Master Recherche IAC Robots et agents autonomes

Jamal Atif — Michèle Sebag
TAO
CNRS — INRIA — LRI, Université Paris-Sud

Dec. 21st, 2012

Overview

Introduction

RL Algorithms

Values

Value functions

Optimal policy

Temporal differences and eligibility traces

Q-learning

Partial summary

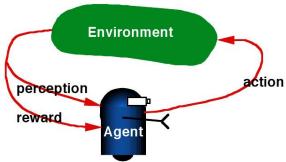
Direct Value learning

Preference learning

Validation

Discussion

Reinforcement Learning



Generalities

- An agent, spatially and temporally situated
- Stochastic and uncertain environment
- Goal: select an action in each time step,
- ... in order maximize expected cumulative reward over a time horizon

What is learned?

A policy = strategy = $\{ \text{ state } \mapsto \text{action } \}$

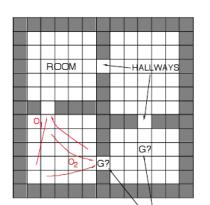
Reinforcement Learning

Context

An unknown world.

Some actions, in some states, bear rewards with some delay [with some probability]

Goal : find policy (state \rightarrow action) maximizing the expected reward



4 rooms

4 hallways

4 unreliable primitive actions

8 multi-step options (to each room's 2 hallways)

Given goal location, quickly plan shortest route

4) Q

Reinforcement Learning, example

World You are in state 34.

Your immediate reward is 3. You have 3 actions

Robot I'll take action 2

World You are in state 77

Your immediate reward is -7. You have 2 actions

Robot I'll take action 1

World You are in state 34 (again)

Markov Decision Property: actions/rewards only depend on the current state.

Reinforcement Learning

Of several responses made to the same situation, those which are accompanied or closely followed by satisfaction to the animal will — others things being equal — be more firmly connected with the situation, so that when it recurs, they will more likely to recur; those which are accompanied or closely followed by discomfort to the animal will — others things being equal — have their connection with the situation weakened, so that when it recurs, they will less likely to recur;

the greater the satisfaction or discomfort, the greater the strengthening or weakening of the link.
Thorndike, 1911.

Formal background

Notations

- ightharpoonup State space ${\cal S}$
- ► Action space A
- ▶ Transition model $p(s, a, s') \mapsto [0, 1]$
- ▶ Reward r(s)

Goal

▶ Find policy $\pi: \mathcal{S} \mapsto \mathcal{A}$

Maximize $E[\pi] = Expected cumulative reward$

(detail later)

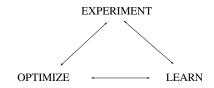
Applications

- Robotics Navigation, football, walk,
- ▶ Games Backgammon, Othello, Tetris, Go, ...
- ► Control
 Helicopter, elevators, telecom, smart grids, manufacturing, ...
- Operation research
 Transport, scheduling, ...
- ▶ Other Computer Human Interfaces, ...

Position of the problem

3 interleaved tasks

- Learn a world model (p, r)
- Decide/select (the best) action
- Explore the world



Sources

- ▶ Sutton & Barto, Reinforcement Learning, MIT Press, 1998
- http://www.eecs.umich.edu/~baveja/NIPS05RLTutorial/

4□ > 4□ > 4□ > 4□ > 4□ > 1□

Particular case

If the transition model is known

 $Reinforcement\ learning \to Optimal\ control$

What's hard

Curse of dimensionality

- State: features *size, texture, color, ...* |S| exponential wrt number of features
- Not all features are always relevant

What's hard

Curse of dimensionality

- State: features size, texture, color,
 |S| exponential wrt number of features
- Not all features are always relevant

	see	swann	white	_
Example:		swann	black	take a video
		bear	_	flee

Time horizon - Bounded rationality

► T.h. is infinite: eternity.

NEVER

- ► Finite, unknown: reach the goal asap
- Finite: reach the goal in T time steps
- Bounded rationality: find as fast as possible a decent policy (finding an approximation of the goal).

