Master Recherche IAC Robots et agents autonomes

Jamal Atif — Michèle Sebag
TAO
CNRS — INRIA — LRI, Université Paris-Sud

Jan. 11th, 2013

Case 1. Optimal control

Case 1. Optimal control, foll'd

Known dynamics and target behavior

- 1. state u, action $a \rightarrow$ new state u'
- 2. wanted: sequence of states

Approaches

- Inverse problem
- Optimal control

Challenges

- Model errors, uncertainties
- Stability

Case 2. Reactive behaviors

The 2005 Darpa Challenge

The terrain

The sensors

Case 3. Planning

An instance of reinforcement learning / planning problem

- 1. Solution = sequence of (state,action)
- 2. In each state, decide the appropriate action
- 3. ..such that in the end, you reach the goal

Case 3. Planning, foll'd

Approaches

- Reinforcement learning
- Inverse reinforcement learning
- ▶ Direct policy search (= optimize the controller)
 - **▶** Evolutionary robotics
 - ► Preference-based RL

Challenges

- Design the objective function (define the optimization problem)
- Solve the optimization problem
- Assess the validity of the solution

Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics

Search space

Objective

Reality Gap

Co-evolution

Evolution of morphology

Intrinsic and interactive rewards

Intrinsic rewards

Interactive reward

Policy search, formal background

Assumption

- We know the policy search space π : State \mapsto Action For instance: Neural Nets, Decision list
- lacktriangle This search space Θ is parametric $\equiv \mathbb{R}^d$
- ▶ There exists a computable objective function to be optimized:

$$\theta \mapsto \pi_{\theta} \mapsto \text{ behavior } \mapsto \mathcal{F}(\theta)$$

An optimization problem

Find
$$\theta^* = argmax\{\mathcal{F}(\theta)\}$$

Specificities

- Noisy optimization (actuators, motors) and partially observable setting
- Can (must) incorporate prior knowledge search space structure; initialization; objective function

Example: swarm robots moving in column formation

Robot

Example, foll'd

Representation

Constants		
	l1	blind zone
	12	sensor range
	ϕ	Vision angular range
Variables(t)	,	0 0 1
	r(t), s(t)	positions
	$\theta(t)$	angular direction

Example of a (almost manual) controller

CONTROLLER OF A ROBOT

Info. from the image sensors	Info. from the IR sensors				
mio. from the image sensors	$0 \le x_{IR} < \beta_0$	$\beta_0 \leq x_{\rm IR} < \beta$	$\beta \leq x_{\text{IR}}$		
$0 \le x_{\text{image}} \le \alpha$	move backward or turn right	turn left			
$\alpha < x_{\rm image} < (19 - \alpha)$	move backward or turn right	stop	move forward		
$\alpha \leq x_{\mathrm{image}} \leq 19$	move backward or turn right	turn right			
preceding robot NOT FOUND	move backward or turn right	move forward			

Toward defining \mathcal{F}

- The i-th robot follows the k-th robot at time t iff the center of gravity of k belongs to the perception range of i (s_k(t) ∈ A_i(t)).
- The i-th robot is a leader if i) it does not follow any other robot; ii) there exists at least one robot following it.
- A column is a subset {i₁,...i_K} such that robot i_{k+1} follows robot i_k and robot i₁ is a leader.
- A deadlock is a subset $\{i_1, \dots i_K\}$ such that robot i_{k+1} follows robot i_k and robot i_1 follows robot i_K .

Milestones

1. From θ to π_{θ}

trivial

- 2. From π_{θ} to the robot behavior
- 3. From the robot behavior to evaluating $\mathcal{F}(\theta)$
- 4. From trials $(\{(\theta_t, \mathcal{F}(\theta_t))\}\$ to θ^*

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ りへで

Milestone 1 From the controller π_{θ} to the robot behavior

How

- ▶ In silico = in simulation
 - Main approach for evolutionary robotics
 - ▶ No way, says the roboticist

reality gap

- ▶ In situ: embeds the policy on the robot, and sees.
 - The robot breaks before long
 - Makes it difficult to compute $\mathcal{F}(\theta)$.
- Both

Hod Lipson & Bongard 2006

Milestone 1

Bottleneck: Accurate predictions

World model: what is out there.
 SLAM, Simultaneous Localization and Mapping

Long term planning

► Forward model: what will happen if robot selects action *a* in state *s*

Local model of itself

Short term planning

Uncertainties about e.g. sensors or actuators models, initial localization.

