HPC and Parallel Architectures for Big Data

Joel Falcou

PARSYS - POSTALE Team
LRI - INRIA

08/07/2014

Who are we

Parsys/Postale Team

Joint LRI/INRIA team
6 permanents researchers
8 PHDs

Who are we

Parsys/Postale Team

Joint LRI/INRIA team
6 permanents researchers
8 PHDs

Research interests

Algorithms for Computer Vision, Linear Algebra (LAPACK)
High-Level parallel programming tools (Boost.SIMD, NT2)

Hardware Exploration

The hardware landscape

Decades of hardware improvements

Scientific Computing now drives most hardware innovations

Current Solution: Parallel architectures

Machines become more and more complex

The hardware landscape

Decades of hardware improvements

Scientific Computing now drives most hardware innovations
Current Solution: Parallel architectures

Machines become more and more complex

The Game Changing Data Size

One example: the Large Hadron Collider

| Gb of data per events
1000+ events per experiments
dozens of experiments

Moving from on-site HPC clusters to Cloud computing

3of I8
e

Challenges

From HPC to Big Data

HPC Hardware is not adapted to Big Data issues

Design efficient Big Data software tools

Challenges

From HPC to Big Data

HPC Hardware is not adapted to Big Data issues

Design efficient Big Data software tools

From Big Data to HPC

From experiments to simulation to analytics

Increasing size of HPC simulations

The Usability Challenges of HPC

(Single Core Era

Performance

A
®

) (Multi-Core/SIMD Era

Performance

A

Sequential

I

\ (Heterogenous Era

Performance

z]u

Distributed

I

Sequential

I

Lt
Expressiveness
b,

Lt
Expressiveness
),

Lt
Expressiveness
b,

Designing tools for Scientific Computing

Challenges

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user

Designing tools for Scientific Computing

Challenges

Be non-disruptive
Domain driven optimizations

Provide intuitive API for the user

Support a wide architectural landscape

Designing tools for Scientific Computing

Challenges

Be non-disruptive
Domain driven optimizations
Provide intuitive API for the user

Support a wide architectural landscape

Be efficient

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)

Use Parallel Skeletons as parallel components (4)

Designing tools for Scientific Computing

Challenges

Be non-disruptive

Domain driven optimizations

Provide intuitive API for the user
Support a wide architectural landscape

Be efficient

Our Approach

Design tools as C++ libraries (1)
Design these libraries as Domain Specific Embedded Language (DSEL) (2+3)
Use Parallel Skeletons as parallel components (4)

Use Generative Programming to deliver performance (5)

6of 18
e
[

Domain Specific Embedded Languages

What'’s an DSEL ?
DSL = Domain Specific Language

Declarative language, easy-to-use, fitting the domain

DSEL = DSL within a general purpose language

DSEL in practice

Relies on operator overload abuse
Carry semantic information around code fragment

Library like code is self-aware of optimizations

Exploiting DSEL

At the expression level: code generation for arbitrary hardware

At the function level: inter-procedural optimizations

70of 18
e

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware

Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Our contribution
BSP++ : Generic C++ BSP for shared/distributed memory
Quaff: DSEL for skeleton programming
Boost.SIMD: DSEL for portable SIMD programming
NT2: MatLAB like DSEL for scientific computing

8of I8
e

Parallel DSEL in practice

Objectives

Apply DSEL generation techniques for different kind of hardware
Demonstrate low cost of abstractions

Demonstrate applicability of skeletons

Our contribution
BSP++ : Generic C++ BSP for shared/distributed memory
Quaff: DSEL for skeleton programming
Boost.SIMD: DSEL for portable SIMD programming
NT2: MatLAB like DSEL for scientific computing

8of I8
e

NT?

A Scientific Computing Library

Provide a simple, MaTLAB-like interface for users
Provide high-performance computing entities and primitives

Easily extendable

Components

Use SIMD for in-core optimizations

Use recursive parallel skeletons

Code is made independant of architecture and runtime

Parallel Skeletons in a nutshell

Basic Principles [COLE 1989]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

100f 18
e —

Parallel Skeletons in a nutshell

Basic Principles [COLE 1989]

There are patterns in parallel applications
Those patterns can be generalized in Skeletons

Applications are assembled as combination of such patterns

Functionnal point of view

Skeletons are Higher-Order Functions
Skeletons support a compositionnal semantic

Applications become composition of state-less functions

100f 18
e —

Skeleton in Big Data

The MapReduce case

MapReduce : abstraction of parallel processing
Implemented on a large subset of settings (Hadoop, Intel DAH)

Successful as it shields users from the details of parallelism

I1of 18
e —

Skeleton in Big Data

The MapReduce case

MapReduce : abstraction of parallel processing
Implemented on a large subset of settings (Hadoop, Intel DAH)

Successful as it shields users from the details of parallelism

That’s quite innovative | guess ?

