Master Recherche IAC
Robots et agents autonomes

Jamal Atif — Michele Sebag
TAO
CNRS — INRIA — LRI, Université Paris-Sud

Dec. 21st, 2012

Overview

Introduction

Reinforcement Learning

Environment

Generalities
» An agent, spatially and temporally situated
» Stochastic and uncertain environment
» Goal: select an action in each time step,
> ... in order maximize expected cumulative reward over a time
horizon
What is learned ?
A policy = strategy = { state — action }

Reinforcement Learning

Context
An unknown world.
Some actions, in some states, bear rewards with some delay [with
some probability]

find policy (state — action)
maximizing the expected reward

Goal :

4 rooms
4 hallways

4 unreliable
primitive actions

up

Fail 339
of he ime

left right

down

B multi-step options
(io each room's 2 hall ways)

Given goal location,
quickly plan shortest route

Reinforcement Learning, example

World You are in state 34.
Your immediate reward is 3. You have 3 actions

Robot I'll take action 2

World You are in state 77
Your immediate reward is -7. You have 2 actions

Robot I'll take action 1
World You are in state 34 (again)

Markov Decision Property: actions/rewards only depend on the
current state.

Reinforcement Learning

Of several responses made to the same situation, those which are
accompanied or closely followed by satisfaction to the animal will
— others things being equal — be more firmly connected with the
situation, so that when it recurs, they will more likely to recur;

those which are accompanied or closely followed by discomfort to
the animal will — others things being equal — have their
connection with the situation weakened, so that when it recurs,
they will less likely to recur;

the greater the satisfaction or discomfort, the greater the

strengthening or weakening of the link.
Thorndike, 1911.

Formal background

Notations
» State space S
» Action space A
» Transition model p(s,a,s’) — [0, 1]

» Reward r(s)

Goal
» Find policy 7: S — A

Maximize E[n] = Expected cumulative reward

(detail later)

Applications

» Robotics
Navigation, football, walk,

> Games
Backgammon, Othello, Tetris, Go, ...

» Control

Helicopter, elevators, telecom, smart grids, manufacturing, ...

» Operation research
Transport, scheduling, ...

» Other Computer Human Interfaces, ...

Position of the problem

3 interleaved tasks

EXPERIMENT
» Learn a world model (p, r)

» Decide/select (the best) / \
action

» Explore the world OPTIMIZE ~——— LEARN

Sources
» Sutton & Barto, Reinforcement Learning, MIT Press, 1998
>

http://www.eecs.umich.edu/~baveja/NIPSO5RLTutorial/

10

Particular case

If the transition model is known
Reinforcement learning — Optimal control

11

What's hard

Curse of dimensionality

» State: features size, texture, color,
|S| exponential wrt number of features

> Not all features are always relevant

Example:

see

swann
swann
bear

white
black

take a video
flee

11

What's hard

Curse of dimensionality

> State: features size, texture, color,
|S| exponential wrt number of features

> Not all features are always relevant

see swann

Example: swann

bear

white
black

take a video
flee

Time horizon — Bounded rationality

>

v

v

T.h. is infinite: eternity.

Finite, unknown: reach the goal asap

Finite: reach the goal in T time steps

NEVER

Bounded rationality: find as fast as possible a decent policy
(finding an approximation of the goal).

12

Overview

RL Algorithms
Values
Value functions
Optimal policy
Temporal differences and eligibility traces
Q-learning
Partial summary

13

Formalisation

Notations

» State space §

» Action space A
» Transition model
» deterministic: s’ = t(s, a)
> probabilistic: PZ,, = p(s,a,s’) € [0,1].
» Reward r(s) bounded

v

Time horizon H (finite or infinite)

Goal
» Find policy (strategy) 7:S — A

» which maximizes (discounted) cumulative reward from now to

timestep H
2 r(s)

t

13

Formalisation

Notations

>

>

v

v

v

Goal

State space S

Action space A
Transition model

» deterministic: s’ = t(s, a)

» probabilistic:
Reward r(s)

Pa

s,s

= p(s,a,s") €[0,1].