Milestone 1

Bottleneck: Accurate predictions, follow'd,

- ▶ Partially observable effects ex., in the case of swarms: there are many robots does robot *Bob* know robot *Alice*'s plans? If yes, centralized resolution
 - Else, *Alice*'s behavior is impredictible (and *Bob* can't predict with certainty what will be in his vision cone).
- ightharpoonup non deterministic model. thus, the behavior is a random variable; $\mathcal{F}(\theta)$ becomes an expectation,

$$\mathbb{E}_{\sim\pi_{ heta}}[\mathcal{F}(\mathsf{behavior})]$$

Milestone 2 From the robot behavior to $\mathcal{F}(\theta)$

How

- In simulation: define computable \(\mathcal{F} \)
 by trials and errors (fitness shaping)
 manual (see section evolutionary robotics)
- ► In situ:
 - Interactive
 - Manual
 - ▶ Measurements (e.g. data mining on the videos).

Milestone 3 Optimisation

How

Gradient-based approaches

Direct Policy Search

Black-box optimization

Evolutionary Robotics

Surrogate optimization

Preference reinforcement learning

What is optimized

- ▶ policy $\equiv \theta$
- Value function.

(satisfies Bellman equation)

• Energy function H(s, a)

(same use, but no Bellman)

$$\pi(s) = \operatorname{argmax}_{a} \{ H(s.a) \}$$

Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics

Search space

Objective

Reality Gap

Co-evolution

Evolution of morphology

Intrinsic and interactive rewards

Intrinsic rewards

Interactive rewards

Direct policy search, formal background

Assumption

▶ Function $\mathcal{F}(\theta)$, to be optimized

Pros

- ▶ No divergence, even under function approximation
- Policies are much simpler to represent (a neural net)
- Partial observability does not hurt convergence increases computational cost and harms long-term value

Cons

- Lost convergence to the globally optimal policy
- ▶ Lost the Bellman constraint → larger variance

Direct policy search, principles

Recall: Policy return estimate

$$V(s) = \mathbb{E}\left[\sum_{t} \frac{\gamma^{t}}{r(s_{t})} | s_{0} = s\right]$$

or long term average reward

$$V(s) = lim_{T o \infty} \frac{1}{T} \mathbb{E}[\sum_t r(s_t) | s_0 = s]$$

Assumption: ergodic Markov chain

(After a while, the initial state does not matter).

- \triangleright V(s) does not depend on s
- One can estimate the percentage of time spent in state s

$$q(\theta,s) = Pr_{\theta}(S=s)$$

Another policy return estimate

expected average reward

$$V = \mathbb{E}_{\theta}[r(S)] = \sum r(s)q(\theta, s)$$

Direct policy search, Algorithm

1.
$$\mathcal{F}(\theta) = \mathbb{E}_{\theta}[r(S)] = \sum_{s} r(s)q(\theta, s)$$

2. Compute or estimate the gradient, $\nabla \mathcal{F}(\theta)$

3. Use it: (can do better)

$$\theta_{t+1} = \theta_t + \alpha \nabla \mathcal{F}(\theta)$$

Computing the derivative

$$\nabla V = \nabla(\sum_{s} r(s)q(\theta,s)) = \sum_{s} r(s)\nabla q(\theta,s)$$

Then:

$$\nabla V = \mathbb{E}_{\theta}[r(S) \frac{\nabla q(\theta, S)}{q(\theta, S)}]$$

Unbiased estimate of the gradient (integral = empirical sum)

$$\hat{\nabla} V = \frac{1}{N} \sum_{i} r(s_i) \frac{\nabla q(\theta, s_i)}{q(\theta, s_i)}$$

Computing the derivative, foll'd

Using trajectories $((s_t, r(s_t)))$:

Given observations et rewards,

$$\frac{\nabla q(\theta, s_t)}{q(\theta, s_t)} = \sum_{i=0}^{t-1} \frac{\nabla p_{\theta}(s_i, s_{i+1})}{p_{\theta}(s_i, s_{i+1})}$$

where $p_{\theta}(s_i, s_j)$ is the probability of going from s_i to s_j with π_{θ} .