MapReduce is a small application of Parallel Skeletons

Hadoop is a smart implementation of those skeletons

I1of 18
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

120f 18
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file

120f 18
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp> and do cosmetic changes

120f 18
e —

The Numerical Template Toolbox

Principles

table<T, S> is a simple, multidimensional array object that exactly mimics
MATLAB array behavior and functionalities

500+ functions usable directly either on table or on any scalar values as in MATLAB

How does it works

Take a .mfile, copy to a . cpp file
Add #include <nt2/nt2.hpp> and do cosmetic changes
Compile the file and link with 1ibnt2.a

120f 18
e —

NT2 - From MATLAB ...

Al = 1:1000;
A2 = A1 + randn(size(A1));

X = Lu(AT*A1’);

rms = sqrt(sum(sqr(AT(:) - A2(:))) / numel(A1l));

130f 18

NT2 - .. to C++

table<double> A1 = _(1.,1000.);
table<double> A2 = A1 + randn(size(A1));

table<double> X = lu(mtimes (A1, trans(Al));

double rms = sqrt(sum(sqr(A1(_) - A2(_))) / numel(Al));

14 0of 18
e —

Some results: Smith-Waterman Algorithm

Platform Size Hardware Best GCUPs
Speedup
State of the Art
cluster (MPI) 24,894,250 64 cores 33x 1.45
2 clusters (MPI) 816,394 20 procs 14x 0.37
cluster (MPI) 1,100,000 60 procs 39x 0.25
cluster (MP1/OpenMP) 2,000 24 cores 14x 4.38
Our results

cluster (MPI) 1,072,950 128 cores 73x 6.53
cluster (MPI/OpenMP) 1,072,950 128 cores I'16x 10.41
OpenMP 1,072,950 |16 cores | 6x 0.40
Hopper (MPI) 5,303,436 | 3072 cores 260x 3.09
Hopper (MPI+OpenMP) | 24,894,269 | 6144 cores 5664x 15,5

150f 18
e —

Hardware Challenges for Big Data

Hardware challenges

Modern machines relies on cache and data locality

HPC systems are over-provisioned in CPUs, under-provisioned in I/0O
How to design data-friendly HPC systems ?

How to apply HPC techniques to highly irregular problems ?

160f 18
e —

Hardware Challenges for Big Data

Hardware challenges

Modern machines relies on cache and data locality

HPC systems are over-provisioned in CPUs, under-provisioned in I/0O
How to design data-friendly HPC systems ?

How to apply HPC techniques to highly irregular problems ?

160f 18
e —

Hardware Challenges for Big Data

Hardware challenges

Modern machines relies on cache and data locality

HPC systems are over-provisioned in CPUs, under-provisioned in I/0O
How to design data-friendly HPC systems ?

How to apply HPC techniques to highly irregular problems ?

160f 18
e —

Hardware Challenges for Big Data

Hardware challenges

Modern machines relies on cache and data locality

HPC systems are over-provisioned in CPUs, under-provisioned in I/0O
How to design data-friendly HPC systems ?

How to apply HPC techniques to highly irregular problems ?

Software challenges for Big Data

HPC softwares aggregates 20+ years of expertise
Lots of efficient implementations of classical tools

Shouldn’t we do the same for Big Data ?

160f 18
e —

Hardware Challenges for Big Data

Hardware challenges

Modern machines relies on cache and data locality

HPC systems are over-provisioned in CPUs, under-provisioned in I/0O
How to design data-friendly HPC systems ?

How to apply HPC techniques to highly irregular problems ?

Software challenges for Big Data

HPC softwares aggregates 20+ years of expertise
Lots of efficient implementations of classical tools

Shouldn’t we do the same for Big Data ?

160f 18
e —

Conclusion

Common Challenges

Simplify access to HPC systems to data scientists
Explore new memory oblivious algorithms
Apply HPC tools design to create Big Data tools
Brigde the gap between the communities

17 of 18

Conclusion

Common Challenges

Simplify access to HPC systems to data scientists
Explore new memory oblivious algorithms
Apply HPC tools design to create Big Data tools
Brigde the gap between the communities

17 of 18

Conclusion

Common Challenges

Simplify access to HPC systems to data scientists
Explore new memory oblivious algorithms
Apply HPC tools design to create Big Data tools

Brigde the gap between the communities

17 of 18

Conclusion

Common Challenges

Simplify access to HPC systems to data scientists
Explore new memory oblivious algorithms
Apply HPC tools design to create Big Data tools

Brigde the gap between the communities

Impact of Big Data on HPC

Isolate new parallel paradigms
Replace brute force HPC with data-inspired algorithms
Drive the design of new hardware systems

17 of 18

Thanks for your attention

