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Research interests

Algorithms for Computer Vision, Linear Algebra (LAPACK)
High-Level parallel programming tools (Boost.SIMD, NT2)

Hardware Exploration
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Scientific Computing now drives most hardware innovations

Current Solution: Parallel architectures
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Decades of hardware improvements

Scientific Computing now drives most hardware innovations
Current Solution: Parallel architectures

Machines become more and more complex

The Game Changing Data Size

One example: the Large Hadron Collider

| Gb of data per events
1000+ events per experiments
dozens of experiments

Moving from on-site HPC clusters to Cloud computing
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From HPC to Big Data

HPC Hardware is not adapted to Big Data issues

Design efficient Big Data software tools
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HPC Hardware is not adapted to Big Data issues

Design efficient Big Data software tools

From Big Data to HPC

From experiments to simulation to analytics

Increasing size of HPC simulations




The Usability Challenges of HPC
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Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)
Use Parallel Skeletons as parallel components (4)

Use Generative Programming to deliver performance (5)
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Domain Specific Embedded Languages

What'’s an DSEL ?
DSL = Domain Specific Language

Declarative language, easy-to-use, fitting the domain

DSEL = DSL within a general purpose language

DSEL in practice

Relies on operator overload abuse
Carry semantic information around code fragment

Library like code is self-aware of optimizations

Exploiting DSEL

At the expression level: code generation for arbitrary hardware

At the function level: inter-procedural optimizations
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Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware

Demonstrate low cost of abstractions

Demonstrate applicability of skeletons
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BSP++ : Generic C++ BSP for shared/distributed memory
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Boost.SIMD: DSEL for portable SIMD programming
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NT?

A Scientific Computing Library

Provide a simple, MaTLAB-like interface for users
Provide high-performance computing entities and primitives

Easily extendable

Components

Use SIMD for in-core optimizations

Use recursive parallel skeletons

Code is made independant of architecture and runtime




Parallel Skeletons in a nutshell

Basic Principles [COLE 1989]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns
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Parallel Skeletons in a nutshell

Basic Principles [COLE 1989]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

Functionnal point of view

Skeletons are Higher-Order Functions
Skeletons support a compositionnal semantic

Applications become composition of state-less functions
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Skeleton in Big Data

The MapReduce case

MapReduce : abstraction of parallel processing
Implemented on a large subset of settings (Hadoop, Intel DAH)

Successful as it shields users from the details of parallelism
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Skeleton in Big Data

The MapReduce case

MapReduce : abstraction of parallel processing
Implemented on a large subset of settings (Hadoop, Intel DAH)

Successful as it shields users from the details of parallelism

That’s quite innovative | guess ?

MapReduce is a small application of Parallel Skeletons

Hadoop is a smart implementation of those skeletons
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The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB
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The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp> and do cosmetic changes
Compile the file and link with 1ibnt2.a
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NT2 - From MATLAB ...

Al = 1:1000;
A2 = A1 + randn(size(A1));

X = Lu(AT*A1’);

rms = sqrt( sum(sqr(AT(:) - A2(:))) / numel(A1l) );
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NT2 - .. to C++

table<double> A1 = _(1.,1000.);
table<double> A2 = A1 + randn(size(A1));

table<double> X = lu( mtimes (A1, trans(Al) );

double rms = sqrt( sum(sqr(A1(_) - A2(_))) / numel(Al) );
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Some results: Smith-Waterman Algorithm

Platform Size Hardware Best GCUPs
Speedup
State of the Art
cluster (MPI) 24,894,250 64 cores 33x 1.45
2 clusters (MPI) 816,394 20 procs 14x 0.37
cluster (MPI) 1,100,000 60 procs 39x 0.25
cluster (MP1/OpenMP) 2,000 24 cores 14x 4.38
Our results

cluster (MPI) 1,072,950 128 cores 73x 6.53
cluster (MPI/OpenMP) 1,072,950 128 cores I'16x 10.41
OpenMP 1,072,950 |16 cores | 6x 0.40
Hopper (MPI) 5,303,436 | 3072 cores 260x 3.09
Hopper (MPI+OpenMP) | 24,894,269 | 6144 cores 5664x 15,5
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Hardware Challenges for Big Data

Hardware challenges

Modern machines relies on cache and data locality

HPC systems are over-provisioned in CPUs, under-provisioned in I/0O
How to design data-friendly HPC systems ?

How to apply HPC techniques to highly irregular problems ?
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Conclusion

Common Challenges

Simplify access to HPC systems to data scientists
Explore new memory oblivious algorithms
Apply HPC tools design to create Big Data tools
Brigde the gap between the communities
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Conclusion

Common Challenges

Simplify access to HPC systems to data scientists
Explore new memory oblivious algorithms
Apply HPC tools design to create Big Data tools

Brigde the gap between the communities

Impact of Big Data on HPC

Isolate new parallel paradigms
Replace brute force HPC with data-inspired algorithms
Drive the design of new hardware systems
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Thanks for your attention