Eligibility trace

$$z_0 = 0;$$
 $z_t = z_{t-1} + \frac{\nabla p_{\theta}(s_{t-1}, s_t)}{p_{\theta}(s_{t-1}, s_t)}$

Computing the derivative, foll'd

Approximations

truncated: biased

$$z_t = \sum_{k=t-n}^{t-1} \frac{\nabla p_{\theta}(s_k, s_{k+1})}{p_{\theta}(s_k, s_{k+1})}$$

or

$$z_t = \beta z_{t-1} + \frac{\nabla p_{\theta}(s_{t-1}, s_t)}{p_{\theta}(s_{t-1}, s_t)}$$

Quality

$$\hat{\nabla}_{\beta}V = \frac{1}{T}\sum_{t}r(s_{t})z_{t}$$

Baxter Bartlett 2001

$$lim_{\beta \to 1} \hat{\nabla}_{\beta} V = \nabla V$$

Role of β : tradedoff bias/variance.

Discussion

Pros

Many achievements: fine manipulation (peg-in-hole), learning biped walking with integrated trajec- tory generation and execution, first results using a real humanoid robot.

Cons

- ► Finite state space
- Adversely affected by reward variance

More

Natural Actor Critic

Peters Schaal 2003, 2008

Importance Sampling

Peshkin Shelton 2002; Tang Abbeel 2010

$$V(\theta) \propto \sum_{i} \frac{\pi_{\theta}(\text{trajectory } i)}{q_{reference}(\text{trajectory } i)} r(\text{trajectory } i)$$

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 釣 へ ○

Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics

Search space

Objective

Reality Gap

Co-evolution

Evolution of morphology

Intrinsic and interactive rewards

Intrinsic rewards

Interactive rewards

Evolutionary Robotics, Milestones

- 1. Select the search space Θ
- 2. Define the objective function $\mathcal{F}(\theta)$ Sky is the limit: controller; morphology of the robot; co-operation of several robots...
- 3. Define a computable objective function in simulation, in-situ, reality gap
- 4. Optimize: Evolutionary Computation (EC); variants thereof
- 5. Test the found solution

1. Search Space

Neural Nets

- Universal approximators; continuity; generalization hoped for.
- ► Fast computation
- Can include priors in the structure
- ► Feedforward: reactive; Recurrent, with internal state

Critical issues

Find the structure;
 (structured EC much more difficult)
 See NEAT and HyperNEAT Stanley Miikkulainen, 2002
 NeuroEvolution of Augmented Topology

1. Search Space, foll'd

Classifier Systems

Finite State Automata

1. Search Space, foll'd

Genetic Programming: trees made of

- Nodes (operators) N
- ► Leaves (operands) T

Search space
$$\Omega = \mathsf{Trees}(\mathcal{N}, \mathcal{T})$$

Examples:

Key issues:

- Variable length genoms
- ► MORE ≠ BETTER

Genetic Programming and Embryogenesis

Principle

- ► An embryo
- ... develops along a program (= tree)
- Optimize the embryogenesis program

	τ	E	stops
Operators	\overline{N}	S	Sequential Division
		Р	Parallel Division
		Α	Increase neuron threshold
		0	Decrease neuron threshold
		+	Increase weight on an edge
		-	Decrease weight
		C	Cut edge
		1	Increase edge index
		D	Decrease edge index
		R	Back to the top of the tree (recursion)
		W	Wait

Embryogenesis, 1

Tree and embryo,

step 1

Embryogenesis, 2

step 3, 4, 5

Embryogenesis, 3

Embryogenesis, 4

With recursion

Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics

Search space

Objective

Reality Gap

Co-evolution

Evolution of morphology

Intrinsic and interactive rewards

Intrinsic rewards

Interactive rewards

2. Objective

The promise: no need to decompose the goal

Behavioral robotics hand crafted decomposition Manipulations Construction d'une carte Capteurs Exploration Moteurs Evitement d'obstacles Deplacement Evolutionary robotics emergence of a structure Moteurs Capteurs ?

