the time horizon
» Given a set of four-tuples (s, a,r,s’)
> First iteration:
G1(s,a) = r(s, a)

> iteration N:
Gn(st, ar) & r(se, ar) +v max Go-1(st+1, a)
acA

> Successive calls to the supervised learning algorithm are independent:
possible to adapt the resolution/complexity depending on the iteration and
the available sample.
Search space: Decision trees
» Non parametric; flexible
» Scalability wrt high-dimensional spaces

» Robustness wrt irrelevant features, noise, outliers.

33/41

Trees in Fitted Q iteration
Decision tree Quinlan 89; Breiman 86

» Select cutting feature and cutting threshold to maximize the average
variance reduction of the output variable

> Select hyper-parameter (min number of examples in a leaf) by
cross-validation

Bagged trees Breiman 96
> M times M hyper-parameter
» Bootstrap the training set
» Grow a decision tree from the bootstrapped data

KD-tree
> In each node at depth d: cutting feature is i-th feature if d < # features
> cutting threshold: median of the f; value in the training set
> (does it change among iterations ?)

Random Forests Breiman 01; Geurts 04
> Like Bagged trees, except

» Sample a number K of (cutting feature, cutting threshold), return the
best one

34/41

Trees in Fitted Q iteration, 2

Note / a leaf in a tree

qa(s,a) = > k(s,a, (/)

trees |
with
l(s,a)el

k(s,a,l) = —— 2L
() i L anel

Property
118n(s, a)lleo < B+ 7[[Gn-1(s,a)l|o

with go(s,a) = 0.

Therefore B
An [e'e] < P
lan(s,a)lle < 7=

with B a bound on the reward.

35/41

The RiverSwim

The problem

i, +w,
Reward\ —
50 L L
\ /0 Xy X+l 10
11 states (0,1,...10)
2 actions, right or left
rewards on terminal states 0 or 10.
The results
1. Bellman residuals wrt number #F of 4-tuples.
Tree-based #T
method 720 | 2010 | 6251
Pruned CART Tree 262|196 | 1.29
Pruned Kd-Tree 194 | 1.31 | 0.76
Pruned Tree Bagging 1.61 | 0.79 | 0.67
Pruned Extra-Trees 1.29 | 0.60 | 0.49
Pruned Tot. Rand. Trees | 1.55 | 0.72 | 0.59

2. But the score is about the same for all methods

Ernst et al, 05

Reward
=100

36

4

The Acrobot

Ernst et al, 05
The problem

state in R*: (6‘1,92,0'1,0.2)
action: torque u =-5o0r 5
reward: distance to up-equilibrium position, if < 1 (then terminates)

37/41

The Acrobot

The results
#JF = 150,000 tuples
1. The return
il

M

.03

| &
(03 %
1f

a0

|
ool | A

Extra-Trees

Tree Bagging

.||‘7 Totally Randomized Trees

[a0

2. Comparative performances

% ar

Tree-based Policy which generates F
method e-greedy Random
Pruned CART Tree | 0.0006 0.
Kd-Tree (Best fin) | 0.0004 0.
Tree Bagging 0.0417 0.0047
Extra-Trees .0447 0.0107
Totally Rand. Trees | 0.0371 0.0071

38/41

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

«O0)>» «Fr «

it
v

1PN G4
39/41

Function approximation for RL: Summary

Goal
Learn an approximation ¥ of the value function; define & from v

Ingredients
» Data
> Learning criterion

> Learning procedure

40 /41

Function approximation for RL: Summary

Goal
Learn an approximation ¥ of the value function; define & from v

Ingredients
» Data off-line; online
> Learning criterion

> Learning procedure

40 /41

Function approximation for RL: Summary

Goal
Learn an approximation ¥ of the value function; define & from v

Ingredients
» Data off-line; online
> Learning criterion data fitting; Bellman residual

> Learning procedure

40 /41

Function approximation for RL: Summary

Goal
Learn an approximation ¥ of the value function; define & from v

Ingredients
» Data off-line; online
> Learning criterion data fitting; Bellman residual

» Learning procedure knn; decision trees; gradient (linear or NN)

40 /41

Function approximation for RL: Summary, 2

Comments

1. Required to scale up
2. Pitfalls:

> Sufficient representation needed (if large representation, robust learning
required, e.g. decision trees)

> Self-play / replay mandatory

> A further stage of optimization is required to define 7

> Pathologies: gradient can blow up (see Fig. 8.13, Sutton Barto)

41/41

Function approximation for RL: Summary, 2

Comments

1. Required to scale up
2. Pitfalls:
> Sufficient representation needed (if large representation, robust learning
required, e.g. decision trees)
> Self-play / replay mandatory
> A further stage of optimization is required to define 7
> Pathologies: gradient can blow up (see Fig. 8.13, Sutton Barto)

After all

» Value is a means for building a policy

» Can we build the policy directly ? next course

41/41

