
Reinforcement Learning

Michèle Sebag ; TP : Herilalaina Rakotoarison
TAO, CNRS − INRIA − Université Paris-Sud

Jan. 7th, 2019
Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

1 / 41

Where we are

MDP Main Building block

General settings

Model-based Model-free

Finite Dynamic Programming Discrete RL

Infinite (optimal control) Continuous RL

This course: Function approximation

2 / 41

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

3 / 41

Why function approximation ?
Exploration needed: in each state, try every action.
Impossible

I In continuous state space

4 / 41

Why function approximation ?

Exploration needed: in each state, try every action.
Impossible

I In large finite state space

More Playing Atari with Deep Reinforcement Learning, Mnih et al., 2015.
https://www.cs.toronto.edu/ vmnih/docs/dqn.pdf

5 / 41

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

6 / 41

A learning problem (1/2)

Notations

I State space S ⊂ IRd

I Action space A
I Transition model p(s, a, s ′) 7→ [0, 1]

I Reward r(s) bounded

Goal
Build V : S 7→ IR

Remind: Supervised Machine Learning

E = {(xi , yi), xi ∈ X (instance space) , yi ∈ Y (label space) , i = 1 . . . n}

I Classification: Y = {−1, 1} or {1, . . . k}
I Regression Y = IR

7 / 41

A learning problem (2/2)

Assume we have the training set

E = {(si ,V ∗(si)), i = 1 . . . n}

Then

I Find a hypothesis space H
I Find an optimization criterion L (data fitting)

I Solve the optimization problem

V̂ ∗ = arg opt
V∈H

[L(V)]

8 / 41

A learning problem (2/2)

Assume we have the training set

E = {(si ,V ∗(si)), i = 1 . . . n}

Then

I Find a hypothesis space H
I Find an optimization criterion L (data fitting + regularization)

I Solve the optimization problem

V̂ ∗ = arg opt
V∈H

[L(V)]

8 / 41

Not a standard learning problem (1/2)

Standard supervised ML criteria

L(V) =
n∑

i=1

(V ∗(si)− V (si))
2

+R(V)

Minimize the average error.

But
In RL, one error is enough to lose the game... to fall down from the cliff... to
kill the robot...

9 / 41

Not a standard learning problem (1/2)

Standard supervised ML criteria

L(V) =
∑
i

(V ∗(si)− V (si))
2

+R(V)

Minimize the average error with respect to independent identically distributed
si .

But
A wrong move, or the transition error can send you off the road... and then the
error might be cumulative.

10 / 41

Optimizing a pseudo-value: TD-Gammon, 1

The game of Backgammon Gerald Tesauro, 89-95

I State: vector of handcrafted features (e.g., number of White or Black
checkers at each location) S ⊂ IRD

I Data: set of games

I A game: sequence of states x1, . . . xT

11 / 41

TD-Gammon, 2. Where does the value come from ?

Assumptions

y0 = .5 value of initial state

yT =

{
1 if xT is a winning state
0 if xT is a losing state

And for other states ?
Value is supposed to be continuous

12 / 41

TD-Gammon, 3. Learning the value

Search space H Neural Nets W , weight vector in IRd

Learning criterion

Minimize (V (xT)− yT)2 +
∑
`

(V (x`)− V (x`+1)2

Learning procedure: weight update

∆w = α (V (x`+1)− V (x`))
∑̀
k=1

λ`−k∇wV (xk)

Learning by Self-play: Iteratively, 200,000 games

I Play using Vi as value function

I Use games to retrain weight vector Wi

I Increment i

13 / 41

Example: TD Gammon

 B
bar 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 W

bar

V(s, w)

w

s

Example: TD-Gammon Tesauro, 1992-1995

Start with a random Network

Play millions of games against itself

Learn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions

estimated state value
(≈ prob of winning)

Action selection
by a shallow search

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

15 / 41

Finding a representation

Using basis functions
φ1 . . . φK : S 7→ IR

I Usually φ are normalized,
K∑
i=1

φ(s) = 1

Fuzzy memberships Radius-basis functions

And then, back to Dynamic Programming.

16 / 41

RoboCup soccer keepaway
Stone, Sutton & Kuhlmann, 2005

Learned

Random

Hand-coded

Hold

Stone, Sutton & Kuhlmann, 2005

13 Continuous State Variables
(for 3 vs 2)

11 distances among
the players, ball,
and the center of
the field

2 angles to takers
along passing lanes

How is the state encoded?
In 13 continuous state variables

RoboCup Feature Vectors

.

.
Sparse, coarse,

tile coding
Linear
map θ

...

...

.

.

.
Full

soccer
state

action
values

Huge binary feature vector
(about 400 1’s and 40,000 0’s)

13 continuous
state variables

r
φ s

The Feature-Construction Pipeline

Parametric action-value function

Find
v(s, θ) ≈ V ∗(s)

q(s, a, θ) ≈ Q∗(s, a)

Search spaces

I Linear approximation: (many) handcrafted features, and then find linear
weights

I NN approximation Deep Reinforcement Learning

What matters

I Linear Learning complexity required to scale up to large problems

I Self-play to acquire examples in critical regions

I Online learning; dealing with non-stationary target value function

21 / 41

Mean-square error, 1

Optimization problem

L(θ) =
∑
s∈S

(v(s, θ)− V ∗(s))
2

Any difficulties with this formulation ?

