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Introduction

• Data often come as (sampling of) metric spaces or sets/spaces endowed with a
similarity measure with, possibly complex, topological/geometric structure.

• Topological Data Analysis (TDA):
- infer relevant topological and geometric features of these spaces.
- take advantage of topol./geom. information for further processing of data
(classification, recognition, learning, clestering,...).

[distribution of galaxies]
[Non-rigid shape database]
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• Build a geometric filtered simplicial complex on top of X̂m → multiscale topol.
structure.

• Compute the persistent homology of the complex → multiscale topol. signature.

• Compare the signatures of “close” data sets → robustness and stability results.

• Statistical properties of signatures
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Filtered simplicial complexes

Example (used all along the talk): Let (X, dX) be a metric space.
The Vietoris-Rips complex Rips(X) is defined by: for a ∈ R,

[x0, x1, · · · , xk] ∈ Rips(X, a)⇔ dX(xi, xj) ≤ a, for all i, j

• simplicial complex: generalizes the notion of neighboring graph to
higher dimensions by adding triangles,tetrahedra,...

• filtered simplicial complex = nested family of simplicial complexes
indexed by R



Persistent homology of filtered complexes

• An efficient way to encode the evolution of
the topology (homology) of families of nested
spaces (filtered complex, sublevel sets,...).

• Multiscale topological information.

• Barcodes/persistence diagrams can be effi-
ciently computed.

• Stability properties

Rips parameter
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Stability properties

“Stability theorem”: Close spaces/data sets have close persistence diagrams!

If X and Y are pre-compact metric spaces, then

db(dgm(Rips(X)), dgm(Rips(Y))) ≤ dGH(X,Y).

Bottleneck distance:
a matching distance
between diagrams

Gromov-Hausdorff distance

Rem: this a particular case of a more general theorem [C.-de Silva-Oudot 2013].



Stability properties
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Use the metric on the space of per-
sistence diagrams.[C., Cohen-Steiner, Guibas, Mémoli, Oudot ’09]

Example: Application to non rigid shape classification.

• Non rigid shapes in a same class are almost isometric, but computing Gromov-
Hausdorff distance between shapes is extremely expensive.

• Compare diagrams of sampled shapes instead of shapes themselves.

→ Other applications in image classifications, object recognition, clustering,...



Convergence rates of persistence diagrams
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(M, ρ) metric space

µ a probability measure with compact support Xµ.

Sample m points
according to µ.

Build topol.
structure

Persistent
homology

Assume that µ is (a, b)-standard: ∀x ∈ Xµ, ∀r > 0, µ(B(x, r)) ≥ min(arb, 1).

E
[
db(dgm(Rips(Xµ)), dgm(Rips(X̂m)))

]
≤ C

(
lnm

m

)1/b

The convergence rate is optimal among (a, b) standard measures, whatever the
choice of the estimator of dgm(Rips(Xµ)) (minimax convergence rate).



To do more statistics: persistence landscapes
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0 otherwise.
Persistence landscape [Bubenik 2012]:

λD(k, t) = kmax
p∈D

Λp(t), t ∈ R, k ∈ N,

where kmax is the kth largest value in the set.

Stability: For any t ∈ R and any k ∈ N, |λD(k, t)− λD′(k, t)| ≤ dB(D,D′).



To do more statistics: persistence landscapes
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• Persistence encoded as an element of a functional space (vector space!).

• Expectation of distribution of landscapes is well-defined and can be approximated
from average of sampled landscapes.

• process point of view: convergence results and convergence rates → confidence
intervals can be computed using bootstrap.



(Sub)sampling and stability of expected landscapes

X̂m Rips(X̂m)(M, ρ, µ)
X1, X2, · · · , Xm

i.i.d. sampled
according to µ.

Xµ compact

Λµ,m(t) = EP [λ(t)]

µ⊗m
λRips(X̂m)

Φ

P = Φ∗(µ
⊗m)

Theorem: Let (M, ρ) be a metric space and let µ, ν be proba measures on M with
compact supports. We have

‖Λµ,m − Λν,m‖∞ ≤ m
1
pWp(µ, ν)

where Wp denotes the Wasserstein distance with cost function ρ(x, y)p.

Consequences:
• Subsampling: efficient and easy to parallelize algorithm to infer topol. information

from huge data sets.

• Robustness to outliers.

• R package (released soon) +Gudhi library: https://project.inria.fr/gudhi/software/



(Sub)sampling and stability of expected landscapes

(Toy) Example: Accelerometer data from smartphone.

- spatial time series (accelerometer data from the smarphone of users).
- no registration/calibration preprocessing step needed to compare!



Conclusion

• Persistent diagrams of geometric complexes built on top of data provide a very
general, flexible way to infer relevant multiscale topological information.

• Although they live in a “non-friendly” metric space, persistence diagrams have
good statistical properties.

• The convergence results are indeed more general:
- extend to other families of filtered simplicial complexes (Čech-complexes,
witness complexes,...)
- extend to non-metric spaces endowed with a similarity measure.

• Subsampling, averaging:
→ robust topological inference under perturbations of the measure µ.
→ very fast and easy to parallelize computation of topological feature for huge
data.
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witness complexes,...)
- extend to non-metric spaces endowed with a similarity measure.

• Subsampling, averaging:
→ robust topological inference under perturbations of the measure µ.
→ very fast and easy to parallelize computation of topological feature for huge
data.

Thank you for your attention!
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