In practice: bootstrap

- ► All initial (random) individuals are just incompetent
- ► Fitness landscape: Needle in the Haystack ? (doesn't work)
- Start with something simple
- ► Switch to more complex *during evolution*

Example: visual recognition

2. Objective, foll'd

Fonctional vs behavioral

state of controller vs distance walked

Implicit vs explicit

Survival vs Distance to socket

Internal vs external information

Sensors, ground truth

► Co-evolution: e.g. predator/prey

performance depends on the other robots

State of art

- Standard: function, explicit, external variables
- In-situ: behavioral, implicit, internal variables
- ▶ Interactive: behavioral, explicit, external variables

2. Objective, foll'd

Fitness shaping

- Obstacle avoidance
- Obstacle avoidance, and move!
- ▶ Obstacle avoidance, and (non circular) move !!

Finally

Floreano Nolfi 2000

$$\mathcal{F} = \int_{T_{min}} V(1 - \sqrt{\Delta v})(1 - i)$$

▶ V sum of wheel speed $r_i \in [-0.5, 0.5]$

 \rightarrow move

 \rightarrow ahead

▶ i maximum (normalised) of sensor values

ightarrow obstacle avoidance

Result analysis

- First generations
 - Most rotate
 - Best ones slowly go forward
 - ▶ No obstacle avoidance
 - Perf. depends on starting point
- ▶ After \approx 20 gen.
 - Obstacle avoidance
 - No rotation
- Thereafter, gradually speed up

Result analysis

► Max. speed 48mm/s (true max = 80)

Inertia, bad sensors

Never stuck in a corner

contrary to Braitenberg

Going further

- Changing environment
- Changing robotic platform
- From simulation to real-world

Fast adaptation

Explore and recharge

Not a reactive behavior

- ► Battery gets empty in 20s in white zone
- recharges in black zone
- But no reward in black zone

Explore and recharge, 2

A ground sensor

 \rightarrow sees whether the ground is white or black

2 sensors passive mode

 \rightarrow ambiant light

Search space: Elman network

- Optimize weights
- Recurrent NN, thus with internal state
- Optimize in situ

Explore and recharge, 2

Performance

$$\mathcal{F} = \int_{ ext{White zone}} V(1-i)$$

- Lifetime requires a good recharge strategy
- ▶ V cumulative wheel speed $r_i \in [-0.5, 0.5]$

 \rightarrow move

▶ *i* maximum (normalised) of sensor values

 \rightarrow obstacle avoidance

Behavioral, internal, explicit + implicit

Result analysis

During evolution

Fitness (best and average)

Inspecting best behavior

methods inspired from neurophysiology/ethology

Instrumenting the robot

Battery and motor state along lifetime

Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics

Search space

Objective

Reality Gap

Co-evolution

Evolution of morphology

Intrinsic and interactive rewards

Intrinsic rewards

Interactive rewards

Reality gap

- ▶ What if simulator does not reflect the robot or the environment ?
- Optimizes the wrong function

Reality gap, 2

Against in-situ

Finally

Morphological Estimation

Emergent Self-Model

Damage Recovery

Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics

Search space

Objective

Reality Gap

Co-evolution

Evolution of morphology

Intrinsic and interactive rewards

Intrinsic rewards

Interactive rewards

Co-Evolution

Competitive co-evolution

- Goal: survival
- Model: predator-prey

Lotka-Volterra

$$\frac{\partial N_1}{\partial t} = N_1(r_1 - b_1 N_2), \frac{\partial N_2}{\partial t} = N_2(-r_1 + b_2 N_1)$$

- ightharpoonup ightharpoonup population sizes oscillate
- ► Simulation: fixed population size, performance varies
- ▶ Fitness computed by turnament

global, random, with best individuals, ...

Predator-prey

Floreano et Nolfi, 97-99

▶ Predator: sees; is slow

RN $8+5 \rightarrow 2$ recurrent

Prey: is blind; is twice as fast

RN 8 \rightarrow 2 recurrent

Fitness

- Round robin turnament, all predators and preys
- Stops when predator catches the prey (ad hoc sensor)
- .. or after 500 cycles, \approx 50s
- ▶ performance (each) += duration of turnament

Predators must minimize performance Preys must maximize performance

Behavioral, implicit, internal/external

First results

- First predators very bad
- Beware of the Red Queen!

Paredis 97

▶ The final best can be caught by previous best ones!

Hall of fame

Intuition

Also compete with best ancestors

Hall of fame, 2

Turnament among all individuals in all generations Black \equiv predator wins, white \equiv prey wins

Ideal situation / Without Hall of Fame / With Hall of Fame

Final best are better than (almost) all ancestors.