Time horizon H (finite or infinite)

» Find policy (strategy) 7 : S — A

bounded

» which maximizes (discounted) cumulative reward from now to

timestep H

H

D Atr(s) <1

t=1

13

Formalisation

Notations

>

v

v

v

v

Goal

State space S

Action space A
Transition model

» deterministic:

» probabilistic:

Reward r(s)

s’ =t(s,a)
P2, = p(s,a,s’) €[0,1].

s,s’ T

Time horizon H (finite or infinite)

» Find policy (strategy) 7:S — A

bounded

» which maximizes (discounted) cumulative reward from now to

timestep H

Exr[3 7 r(se)]
t=1

14

Markov Decision Process

But can we define P2, and r(s) ?

» YES, if all necessary information is in s

» NO, otherwise

> If state is partially observable
Goal: arrive in the third branch

» If environment (reward and transition distribution) is changing
Reward for *first* photo of an object by the satellite

The Markov assumption

P(Sh+1|50 dap S1 d1...5h ah) = P(5h+1|5h ah)

Everything you need to know is the current (state, action).

15

Find the treasure

Single reward: on the treasure.

16

Wandering robot

Nothing happens...

The robot finds it

18

Robot updates its value function

V(s,a) == "distance" to the treasure on the trajectory.

10

Reinforcement learning

* Robot most often selects a = arg max V/(s, a)
* and sometimes explores (selects another action).

Reinforcement learning

* Robot most often selects a = arg max V(s, a)
* and sometimes explores (selects another action).
* Lucky exploration: finds the treasure again

10

20

Updates the value function

* Value function tells how far you are from the treasure given the
known trajectories.

&

Finally

* Value function tells how far you are from the treasure

21

Finally

Let's be greedy: selects the action maximizing the value function

23

Underlying: Dynamic programming

Principle
> Recursively decompose the problem in subproblems

» Solve and propagate

An example
{(shortest path (A, B)) < £(sp(A, C)) + ¢(sp(C, B))

Finding the shortest
path in a graph

24

Approaches

v

Value function

» Value iteration
» Policy iteration

v

Temporal differences

v

Q-learning

v

Direct policy search
optimization in the 7w space

Stochastic optimization

25

Policy and value function 1/3

Finite horizon, deterministic transition

H
Vz(s0) = r(so) -I-Zr
h=1

where Shy1 = t(sh, ap = 77(5h))

Policy and value function 1/3

Finite horizon, deterministic transition

H
Vr(so) = r(so) -I-Zr
h=1

where Shy1 = t(sh, ap = 77(5h))

Finite horizon, stochastic transition

H

Ve(s0) = r(s0) + > p(sh-1,an-1 = 7(sh—1), 5n)r(sn)
h=1

where sp11 = s with proba p(sp, an = 7(sp), s)

Policy and value function, 2/3

Finite horizon, stochastic transition

H

Ve(s0) = r(s0) + > _ p(Sh—1.an—1 = 7(sh—1). 5n)r(sn)
h=1

where sp1 = s with proba p(sp, ap = 7(sp), s)

Infinite horizon, stochastic transition

H

Vi(s0) = r(so) + Zﬁ/hp(sh—la ap—1 = 7(Sh—1).5n)r(sh)
h—1

with discount factor v, 0 < v < 1
Remark

y<1l—= V<

~ small — myopic agent.

26

27

Value function and Q-value function

Value function
V:S—= 1R

Vi:(s): utility of state s when following policy 7
Improving 7w by using V. requires to know the transition model:

m(s) — arg max P2, V(s

Q function
R:(SxA)~R

Qx (s, a): utility of selecting action a in state s when following
policy

Improving 7 by using @ is straightforward:

m(s) — arg max Q(s,a)

28

Optimal policies

From value function to a better policy

7(s) = argmaxa{ P%, V,:(s')}

From policies to optimal value function

V*(s) = max; V(s)

From value function to optimal policy

7¥(s) = argmaxa{ P2, V*(s')}

20

Linear and dynamic programming

If transition model and reward function are known

Step 1
7(s) —argmax{z SS/ s)Y+vV(s))}
Step 2
= 2P () V)
Properties

Converges eventually toward the optimum if all states, actions are
considered.