22 / 41

Mean-square error, 1

Optimization problem

L(θ) =
∑
s∈S

P(s) (v(s, θ)− V ∗(s))
2

22 / 41

Mean-square error, 1

Optimization problem

L(θ) =
∑
s∈S

P(s) (v(s, θ)− V ∗(s))
2

Why using distribution P ?

I v(s, θ) is an approximation: it has to make errors

I Not all errors are equally harmful: harmful errors must weight more.

I P might reflect a uniform distribution;
or the distribution associated to the current policy π (on-policy learning);
or to another policy used to acquire data (off-policy learning)

I Most generally, a new point (st ,Vt(st)) is drawn and θt is updated using
stochastic gradient.

22 / 41

Mean-square error, 2

θt+1 = θt − 1
2
α∇θt (Vt(st)− v(s, θt))2

= θt + α (Vt(st)− v(s, θt)) .∇θt v(s, θt)

Requirements

I v(s, θt) must be an unbiased estimate of the desired Vt(st).

I not the case in general (except for Monte-Carlo); but practical.

I The approximation of the value function must allow for optimization, to
define the policy by greedification:

π̂(s) = argmax
a∈A

(q̂(s, a, θ∗))

23 / 41

Learning Criteria

Notations

I For state s, push value toward backed-up value v s 7→ v

Backed-up value
Dynamic programming

s 7→ IE
[
r(s) + γV (s ′)

]
Monte-Carlo

s 7→ r(s) +
T∑
t=1

γtrt

TD(0)
st 7→ r(st) + γV (st+1)

24 / 41

Learning Criteria

s 7→ IE
[
r(s) + γV (s ′)

]
Dynamic programming

25 / 41

Learning Criteria

s 7→ r(s) +
T∑
t=1

γtrt

Monte-Carlo

26 / 41

Learning Criteria

st 7→ r(st) + γV (st+1)

Temporal Difference

27 / 41

Semi-gradient Q-learning

Watkins 89

Loss function Bellman optimality equation

L(θ) = IE


Rt+1 + γ max

a∈A
q(St+1, a, θ)︸ ︷︷ ︸

target value

−q(St ,At , θ)


2

I target depends on θ, let us ignore this and

I only take the derivative wrt q(St ,At , θ):

∆θt =

(
Rt+1 + γ max

a∈A
q(St+1, a, θt)− q(St ,At , θt)

)
.
∂q(St ,At , θt)

∂θt

28 / 41

Semi-gradient SARSA

Sutton 89, Rummery 94

Loss function Bellman expectation equation

L(θ) = IE


Rt+1 + γq(St+1,At+1, θ)︸ ︷︷ ︸

target value

−q(St ,At , θ)


2

I again target depends on θ and we ignore this,

I taking the derivative wrt q(St ,At , θ):

∆θt = (Rt+1 + γq(St+1,At+1, θt)− q(St ,At , θt)) .
∂q(St ,At , θt)

∂θt

Remark

I This is an on-policy algorithm: it approximates qπ not Q∗.

I Therefore π should incorporate some exploration (be ε-greedy)

https://www.youtube.com/watch?v=ggqnxyjaKe4: on-policy performs better
but finds poorer policies. (next slide).

29 / 41

Cliff-walking example (on-policy vs off-policy)

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

R

R

66 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)
Figure 3.5: Grid example: exceptional reward dynamics (left) and state-value function for
the equiprobable random policy (right).

except those that move the agent out of the special states A and B. From state A,
all four actions yield a reward of +10 and take the agent to A0. From state B, all
actions yield a reward of +5 and take the agent to B0.

Suppose the agent selects all four actions with equal probability in all states.
Figure 3.5b shows the value function, v⇡, for this policy, for the discounted reward
case with � = 0.9. This value function was computed by solving the system of
equations (3.12). Notice the negative values near the lower edge; these are the result
of the high probability of hitting the edge of the grid there under the random policy.
State A is the best state to be in under this policy, but its expected return is less
than 10, its immediate reward, because from A the agent is taken to A0, from which
it is likely to run into the edge of the grid. State B, on the other hand, is valued
more than 5, its immediate reward, because from B the agent is taken to B0, which
has a positive value. From B0 the expected penalty (negative reward) for possibly
running into an edge is more than compensated for by the expected gain for possibly
stumbling onto A or B.