Carl Sims

Goal

- Evolve both morphology and controller
- using a grammar (oriented graph)
- ► Heavy computational cost simulation, several days on Connection Machine – 65000 proc.
- Evolving locomotion (walk, swim, jump)
- and competitive co-evolution (catch an object)

The creatures, Karl Sims

more?

 $http://www.youtube.com/watch?v=JBgG_VSP7f8$

Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics

Search space

Objective

Reality Gap

Co-evolution

Evolution of morphology

Intrinsic and interactive rewards

Intrinsic rewards

Interactive rewards

Contexte

I. Getting motivated. Internal rewards

Delarboulas et al., PPSN 2010

Requirements

- Frugal (computation, memory)
- No ground truth
- 3. Providing "interesting results"

"Human - robot communication"

Goal: self-driven Robots : Defining instincts

Starting from (almost) nothing

Robot ≡ a data stream

$$t \rightarrow x[t] = (\mathit{sensor}[t], \mathit{motor}[t])$$

Trajectory =
$$\{x[t], t = 1 \dots T\}$$

Robot trajectory

Starting from (almost) nothing

Robot ≡ a data stream

$$t \rightarrow x[t] = (\mathit{sensor}[t], \mathit{motor}[t])$$

Trajectory =
$$\{x[t], t = 1 \dots T\}$$

Robot trajectory

Computing the quantity of information of the stream

Given $x_1, \ldots x_n$, visited with frequency $p_1 \ldots p_n$,

$$Entropy(trajectory) = -\sum_{i=1}^{n} p_i \log p_i$$

Conjecture

Controller quality \(\infty \) Quantity of information of the stream

Building sensori-motor states

Avoiding trivial solutions...

If sensors and motors are continuous / high dimensional

- ▶ then all vectors x[t] are different
- ▶ then $\forall i, p_i = 1/T$; Entropy = log T

... requires generalization

From the sensori-motor stream to clusters

Clusters in sensori-motor space (\mathbb{R}^2)

sequence of points in \mathbb{R}^d sensori-motor states

Trajectory \rightarrow $x_1x_2x_3x_1...$

Clustering

k-Means

- 1. Draw k points $x[t_i]$
- 2. Define a partition C in k subsets C_i

Voronoï cells

$$C_i = \{x/d(x, x[t_i]) < d(x, x[t_j]), j \neq i\}$$

ϵ-Means

1. Init : $C = \{\}$

2. For t = 1 to T

• If $d(x[t], \mathcal{C}) > \epsilon$, $\mathcal{C} \leftarrow \mathcal{C} \cup \{x[t]\}$

Initial site list

loop on trajectory

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (

Curiosity Instinct

Search space

▶ Neural Net, 1 hidden layer.

Definition

- ▶ Controller F + environment \rightarrow Trajectory
- Apply Clustering on Trajectory
- ▶ For each C_i , compute its frequency p_i

$$\mathcal{F}(F) = -\sum_{i=1}^{n} p_i * \log(p_i)$$

Curiosity instinct: Maximizing Controller IQ

Properties

- ▶ Penalizes inaction: a single state \rightarrow entropy = 0
- ▶ Robust w.r.t. sensor noise (outliers count for very little)
- ▶ Computable online, on-board (use ϵ -clustering)
- Evolvable onboard

Limitations: does not work if

Environment too poor

```
(in desert, a single state \rightarrow entropy = 0)
```

Environment too rich

```
(if all states are distinct, Fitness(controller) = log T)
```

both under and over-stimulation are counter-effective.

From curiosity to discovery

Intuition

- ▶ An individual learns sensori-motor states $(x[t_i]$ center of $C_i)$
- ► The SMSs can be transmitted to offspring
- giving the offspring an access to "history"
- ▶ The offspring can try to "make something different"

$fitness(offspring) = Entropy(Trajectory(ancestors \cup offspring))$

NB: does not require to keep the trajectory of all ancestors. One only needs to store $\{C_i, n_i\}$

From curiosity to discovery

Cultural evolution

transmits genome + "culture"

- 1. parent = (controller genome, $(C_1, n_1), \dots (C_K, n_K)$)
- 2. Perturb parent controller \rightarrow offspring controller
- 3. Run the offspring controller and record $x[1], \dots x[T]$
- 4. Run ϵ -clustering variant.