20

Value iteration

Iterate

Vira(s) == max {Z

Stop when

maxs|Vir1(s

Initialisation
> arbitrary
» educated is better

Bellman equation

s") + v Vi(s))}

) — Vk(S)‘ < €

see Inverse Reinforcement Learning

21

Policy iteration

Principle
> Modify 7

> Update V until convergence

Getting faster

» Don't wait until V' has converged before modifying 7.

step 1
step 2

29

Discussion

Policy and value iteration
» Must wait until the end of the episode
» Episodes might be long

Can we update V on the fly ?
> | have estimates of how long it takes to go to RER, to catch
the train, to arrive at Cité-U
» Something happens on the way (bump into a friend, chat,
delay, miss the train,...)

» | can update my estimates of when I'll be home...

23

TD(0)

1. Initialize V and 7
2. Loop on episode

2.1 Initialize s
2.2 Repeat

Select action a = 7(s)

Observe s’ and reward r

V(s) « V(s)+ a(r+vV(s')=V(s))
—_———

R
s ¢

2.3 Until s’ terminal state

24

Discussion

Update on the spot ?
» Might be brittle

» Instead one can consider several steps
R = 2y
= re +yrev1 +7°V(st12)

Find an intermediate between

» Policy iteration
R. — 2
t =41+ Y2 Y 3+

» TD(0)
Re = rev1 + v Vi(se+1)

25

TD()\), intuition

weight given to
S the 3-step retum total area =1

weight given to
actual, final return

T—i1-1

R‘,’l:(l—/l) Z/IHHIRYH-FAT i er
—

26

TD()\), intuition, followed

5.' =hat sz(SHl)_Vr(Sl)

27

TD())

1. Initialize V and 7
2. Loop on episode

2.1 Initialize s
2.2 Repeat

a=m(s)

Observe s’ and reward r

d«—r+ V()= V(s)

e(s) +e(s)+1
For all s*
V(s") «+ V(s") + ade(s”)
e(s”) + yhe(s”)

s+ s

2.3 Until s’ terminal state

28

Q-learning
Principle: lterate

» During an episode (from initial state until reaching a final
state)

» At some point explore and choose another action;
» If it improves, update Q(s, a):

Q(st, ar) < Q(st,a) +
N——

old value
learned value
o X f(5t+1) + Y max Q(5t+17 3t+1) - Q(St, at)
~ —— ~—~ art1 ———
learning rate reward discount factor old value

max future value

Equivalent to

Q(st, ar) « Q(st,ar)(1 — o) + afr(se+1) + T:f Q(St+1, ar+1)]

20

Partial summary

Notations
» State space S

» Action space A
» Transition model
» deterministic: s’ = (s, a)
> probabilistic: P2, = p(s,a,s’) € [0,1].

» Reward r(s) bounded

» Time horizon H (finite or infinite)

Policy 7 <+ Value function V(s) (ou Q(s, a)
1 Update V Iterate [until convergence]
2 Modify w

A0

Reinforcement Learning, 2

Strengths

» Optimality guarantees (converge to global optimum)...

Weaknesses

» ...if each state is visited often, and each action is tried in each
state

» Number of states: exponential wrt number of features

A1

Behavioral cloning

Input

» Traces (s¢, a;) of expert

Supervised learning

> Learn h(s¢) = a;

Limitations
> Expert's mistakes

» Mistakes of h: unbounded consequences

Sammut, Bain 95

Inverse Reinforcement Learning

Input

» Traces (s¢, a;) of expert

Supervised learning
» Learn V t.q. V(st,ar) > V(st, @)

Limitations
» Expert’s mistakes
» Requires appropriate representation

more ?

http://videolectures.net/ecmlpkdd2012_abbeel_learning_robotics/

40

Abbeel, Ng, 2004

Overview

Direct Value learning
Preference learning
Validation
Discussion

A3

A4

Dynamic programming & Learning

13 14 15 16 17 18
L~ g | |
C P

Backgammon Gerald Tesauro, 89-95

» State: raw description of a game (number of White or Black
checkers at each location) RP

» Data: set of games

» A game: sequence of states xi,...xr; value on last y1: wins
or loses

A5

Dynamic programming & Learning

Learning
» Learned: F:RP—[0,1] s.t.

