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Who are we

Parsys/Postale Team

■ Joint LRI/INRIA team
■ 6 permanents researchers
■ 8 PHDs

Research interests

■ Algorithms for Computer Vision, Linear Algebra (LAPACK)
■ High-Level parallel programming tools (Boost.SIMD, NT2)
■ Hardware Exploration
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The hardware landscape

Decades of hardware improvements

■ Scientic Computing now drives most hardware innovations
■ Current Solution: Parallel architectures
■ Machines become more and more complex

The Game Changing Data Size

■ One example: the Large Hadron Collider
□ 1Gb of data per events
□ 1000+ events per experiments
□ dozens of experiments

■ Moving from on-site HPC clusters to Cloud computing
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Challenges

From HPC to Big Data

■ HPC Hardware is not adapted to Big Data issues
■ Design efficient Big Data software tools

From Big Data to HPC

■ From experiments to simulation to analytics
■ Increasing size of HPC simulations
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The Usability Challenges of HPC

Single Core Era

Performance

Expressiveness
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C++

Java

Multi-Core/SIMD Era
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Threads
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Heterogenous Era
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Designing tools for Scientic Computing

Challenges

1. Be non-disruptive

2. Domain driven optimizations

3. Provide intuitive API for the user

4. Support a wide architectural landscape

5. Be efficient

Our Approach

■ Design tools as C++ libraries (1)
■ Design these libraries as Domain Specic Embedded Language (DSEL) (2+3)
■ Use Parallel Skeletons as parallel components (4)
■ Use Generative Programming to deliver performance (5)
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Domain Specic Embedded Languages

What’s an DSEL ?
■ DSL = Domain Specic Language
■ Declarative language, easy-to-use, tting the domain
■ DSEL = DSL within a general purpose language

DSEL in practice

■ Relies on operator overload abuse
■ Carry semantic information around code fragment
■ Library like code is self-aware of optimizations

Exploiting DSEL

■ At the expression level: code generation for arbitrary hardware
■ At the function level: inter-procedural optimizations
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Parallel DSEL in practice

Objectives

■ Apply DSEL generation techniques for different kind of hardware
■ Demonstrate low cost of abstractions
■ Demonstrate applicability of skeletons

Our contribution

■ BSP++ : Generic C++ BSP for shared/distributed memory
■ Quaff: DSEL for skeleton programming
■ B.SIMD: DSEL for portable SIMD programming
■ NT2: M like DSEL for scientic computing
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NT2

A Scientic Computing Library

■ Provide a simple, M-like interface for users
■ Provide high-performance computing entities and primitives
■ Easily extendable

Components

■ Use SIMD for in-core optimizations
■ Use recursive parallel skeletons
■ Code is made independant of architecture and runtime
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Parallel Skeletons in a nutshell

Basic Principles [COLE 1989]

■ There are patterns in parallel applications
■ Those patterns can be generalized in Skeletons
■ Applications are assembled as combination of such patterns

Functionnal point of view

■ Skeletons are Higher-Order Functions
■ Skeletons support a compositionnal semantic
■ Applications become composition of state-less functions
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Skeleton in Big Data

The MapReduce case

■ MapReduce : abstraction of parallel processing
■ Implemented on a large subset of settings (Hadoop, Intel DAH)
■ Successful as it shields users from the details of parallelism

That’s quite innovative I guess ?

■ MapReduce is a small application of Parallel Skeletons
■ Hadoop is a smart implementation of those skeletons
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The Numerical Template Toolbox

Principles

■ table<T,S> is a simple, multidimensional array object that exactly mimics
M array behavior and functionalities

■ 500+ functions usable directly either on table or on any scalar values as in M

How does it works

■ Take a .m le, copy to a .cpp le
■ Add #include <nt2/nt2.hpp> and do cosmetic changes
■ Compile the le and link with libnt2.a
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NT2 - From M ...

A1 = 1:1000;
A2 = A1 + randn(size(A1));

X = lu(A1*A1’);

rms = sqrt( sum(sqr(A1(:) - A2(:))) / numel(A1) );
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NT2 - ... to C++

table <double > A1 = _(1. ,1000.);
table <double > A2 = A1 + randn(size(A1));

table <double > X = lu( mtimes(A1 , trans(A1) );

double rms = sqrt( sum(sqr(A1(_) - A2(_))) / numel(A1) );
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Some results: Smith-Waterman Algorithm

Platform Size Hardware Best GCUPs
Speedup

State of the Art
cluster (MPI) 24,894,250 64 cores 33x 1.45

2 clusters (MPI) 816,394 20 procs 14x 0.37
cluster (MPI) 1,100,000 60 procs 39x 0.25

cluster (MPI/OpenMP) 2,000 24 cores 14x 4.38
Our results

cluster (MPI) 1,072,950 128 cores 73x 6.53
cluster (MPI/OpenMP) 1,072,950 128 cores 116x 10.41

OpenMP 1,072,950 16 cores 16x 0.40
Hopper (MPI) 5,303,436 3072 cores 260x 3.09

Hopper (MPI+OpenMP) 24,894,269 6144 cores 5664x 15,5
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Hardware Challenges for Big Data

Hardware challenges

■ Modern machines relies on cache and data locality
■ HPC systems are over-provisioned in CPUs, under-provisioned in I/O
■ How to design data-friendly HPC systems ?
■ How to apply HPC techniques to highly irregular problems ?

Software challenges for Big Data

■ HPC softwares aggregates 20+ years of expertise
■ Lots of efficient implementations of classical tools
■ Shouldn’t we do the same for Big Data ?
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Conclusion

Common Challenges

■ Simplify access to HPC systems to data scientists
■ Explore new memory oblivious algorithms
■ Apply HPC tools design to create Big Data tools
■ Brigde the gap between the communities

Impact of Big Data on HPC

■ Isolate new parallel paradigms
■ Replace brute force HPC with data-inspired algorithms
■ Drive the design of new hardware systems
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Thanks for your attention