Overview

Introduction

RL Algorithms

Values

Value functions

Optimal policy

Temporal differences and eligibility traces

Q-learning

Partial summary

Direct Value learning

Preference learning

Validation

Discussion

Formalisation

Notations

- ightharpoonup State space ${\cal S}$
- Action space A
- Transition model
 - deterministic: s' = t(s, a)
 - ▶ probabilistic: $P_{s,s'}^a = p(s,a,s') \in [0,1]$.
- Reward r(s)

bounded

Time horizon H (finite or infinite)

Goal

- ▶ Find policy (strategy) $\pi: \mathcal{S} \mapsto \mathcal{A}$
- which maximizes (discounted) cumulative reward from now to timestep H

$$\sum_{t} r(s_t)$$

Formalisation

Notations

- ightharpoonup State space ${\cal S}$
- Action space A
- Transition model
 - deterministic: s' = t(s, a)
 - ▶ probabilistic: $P_{s,s'}^a = p(s, a, s') \in [0, 1]$.
- ► Reward *r*(*s*)

bounded

► Time horizon *H* (finite or infinite)

Goal

- ▶ Find policy (strategy) $\pi: \mathcal{S} \mapsto \mathcal{A}$
- which maximizes (discounted) cumulative reward from now to timestep H

$$\sum_{t=1}^{H} \gamma^t r(s_t) \quad \gamma < 1$$

4日 > 4団 > 4団 > 4団 > 4団 > 99

Formalisation

Notations

- ightharpoonup State space ${\cal S}$
- Action space A
- Transition model
 - deterministic: s' = t(s, a)
 - ▶ probabilistic: $P_{s,s'}^a = p(s, a, s') \in [0, 1]$.
- ► Reward *r*(*s*)

bounded

Time horizon H (finite or infinite)

Goal

- ▶ Find policy (strategy) $\pi: \mathcal{S} \mapsto \mathcal{A}$
- which maximizes (discounted) cumulative reward from now to timestep H

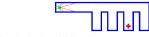
$$\mathbb{E}_{s_0,\pi}[\sum_{t=1}^{\infty} \gamma^t r(s_t)]$$

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Markov Decision Process

But can we define $P_{ss'}^a$ and r(s) ?

- YES, if all necessary information is in s
- ▶ NO, otherwise
 - If state is partially observable



Goal: arrive in the third branch

► If environment (reward and transition distribution) is changing Reward for *first* photo of an object by the satellite

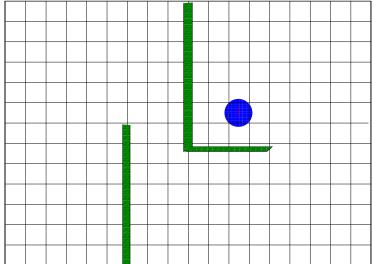
The Markov assumption

$$P(s_{h+1}|s_0 \ a_0 \ s_1 \ a_1 \dots s_h \ a_h) = P(s_{h+1}|s_h \ a_h)$$

Everything you need to know is the current (state, action).

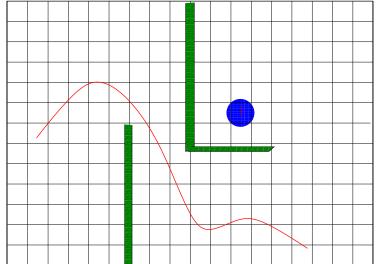
Find the treasure

Single reward: on the treasure.

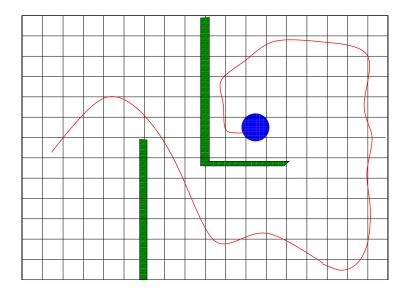


Wandering robot

Nothing happens...