$$Fitness(offspring) = -\sum_{i=1}^{\ell} p_i \log p_i$$

ϵ -clustering variant

Algorithm

1. Init : $C = \{(C_1, n_1), \dots (C_K, n_K)\}$

Initial site list

2. For t = 1 to T

loop on trajectory

- ▶ If $d(x[t], C) > \epsilon$, $C \leftarrow C \cup \{x[t]\}$
- 3. Define $p_i = n_i / \sum_j n_j$

$$Fitness(offspring) = -\sum_{i=1}^{\ell} p_i \log p_i$$

◆ロト ◆個ト ◆差ト ◆差ト 差 りへ

Validation

Experimental setting

Robot = Cortex M3, 8 infra-red sensors, 2 motors. Controller space = ML Perceptron, 10 hidden neurons.

Medium and Hard Arenas

Validation, 2

Plot points in hard arena visited 10 times or more by the 100 best individuals.

PPSN 2010

Partial conclusions

Entropy-minimization

- computable on-board;
- no need of prior knowledge/ground truth
- yields "interesting" behavior
- needs stimulating environment

See also

Robust Intrinsic Motivation

Baranes & Oudeyer 05,07; Oudeyer, NIPS 2012

Overview

Situation of the problem

Policy search

Direct policy search

Evolutionary Robotics

Search space

Objective

Reality Gap

Co-evolution

Evolution of morphology

Intrinsic and interactive rewards

Intrinsic rewards

Interactive rewards

Reinforcement Learning and Rewards

Sutton Barto 1998

Prior knowledge in RL

- ▶ In the form of a Reward function $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- ▶ Find Policy π Maximizing $\mathbb{E}\Big[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}\big(s_t, \pi(s_t)\big)\Big]$

Reinforcement Learning and Rewards

Sutton Barto 1998

Prior knowledge in RL

- ▶ In the form of a Reward function $\mathcal{R}: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$
- ► Find Policy π Maximizing $\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}(s_t, \pi(s_t))\right]$

Bottlenecks

▶ Rewards ≡ ground truth

challenges in-situ

- ▶ In a swarm context \mathcal{R} can be
 - ► Centralized: $\mathcal{R}: (\mathcal{S} \times \mathcal{A}) \times \cdots \times (\mathcal{S} \times \mathcal{A}) \mapsto \mathbb{R}$ (global vision, tractability issues)
 - ▶ Decentralized: $\mathcal{R}_1: (\mathcal{S} \times \mathcal{A}) \mapsto \mathbb{R}, \dots, \mathcal{R}_N: (\mathcal{S} \times \mathcal{A}) \mapsto \mathbb{R}$
 - ► Tractable: Every robot optimize its own reward
 - ▶ Trials and Errors process to tune it

Inverse Reinforcement Learning?

Ng Russell 00, Abbeel Ng 04, Kolter et al. 07, ..

Prior knowledge in Inverse Reinforcement Learning

▶ Expert demonstrates a **good behavior** $\{s_t, a_t, s_{t+1}\}$

Abbeel & Ng 04

Inverse Reinforcement Learning?

Ng Russell 00, Abbeel Ng 04, Kolter et al. 07, ..

Prior knowledge in Inverse Reinforcement Learning

▶ Expert demonstrates a **good behavior** $\{s_t, a_t, s_{t+1}\}$

Abbeel & Ng 04

lacktriangle From this, learn a reward function ${\cal R}$

$$\forall a \neq a_t, Action_Value(s_t, a_t) \geq Action_Value(s_t, a)$$

► Then apply standard RL!

What if no idea about a good behavior

Alan Winfield & Wenguo Liu 08 each point is a robot

Preference-based Policy Learning

Step 1: use expert's feedback to learn the goal (PPL)

Akrour et al. 2011

- Prior knowledge: pairwise preferences over behaviors
- Expert become a critic instead of a performer
- Iterate
 - Agents: Demonstrate a behavior
 - Expert: Compare behavior with previous ones (better/worse)
 - ► Agents: Optimize expert preferences model + exploration term

Preference-based Policy Learning

Step 1: use expert's feedback to learn the goal (PPL)

Akrour et al. 2011

- Prior knowledge: pairwise preferences over behaviors
- Expert become a critic instead of a performer
- Iterate
 - ► Agents: Demonstrate a behavior
 - Expert: Compare behavior with previous ones (better/worse)
 - Agents: Optimize expert preferences model + exploration term

Step 2: reduce expert's burden (APRIL) Akrour et al. 2012

- A hundred of demonstrations to find a satisfying π in our exp.
- ▶ How can we reduce "Expert Sample Complexity"?

