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Motivations: It is time for a 3rd programming age
1970s Specifications Languages & thm proving

1990s Programming by Examples Pattern recognition & ML
2010s Interactive Learning and Optimization

• Visual rendering Brochu et al. 2010

• Information retrieval Joachims et al., 2012

• Robotics Knox et al. 2010, Akrour et al., 2012; Wilson et al., 2012; Saxena et al. 2013

Programming by Feedback, overview
Active Computer Critic User

Knowledge-constrained Computation, memory-constrained

Algorithm: Iterate

1 Computer presents the user with a pair of behaviors yt1
, yt2

2 User emits preferences yt1
� yt2

3 Computer updates User’s utility function

4 Computer searches for behavior with best expected posterior utility

Conclusion and Perspectives
•Feasibility of the Programming by Feedback paradigm.

One could carry through the organization of an intelligent
machine with only two interfering inputs, one for pleasure
or reward, and the other for pain or punishment.

• Importance of noise: all users make mistakes. The computer must trust
the user to a limited extent. Beware that computer distrust increases
the user mistakes.

•Next: Identifying the sub-behaviors responsible for the expert’s
like/dislikes, taking inspiration from Wilson et al. 2012

•Next: Accounting for the variance of the behaviors associated to a
solution (multi-objective optimization).

Formally
X (IRD) Search space, solution space (controllers in RL)
Y (IRd) Evaluation space (behaviors, trajectories, demonstrations)
True utility function U∗ (with unknown w∗ in W ):

U : Y 7→ IR,U(y) = 〈w∗, y〉

Modelling the user’s competence: Noise model δ ∼ U [0,M ]

Given preference margin z = 〈w∗, y − y ′〉

P(y ≺ y ′ | w∗, δ) =


0 if z < −δ
1 if z > δ
δ+z
2δ otherwise

0.5

−δ δ

Error Probability

z

Learning the user’s utility function find θt posterior on W
Proposition. Given evidence Ut = {y0, y1, . . . ; (yi1 � yi2), i = 1 . . . t},

θt(w) ∝
∏

i=1,t P(yi1 � yi2 | w)

=
∏

i=1,t

(
1
2 + wi

2M

(
1 + log M

|wi |

))
with wi = 〈w, yi1 − yi2〉, capped to [−M ,M ].

Most informative demonstrations (y , y ′) ?

Expected utility of selection:

EUS(y , y ′) = IEθt[〈w, y − y ′〉 > 0] . U(θ+
t , y)

+ IEθt[〈w, y − y ′〉 < 0] . U(θ−t , y
′)

Expected posterior utility:

EPU(y , y ′) = IEθt[〈w, y − y ′〉 > 0] . maxyU(θ+, y)

+ IEθt[〈w, y − y ′〉 < 0] . maxyU(θ−, y)

= IEθt[〈w, y − y ′〉 > 0] . U(θ+, y∗)

+ IEθt[〈w, y − y ′〉 < 0] . U(θ−, y ′∗)

Therefore Viappiani & Boutilier 10

Find argmax EUS(y , y ′)

Optimization in the demonstration space
Proposition. EUSnoiseless(y, y′)− L ≤ EUSnoise(y, y′) ≤ EUSnoiseless(y, y′)

Proposition. EUS∗,noiselesst − L ≤ EPU∗,noiset ≤ EUS∗,noiselesst + L

Optimization in the solution space

•Find argmax EUS(y∗t , y) decreases cognitive burden

•Given the mapping Φ: Solution 7→ Demonstration space,

IEΦ[EUSNL(Φ(x), y∗t )] ≥ EUSNL(ȳ, y∗t )

•Draw w0 ∼ θt and let x1 = argmax 〈w0, ȳ〉
Iteratively, find xi+1 = argmax 〈IEθi[w], ȳ〉, with θi posterior with
ȳi > ȳ∗t .
Proposition. The sequence monotonically converges toward a local
optimum of EUSnoiseless.

Experimental study
Grid world: Discrete Case, no Generative Model
25 states, 5 actions, horizon 300, 50% transition motionless
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Sensitivity study wrt user’s competence (ME) and computer trust (MA):
a cumulative (dis)advantage phenomenon

The number of (emulated) user mistakes increases as the computer underestimates the

user’s competence. For low MA, the computer learns faster, submits more relevant

demonstrations to the user, thus priming a virtuous educational process.

The Cartpole: Continuous Case, no Generative Model
State space IR2 (the angle and angular velocity of the pendulum), 3
actions; demonstration length 3,000.
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Demonstration space Y = IR9 (feature = Gaussian in state space).
Simulated user’s feedback: best demonstration is the longest one (+
noise). True utility: fraction of the demonstration in equilibrium.

Two interactions required on average to solve the cartpole
problem, irrespective of the noise model hyper-parameters

The Bicycle: Continuous Case, with Generative Model
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State space IR4, action space
IR2, demonstration length ≤ 30, 000. Solution
space X ⊆ IR210 (weight vector of a 1-layer
feedforward NN with 4 input, 29 hidden neurons
and 2 output). Optimization component:
CMA-ES black box optimization Hansen et al., 2001

as LSPI fails with the estimated utility function.

15 interactions required on average to solve the bicycle
problem for the low noise setting (ME = MA = 1).

Improves on the state of the art: circa 20 queries required with discrete action space in

Wilson et al. 2012; explained from the more compact search space (V as opposed to Q).

The Nao: Training in-situ
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Goal: reaching a given state.

Transition matrix estimated from 1,000

random (s, a, s ′) triplets. Demonstration

length 10, initial state is fixed.