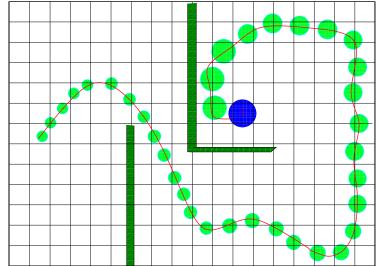


The robot finds it



Robot updates its value function

V(s,a) == "distance" to the treasure on the trajectory.



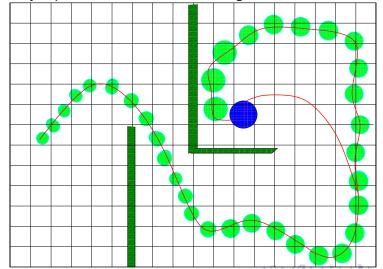
Reinforcement learning

- * Robot most often selects $a = \arg\max V(s, a)$
- * and sometimes explores (selects another action).

Reinforcement learning

- * Robot most often selects $a = \arg\max V(s, a)$
- * and sometimes explores (selects another action).

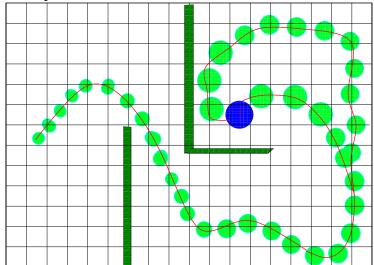
* Lucky exploration: finds the treasure again



19

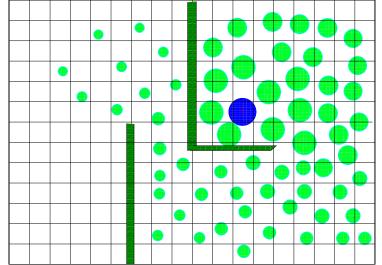
Updates the value function

* Value function tells how far you are from the treasure *given the known trajectories*.



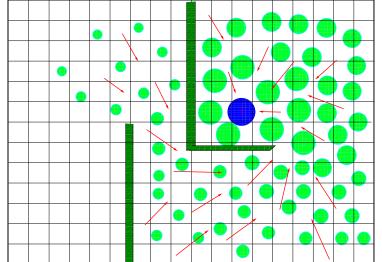
Finally

* Value function tells how far you are from the treasure



Finally

Let's be greedy: selects the action maximizing the value function



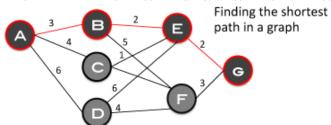
Underlying: Dynamic programming

Principle

- Recursively decompose the problem in subproblems
- Solve and propagate

An example

 $\ell(\mathsf{shortest\ path\ }(A,B)) < \ell(\mathsf{sp}(A,C)) + \ell(\mathsf{sp}(C,B))$



Approaches

- Value function
 - Value iteration
 - ▶ Policy iteration
- ► Temporal differences
- Q-learning
- Direct policy search optimization in the π space

Stochastic optimization

Policy and value function 1/3

Finite horizon, deterministic transition

$$V_{\pi}(s_0) = r(s_0) + \sum_{h=1}^{H} r(s_h)$$

where $s_{h+1} = t(s_h, a_h = \pi(s_h))$

Policy and value function 1/3

Finite horizon, deterministic transition

$$V_{\pi}(s_0) = r(s_0) + \sum_{h=1}^{H} r(s_h)$$

where $s_{h+1} = t(s_h, a_h = \pi(s_h))$

Finite horizon, stochastic transition

$$V_{\pi}(s_0) = r(s_0) + \sum_{h=1}^{H} p(s_{h-1}, a_{h-1} = \pi(s_{h-1}), s_h) r(s_h)$$

where $s_{h+1} = s$ with proba $p(s_h, a_h = \pi(s_h), s)$

Policy and value function, 2/3

Finite horizon, stochastic transition

$$V_{\pi}(s_0) = r(s_0) + \sum_{h=1}^{H} \mathbf{p}(\mathbf{s}_{h-1}, \mathbf{a}_{h-1} = \pi(\mathbf{s}_{h-1}), \mathbf{s}_h) r(s_h)$$

where $s_{h+1} = s$ with proba $p(s_h, a_h = \pi(s_h), s)$

Infinite horizon, stochastic transition

$$V_{\pi}(s_0) = r(s_0) + \sum_{h=1}^{H} \gamma^h \mathbf{p}(\mathbf{s}_{h-1}, \mathbf{a}_{h-1} = \pi(\mathbf{s}_{h-1}), \mathbf{s}_h) r(s_h)$$

with discount factor γ , 0 $<\gamma<1$

Remark

$$\gamma < 1 \rightarrow V < \infty$$

 γ small \to myopic agent.