Preference-based Policy Learning

Step 1: use expert's feedback to learn the goal (PPL)

Akrour et al. 2011

- Prior knowledge: pairwise preferences over behaviors
- Expert become a critic instead of a performer
- Iterate
 - Agents: Demonstrate a behavior
 - Expert: Compare behavior with previous ones (better/worse)
 - Agents: Optimize expert preferences model + exploration term

Step 2: reduce expert's burden (APRIL) Akrour et al. 2012

- A hundred of demonstrations to find a satisfying π in our exp.
- How can we reduce "Expert Sample Complexity"?
- ► Active Learning!?

Step 1. Preference-based Policy Learning

- 1. Demonstrate two policies
- 2. Ask the user her preference
- 3. Train a preference model ${\cal J}_t$

SVM ranking

- 4. Self-train: find a policy π maximizing \mathcal{J}_t
- 5. ... $+\alpha_t$ Novelty adaptive exploration wrt archive
- 6. Demonstrate π , iterate

 $ightharpoonup \alpha_t$ increases when success

Which space?

Environment helps!

Parametric Representation policy π in \mathbb{R}^D

NN weight vector

▶ Behavioral Representation $\pi \to \text{trajectory} \to \text{histogram of sensorimotor states } \mathbb{R}^d$

Comments

- Expert interested in robot behavior (not in NN weights)
- ▶ Mapping $\mathbb{R}^D \mapsto \mathbb{R}^d$ non Lipschitz small variations in $\mathbb{R}^D \to large$ variations in \mathbb{R}^d
 - ightarrow Learn the expert's preference model in \mathbb{R}^d

Modelling the expert's preferences

Akrour et al., 2011

A system of values V

- For *i*-th sensorimotor state, a weight v[i]
- Map π onto its sms histogram $p_{\pi}[i]$

1 . . . *d*

$$V(\pi) = \langle v, p_{\pi} \rangle$$

Rank-based learning

Joachims 05

Given $\pi^{(1)} \prec \ldots \prec \pi^{(k)}$, minimize

$$\frac{1}{2}||w||^2$$

subject to

$$\langle w, p_{\pi}^{\ell} \rangle < \langle w, p_{\pi}^{\ell+1} \rangle + 1 \quad \ell = 1 \dots k - 1$$

Validation

Getting out of a maze

Comments

- ► PPL_d reaches the goal after 39 interactions (saves 3/4 interactions)
- ▶ PPL_D inefficient; Novelty search (Stanley 2010) inefficient.

Validation, 2

Coordinated exploration of an arena

Two independent robots, operated with same controller; goal is to maximize the number of zones simultaneously visited by both

robots.

Validation, cont'd

Comments

- More challenging goal no visual primitive (see other robot, see an obstacle
- ▶ PPL_d efficient (saves 9/10 interactions)
- ▶ PPL_D inefficient; Novelty search (Stanley 2010) very inefficient (large search space).

What if we choose $\mathbf{u} = \arg\max J_w(u)$?

What if we choose $\mathbf{u} = \arg\max J_w(u)$?

- ▶ Does not favor discovery of novel sensori-motor states
- ▶ No notion of Information Gain

What if we choose $\mathbf{u} = \arg\max J_w(u)$?

- ▶ Does not favor discovery of novel sensori-motor states
- ▶ No notion of Information Gain

Proposal

Select \mathbf{u} maximizing Expected Utility of Selection (EUS) of candidate \mathbf{u} w.r.t \mathcal{U}_t Viappiani & Boutilier 10

What if we choose $\mathbf{u} = \arg\max J_w(u)$?

- ▶ Does not favor discovery of novel sensori-motor states
- ▶ No notion of Information Gain

Proposal

Select ${\bf u}$ maximizing Expected Utility of Selection (EUS) of candidate ${\bf u}$ w.r.t \mathcal{U}_t Viappiani & Boutilier 10

$$EUS(u; \mathcal{U}_t) = \mathbb{E}_w[\max(\langle w, u \rangle, \langle w, u_t^* \rangle)]$$

What if we choose $\mathbf{u} = \arg\max J_w(u)$?