Example 3.9: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of �1 for each stroke until we hit the
ball into the hole. The state is the location of the ball. The value of a state is the
negative of the number of strokes to the hole from that location. Our actions are
how we aim and swing at the ball, of course, and which club we select. Let us take
the former as given and consider just the choice of club, which we assume is either a
putter or a driver. The upper part of Figure 3.6 shows a possible state-value function,
vputt(s), for the policy that always uses the putter. The terminal state in-the-hole
has a value of 0. From anywhere on the green we assume we can make a putt; these
states have value �1. O↵ the green we cannot reach the hole by putting, and the
value is greater. If we can reach the green from a state by putting, then that state
must have value one less than the green’s value, that is, �2. For simplicity, let us
assume we can putt very precisely and deterministically, but with a limited range.
This gives us the sharp contour line labeled �2 in the figure; all locations between
that line and the green require exactly two strokes to complete the hole. Similarly,
any location within putting range of the �2 contour line must have a value of �3,
and so on to get all the contour lines shown in the figure. Putting doesn’t get us
out of sand traps, so they have a value of �1. Overall, it takes us six strokes to get
from the tee to the hole by putting.

Cliff-walking example (on-policy vs off-policy)

both algorithms
are ε−greedy

ε = 0.1

R

R

(on-policy)

(off-policy)

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

32 / 41

Fitted Q iteration

Ernst et al. 2005

Principle iterating over the time horizon

I Given a set of four-tuples (s, a, r , s ′)

I First iteration:
q̂1(s, a) ≈ r(s, a)

I iteration N:

q̂n(st , at) ≈ r(st , at) + γ max
a∈A

q̂n−1(st+1, a)

I Successive calls to the supervised learning algorithm are independent:
possible to adapt the resolution/complexity depending on the iteration and
the available sample.

Search space: Decision trees

I Non parametric; flexible

I Scalability wrt high-dimensional spaces

I Robustness wrt irrelevant features, noise, outliers.

33 / 41

Trees in Fitted Q iteration
Decision tree Quinlan 89; Breiman 86

I Select cutting feature and cutting threshold to maximize the average
variance reduction of the output variable

I Select hyper-parameter (min number of examples in a leaf) by
cross-validation

Bagged trees Breiman 96

I M times M hyper-parameter
I Bootstrap the training set
I Grow a decision tree from the bootstrapped data

KD-tree
I In each node at depth d : cutting feature is i-th feature if d < # features
I cutting threshold: median of the fi value in the training set
I (does it change among iterations ?)

Random Forests Breiman 01; Geurts 04

I Like Bagged trees, except
I Sample a number K of (cutting feature, cutting threshold), return the

best one
34 / 41

Trees in Fitted Q iteration, 2

Note I a leaf in a tree

q(s, a) =
∑
trees

∑
I

k(s, a, I)v(I)

with

k(s, a, I) =
1(s,a)∈I∑
i 1(si ,ai)∈I

Property
||q̂n(s, a)||∞ ≤ B + γ||q̂n−1(s, a)||∞

with q̂0(s, a) = 0.
Therefore

||q̂n(s, a)||∞ ≤
B

1− γ
with B a bound on the reward.

35 / 41

The RiverSwim

Ernst et al, 05

The problem

11 states (0, 1, . . . 10)
2 actions, right or left
rewards on terminal states 0 or 10.

The results
1. Bellman residuals wrt number #F of 4-tuples.

2. But the score is about the same for all methods
36 / 41

The Acrobot

Ernst et al, 05

The problem

state in IR4: (θ1, θ2, θ̇1, θ̇2)
action: torque u = -5 or 5
reward: distance to up-equilibrium position, if < 1 (then terminates)

37 / 41

The Acrobot

The results
#F ≈ 150,000 tuples
1. The return

2. Comparative performances

38 / 41

When

Learning or Optimizing the Value ?

Approximating Value (gradient)

Approximating Value (decision tree)

Summary

39 / 41

Function approximation for RL: Summary

Goal
Learn an approximation v̂ of the value function; define π̂ from v̂

Ingredients

I Data

I Learning criterion

I Learning procedure

40 / 41

Function approximation for RL: Summary

Goal
Learn an approximation v̂ of the value function; define π̂ from v̂

Ingredients

I Data off-line; online

I Learning criterion

I Learning procedure

40 / 41

Function approximation for RL: Summary

Goal
Learn an approximation v̂ of the value function; define π̂ from v̂

Ingredients

I Data off-line; online

I Learning criterion data fitting; Bellman residual

I Learning procedure

40 / 41

Function approximation for RL: Summary

Goal
Learn an approximation v̂ of the value function; define π̂ from v̂

Ingredients

I Data off-line; online

I Learning criterion data fitting; Bellman residual

I Learning procedure knn; decision trees; gradient (linear or NN)

40 / 41

Function approximation for RL: Summary, 2

Comments

1. Required to scale up

2. Pitfalls:
I Sufficient representation needed (if large representation, robust learning

required, e.g. decision trees)
I Self-play / replay mandatory
I A further stage of optimization is required to define π̂

I Pathologies: gradient can blow up (see Fig. 8.13, Sutton Barto)

41 / 41

Function approximation for RL: Summary, 2

Comments

1. Required to scale up

2. Pitfalls:
I Sufficient representation needed (if large representation, robust learning

required, e.g. decision trees)
I Self-play / replay mandatory
I A further stage of optimization is required to define π̂

I Pathologies: gradient can blow up (see Fig. 8.13, Sutton Barto)

After all

I Value is a means for building a policy

I Can we build the policy directly ? next course

41 / 41