4□ > <@ > < \(\bar{E} \) > < \(\bar{E} \) < \(\bar{E} \

Value function and Q-value function

Value function

$$V: S \mapsto \mathbb{R}$$

 $V_{\pi}(s)$: utility of state s when following policy π

Improving π by using V_{π} requires to know the transition model:

$$\pi(s)
ightarrow \ {
m arg \ max} \ P^a_{ss'} V_\pi(s')$$

Q function

$$Q:(S\times A)\mapsto {\rm I\!R}$$

 $Q_{\pi}(s,a)$: utility of selecting action a in state s when following policy π

Improving π by using Q_{π} is straightforward:

$$\pi(s) o ext{ arg max } Q_{\pi}(s, a)$$

Optimal policies

From value function to a better policy

$$\pi(s) = \operatorname{argmax}_{a} \{ P_{ss'}^{a} V_{\pi}(s') \}$$

From policies to optimal value function

$$V^*(s) = max_{\pi}V_{\pi}(s)$$

From value function to optimal policy

$$\pi^*(s) = \operatorname{argmax}_a \{ P_{ss'}^a V^*(s') \}$$

Linear and dynamic programming

If transition model and reward function are known

Step 1

$$\pi(s) := rg \max_{a} \left\{ \sum_{s'} P_{s,s'}^a \left(r(s') + \gamma V(s') \right) \right\}$$

Step 2

$$V(s) := \sum_{s'} P_{s,s'}^{a=\pi(s)} \left(r(s') + \gamma V(s') \right)$$

Properties

Converges eventually toward the optimum if all states, actions are considered.

Value iteration

Bellman equation

Iterate

$$V_{k+1}(s) := \max_{a} \left\{ \sum_{s'} P_{s,s'}^a \left(r(s') + \gamma V_k(s') \right) \right\}$$

Stop when

$$\max_{s} |V_{k+1}(s) - V_k(s)| < \epsilon$$

Initialisation

- arbitrary
- educated is better

see Inverse Reinforcement Learning

Policy iteration

Principle

•	Modify π	step 1
•	Undate V until convergence	sten 2

Getting faster

▶ Don't wait until V has converged before modifying π .

Discussion

Policy and value iteration

- Must wait until the end of the episode
- ► Episodes might be long

Can we update V on the fly?

- ▶ I have estimates of how long it takes to go to RER, to catch the train, to arrive at Cité-U
- ► Something happens on the way (bump into a friend, chat, delay, miss the train,...)
- ▶ I can update my estimates of when I'll be home...

TD(0)

- 1. Initialize V and π
- 2. Loop on episode
 - 2.1 Initialize s
 - 2.2 Repeat

Select action
$$a = \pi(s)$$

Observe s' and reward r
 $V(s) \leftarrow V(s) + \alpha(\underbrace{r + \gamma V(s')}_{R} - V(s))$
 $s \leftarrow s'$

2.3 Until s' terminal state

Discussion

Update on the spot?