Minimize |F(x7) — y71|; |F(x0) — F(x¢+1)|

» Search space: F is a neural net = w R

> Learning rule 200,000 games

)4
Aw = a(F(xe41) — F(x0)) Y A TFVwF (x)
k=1

A6

Preference-based Value Learning

Cheng et al. 2011
Motivation

» Value depends on (numerical) reward functions

» ...adjusted by trial and errors... (what is the cost of an injury

?)

Proposed approach
» In state s, trigger action a € A, then apply policy = roll-out
» Compare trajectories: (s, a,s1,a1,...);(s,a,s1,a],...)

» Use preference learning: define a <, &

A7

Direct Value Learning

Murphy’s law
When in good situation, will be degraded

Go Ahead !

i

A7

Direct Value Learning

Murphy’s law
When in good situation, will be degraded
’|BOB

Go Ahead ! After a while...

A8

Direct Value Learning, 2

ALICH:.

Consider Alice’s trajectory

Sso>S1... ST

A8

Direct Value Learning, 2

ALICH:.

Consider Alice’s trajectory

Sso>S1... ST

Preference-based Value Learning

s.t.

V(s) = (w",s)

w* = argmin||w||? s.t. (w,s;) > (w,sp11) + 1

AQ

Approximate transition model

Given s and Ahead(s), one can estimate Right(s)

Ahead(s) Right(s)
] []
Ahead ’ / Right

Right(s) ~ toric translation {Ahead(s)}

50

DiVa controller

At time t, the best action at time t — 1 can be estimated

a;_; = argmax{V™*(action(s;)), action € A}

Left(s) Ahead(s) Right(s)
[] [] L]
Left \ Ahead 1 / Right

Continuity assumption

m(st) = a;_1

51

Experimental setting

Context
» Pandaboard, dual-core ARM Cortex-A9 OMAP4430,
» each core running at 1 GHz
» 1 GB DDR2 RAM.

» USB camera with resolution (320x240), and color depth of
monochrome 8bit.

Train/test

» Train: 11 runs, 64 time steps, Alice located behind Bob, both
with a Go Ahead controller.

» Test: Bob equipped with a Braitenberg controller, Alice with
a DiVa controller.

~)

Goal of experiments

Compare and assess
» DiVa

» Noisy-DiVa (irrelevant states)

> Regression-DiVa
Learn V* using regression instead of ranking.

Approximate transition model
Approximation guarantees ?

~ed

How long does Alice follow Bob ?

B Reg-Diva
B Noisy-DiVa

.
. [I][Id[l[L
RN ER

2 frames per second

The value function

Setting: Leave one out

DiVa Noisy-DiVa Regression-DiVa

R4

N~

DiVa controller on training data (Leave one out)

wwwwwwwww

DiVa Noisy-DiVa Regression-DiVa

Time sieps

oY

Value weights: sensitivity to toric translation

LR 03 A oo 0w 00T o &

DiVa

N0|sy-D|Va

Regressmn DiVa

R7

Discussion

DiVa versus TD-Gammon

» Scarce data while TD-Gammon used self-play
» DiVa uses ranking

» TD-Gammon sets the value of end state (win/loss) + min
total variation

-3

Perspectives

1. Dimensionality reduction

2. Mid-size action spaces
estimate the best rotation

3. Application to robot docking

Riedmiller 12

	Introduction
	RL Algorithms
	Values
	Value functions
	Optimal policy
	Temporal differences and eligibility traces
	Q-learning
	Partial summary

	Direct Value learning
	Preference learning
	Validation
	Discussion