- ▶ Does not favor discovery of novel sensori-motor states
- ▶ No notion of Information Gain

Proposal

Select ${\bf u}$ maximizing Expected Utility of Selection (EUS) of candidate ${\bf u}$ w.r.t \mathcal{U}_t Viappiani & Boutilier 10

$$EUS(u; \mathcal{U}_t) = \mathbb{E}_w[\max(\langle w, u \rangle, \langle w, u_t^* \rangle)]$$

$$u \succ u^*$$

$$\mathbb{E}_{w \in W^+}[\langle w, u \rangle]$$

What if we choose $\mathbf{u} = \arg\max J_w(u)$?

- Does not favor discovery of novel sensori-motor states
- ▶ No notion of Information Gain

Proposal

Select \mathbf{u} maximizing Expected Utility of Selection (\mathbf{EUS}) of candidate \mathbf{u} w.r.t \mathcal{U}_t Viappiani & Boutilier 10

$$EUS(u; \mathcal{U}_t) = \mathbb{E}_w[\max(\langle w, u \rangle, \langle w, u_t^* \rangle)]$$

$$u \succ u^*$$

$$\mathbb{E}_{w \in W^+}[\langle w, u \rangle] + \mathbb{E}_{w \in W^-}[\langle w, u_t^* \rangle]$$

EUS Intractable (in practice, $dim(\mathbf{u}) > 1000$)

► All preference constraints define a version space

EUS Intractable (in practice, $dim(\mathbf{u}) > 1000$)

- ► All preference constraints define a version space
- A candidate behavior u splits the VS in two

EUS Intractable (in practice, $dim(\mathbf{u}) > 1000$)

- ► All preference constraints define a version space
- A candidate behavior u splits the VS in two
- ► w⁺ and w⁻ solution of the associated ranking problem

EUS Intractable (in practice, $dim(\mathbf{u}) > 1000$)

- ► All preference constraints define a version space
- A candidate behavior u splits the VS in two
- ▶ w⁺ and w⁻ solution of the associated ranking problem

Approximated Expected Utility of Selection

$$AEUS(\mathbf{u}; \mathcal{U}_t) = \frac{\langle w^+, \mathbf{u} \rangle}{F^+} + \frac{\langle w^-, \mathbf{u}_t^* \rangle}{F^-}$$

Policy selection criteria

Version space of consistent estimates

$$\pi_t = \arg\max_{\pi} \mathbb{E}_{\mathbf{U} \sim \pi}[AEUS(u)]$$

APRIL Algorithm

- ▶ $\pi_0 \leftarrow random$
- $\mathbf{u}_0 = \text{demonstration of } \pi_0$
- ightharpoonup Archive $\mathcal{U}_0 = \{\mathbf{u}_0\}$
- ▶ $FORt = 0 \rightarrow T$ (while **Expert** cooperates)
 - (R) Select $\pi_{t+1} = \arg \max \{\mathbb{E}_{u \sim \pi}[AEUS(\mathbf{u}; \mathcal{U}_t)]\}$
 - (R) Demonstrate \mathbf{u}_{t+1} from policy π_{t+1} to the expert
 - (E) Expert ranks \mathbf{u}_{t+1} and archive \mathcal{U}_t is updated.

ENDFOR

Experimental Validation of *AEUS*

- Sample w* ∈ d-dimensional L₂-unit-sphere
- $S = \{\mathbf{u}_1, \dots \mathbf{u}_{1000}\}$ sampled unif. from L_1 -unit-sphere
- Find arg max_{u∈S}(w*, u) using minimal number of pairwise comparisons
- Compare AEUS with SEUS (SEUS = sample 10,000 w in the VS to approx. EUS)
- Result: AEUS matches closely SEUS!

Policy Learning Tasks

APRIL vs IRL

- ▶ Two RL benchmarks: Mountain Car and Cancer Treatment
- What's the cost of not having a demonstration as input?
- ▶ 15 pairwise comparisons!

APRIL vs PPL

► Huge gain compared to non-active variant

Conclusions and Perspective

Learning a Policy

► Can make it with few bits of external information

Weakness

Computational heavy (succession of optimization problems)

Next

- ▶ Better analysis of the *AEUS* approximation
- Multiple instance ranking