- ► Might be brittle
- Instead one can consider several steps

$$R = r_t + \gamma r_{t+1} + \gamma^2 V(s_{t+2})$$

Find an intermediate between

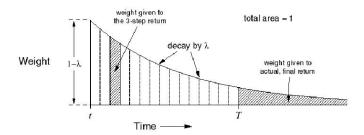
Policy iteration

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

► TD(0)

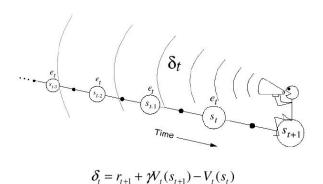
$$R_t = r_{t+1} + \gamma V_t(s_{t+1})$$

TD(λ), intuition



$$R_t^{\lambda} = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t$$

TD(λ), intuition, followed



$TD(\lambda)$

- 1. Initialize V and π
- 2. Loop on episode
 - 2.1 Initialize s
 - 2.2 Repeat

$$\begin{aligned} a &= \pi(s) \\ \text{Observe } s' \text{ and reward } r \\ \delta &\leftarrow r + V(s') - V(s) \\ e(s) \leftarrow e(s) + 1 \\ &\qquad \qquad \text{For all } s\text{``} \\ &\qquad \qquad V(s'') \leftarrow V(s\text{``}) + \alpha \delta e(s'') \\ &\qquad \qquad e(s'') \leftarrow \gamma \lambda e(s'') \\ s \leftarrow s' \end{aligned}$$

2.3 Until s' terminal state

Q-learning

Principle: Iterate

- During an episode (from initial state until reaching a final state)
- At some point explore and choose another action;
- ▶ If it improves, update Q(s, a):

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\frac{\alpha}{r(s_{t+1})} + \frac{\gamma}{r\text{eward discount factor}}}_{\text{learning rate}} \underbrace{\frac{\alpha}{r(s_{t+1})} + \frac{\gamma}{r\text{eward discount factor}}}_{\text{max future value}} \underbrace{\frac{\alpha}{r(s_{t+1})} + \frac{Q(s_t, a_t)}{r\text{old value}}}_{\text{old value}}$$

Equivalent to

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t)(1 - \alpha) + \alpha[r(s_{t+1}) + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1})]$$

Partial summary

Notations

- ightharpoonup State space ${\cal S}$
- Action space A
- Transition model
 - deterministic: s' = t(s, a)
 - ▶ probabilistic: $P_{s,s'}^a = p(s, a, s') \in [0, 1]$.
- Reward r(s)

bounded

► Time horizon *H* (finite or infinite)

Policy $\pi \leftrightarrow$ Value function V(s) (ou Q(s, a)

1 Update V

Iterate [until convergence]

2 Modify π

Reinforcement Learning, 2

Strengths

▶ Optimality guarantees (converge to global optimum)...

Weaknesses

- ...if each state is visited often, and each action is tried in each state
- ▶ Number of states: exponential wrt number of features

Behavioral cloning

Sammut, Bain 95

Input

▶ Traces (s_t, a_t) of expert

Supervised learning

▶ Learn $\hat{h}(s_t) = a_t$

Limitations

- Expert's mistakes
- Mistakes of \hat{h} : unbounded consequences

Inverse Reinforcement Learning

Abbeel, Ng, 2004

Input

▶ Traces (s_t, a_t) of expert

Supervised learning

▶ Learn V t.q. $V(s_t, a_t) > V(s_t, a')$

Limitations

- Expert's mistakes
- Requires appropriate representation

more?

http://videolectures.net/ecmlpkdd2012_abbeel_learning_robotics/

Overview

Introduction

RL Algorithms

Values

Value functions

Optimal policy

Temporal differences and eligibility traces

Q-learning

Partial summary

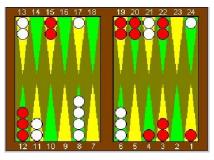
Direct Value learning

Preference learning

Validation

Discussion

Dynamic programming & Learning

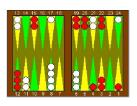


Backgammon

Gerald Tesauro, 89-95

- State: raw description of a game (number of White or Black checkers at each location) \mathbb{R}^D
- ▶ Data: set of games
- A game: sequence of states $x_1, \dots x_T$; value on last y_T : wins or loses

Dynamic programming & Learning



Learning

▶ Learned: $F: \mathbb{R}^D \mapsto [0,1]$ s.t.

Minimize
$$|F(x_T) - y_T|$$
; $|F(x_\ell) - F(x_{\ell+1})|$

▶ Search space: F is a neural net $\equiv w$

 \mathbb{R}^d

► Learning rule

200,000 games

$$\Delta w = \alpha (F(x_{\ell+1}) - F(x_{\ell})) \sum_{k=1}^{\ell} \lambda^{\ell-k} \nabla w F(x_k)$$

Preference-based Value Learning

Cheng et al. 2011

Motivation

- Value depends on (numerical) reward functions
- ...adjusted by trial and errors... (what is the cost of an injury ?)

Proposed approach

- ▶ In state s, trigger action $a \in A$, then apply policy π roll-out
- ► Compare trajectories: $(s, a, s_1, a_1, ...)$; $(s, a', s'_1, a'_1, ...)$
- ▶ Use preference learning: define $a <_{s,\pi} a'$

Direct Value Learning

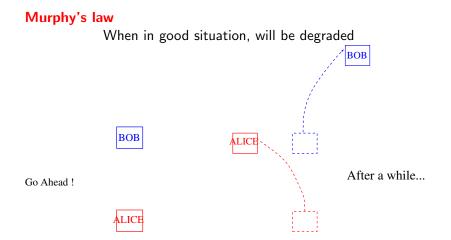
Murphy's law

When in good situation, will be degraded

вов

Go Ahead!

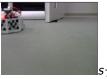
Direct Value Learning



Direct Value Learning, 2

Consider Alice's trajectory

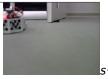
 $s_0 \succ s_1 \ldots \succ s_T$



Direct Value Learning, 2

Consider Alice's trajectory

$$s_0 \succ s_1 \ldots \succ s_T$$



Preference-based Value Learning

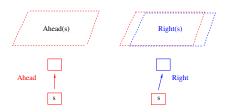
$$V(s) = \langle w^*, s \rangle$$

s.t.

$$w^* = \operatorname{argmin} ||w||^2 \text{ s.t. } \langle w, s_t \rangle > \langle w, s_{t+1} \rangle + 1$$

Approximate transition model

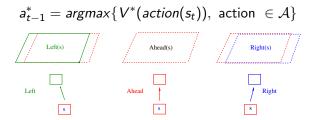
Given s and Ahead(s), one can estimate Right(s)



 $Right(s) \approx \text{toric translation } \{Ahead(s)\}$

DiVa controller

At time t, the best action at time t-1 can be estimated



Continuity assumption

$$\pi(s_t) = a_{t-1}^*$$

Experimental setting

Context

- Pandaboard, dual-core ARM Cortex-A9 OMAP4430,
- each core running at 1 GHz
- 1 GB DDR2 RAM.
- ► USB camera with resolution (320×240), and color depth of monochrome 8bit.

Train/test

- ► Train: 11 runs, 64 time steps, Alice located behind Bob, both with a Go Ahead controller.
- ► Test: Bob equipped with a Braitenberg controller, Alice with a DiVa controller.

Goal of experiments

Compare and assess

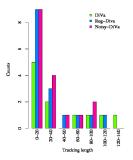
- DiVa
- Noisy-DiVa (irrelevant states)

Regression-DiVa
 Learn V* using regression instead of ranking.

Approximate transition model

Approximation guarantees?

How long does Alice follow Bob?

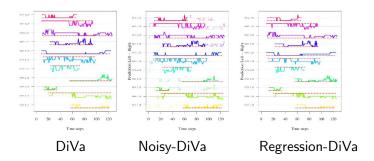


2 frames per second

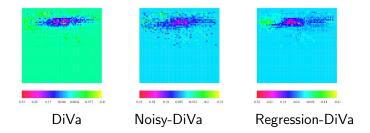
The value function



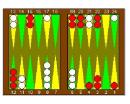
DiVa controller on training data (Leave one out)



Value weights: sensitivity to toric translation



Discussion



DiVa versus TD-Gammon

Tesauro 02

- Scarce data while TD-Gammon used self-play
- DiVa uses ranking
- ► TD-Gammon sets the value of end state (win/loss) + min total variation

Perspectives

- 1. Dimensionality reduction
- 2. Mid-size action spaces estimate the best rotation

3. Application to robot docking

Riedmiller 12