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● Metis = Tao + Artelys
● TAO tao.lri.fr, Machine Learning & Optimization

● Joint INRIA / CNRS / Univ. Paris-Sud team
● 12 researchers, 17 PhDs, 3 post-docs, 3 engineers

● Artelys www.artelys.com SME
    - France / US / Canada
    - 50 persons
==> collaboration through common platform

● Activities
● Optimization (uncertainties, sequential)
● Application to power systems

http://www.lri.fr/~teytaud/metis.html
http://www.lri.fr/~teytaud/metis.html
http://www.artelys.com/


  

Fundings
● Inria team Tao

● Lri (Univ. Paris-Sud, Umr Cnrs 8623) 

● FP7 european project (city/factory scale)
 

● Ademe Bia(transcontinental stuff)

● Ilab (with Artelys)

● Indema (associate team with Taiwan)

● Maybe others, I get lost in fundings
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Industrial application
● Building power systems is expensive

power plants, HVDC links, networks...
● Non trivial planning questions

● Compromise: should we move solar power to the 
south and build networks ?

● Is a HVDC connection “x ↔ y” a good idea  ? 

● What we do:
● Simulate the operational level of a given power 

system (this involves optimization of operational 
decisions)

● Optimize the investments



  

● Planning/control

● Pluriannual planning: evaluate marginal costs of hydroelectricity

● Taking into account stochasticity and uncertainties

==> IOMCA (ANR)

● High scale investment studies (e.g. Europe+North Africa)

● Long term (2030 - 2050)

● Huge (non-stochastic) uncertainties

● Investments: interconnections, storage, smart grids, power plants...

==> POST (ADEME)

● Moderate scale (Cities, Factories)

● Master plan optimization

● Stochastic uncertainties

    ==> Citines project (FP7)

Specialization on Power Systems



  

Example: interconnection studies
(demand levelling, stabilized supply)



  

The POST project – supergrids 
simulation and optimization

European subregions:

- Case 1 : electric corridor France / Spain / Marocco

- Case 2 : south-west                                    
                  (France/Spain/Italiy/Tunisia/Marocco)

- Case 3 : maghreb – Central West Europe

       ==> towards a European supergrid

Related
ideas in Asia

Mature technology:HVDC links
(high-voltage direct current)



  

Investment decisions through simulations

● Issues
– Demand varying in time, limited previsibility
– Transportation introduces constraints
– Renewable ==> variability ++

● Methods
– Markovian assumptions ==> wrong
– Simplified models ==> Model error >> optimization error

● Our approach
● Machine Learning on top of Mathematical Programming
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A few milestones

● Linear programming is fast 

● Bellman decomposition: we can split
     short term reward + long term reward

● Folklore result: direct policy search

==> we use all of them



  

Hybridization reinforcement learning / 
mathematical programming

● Math programming
– Nearly exact solutions for a simplified problem
– High-dimensional constrained action space
– But small state space & not anytime

● Reinforcement learning
– Unstable
– Small model bias
– Small / simple action space
– But high dimensional state space & anytime



  

Errors
● Statistical error: due to finite samples (e.g. 

weather data = archive), possibly with bias (climate 
change)

● Statistical model error: due to the error in the 
model of random processes

● Model error: due to system modelling
● Anticipativity error: due to assuming perfect 

forecasts
● Monoactor: due to neglecting interactions 

between actor (social welfare) 
● Optim. error: due to imperfect optimization



  

Plenty of tools
● Dynamic programming based  ==> bad 

modelization of long term dependencies

● Direct policy search: difficult to handle 
constraints ==> bad modelization of systems

● Model predictive control: bad modelization of 
randomness

      ==> we use combined tools



  

I love Direct Policy Search

● What is DPS ?
● Implement a simulator
● Implement a policy / controller
● Replace constants in the policy by free parameters
● Optimize these parameters on simulations

● Why I love it
● Pragmatic, benefits from human expertise
● The best in terms of model error
● But ok it is sometimes slow
● Not always that convenient for constraints



  

We propose specialized DPS

● A special structure for plenty of constraints

● After all, you can use DPS on top of everything, 
just by defining a “good” controller
● DP-based tools have a great representation
● Let us use DP-representations in DPS



  

Dynamic programming tools

Decision at time T = argmax of

        reward over the T next time steps

            + V'(state) x StateAt(t0+T)

with V computed backwards 



  

Direct Value Search

Decision at time T = argmax of

        reward over the T next time steps

            + f(, state) x StateAt(t0+T) 

with  optimized through Direct Policy Search

and f a general function approximator (e.g. 
neural)

Using 
forecasts

as in MPC

As in DPstyle



  

Summary

● Model error: often more important than optim 
error (whereas most works on optim error)

● We propose methodologies
● Compliant with constraints
● More expensive than MPC
● But not more expensive than DP-tools
● Smallest model error
● User-friendly (human expertise)



  

What we propose

● Is ok for correctly specified problems
● Uncertainties which can be modelized by 

probabilities
● Less model error, more optim. error
● Optim. error reduced by big clusters

● Takes into account the challenges in new power 
systems
● Stochastic effects (increased by renewables)
● High scale actions (demand-side management)
● High scale models (transcontinental grids)



  

What we propose

● Open source ?
● Algorithms are public
● Tools are not
● Data/models are not

● Want to join ?
● Room for mathematics
● Room for geeks
● Room for people who like applications



  

Our tools

● Tested on real problems
● Include investment levels

– There are operational decisions
– There are investment decisions

● Parallel
● Expensive



  

Further work

● Nothing on multiple actors (national 
independence ? intern. risk ?)

● Non stochastic uncertainties: how do we 
modelize non-probabilistic uncertainties on 
scientific breakthroughs ? (Wald criterion, 
Savage, Nash, Regret...)



  

Bibliography
● Dynamic Programming and Suboptimal Control: A Survey from 

ADP to MPC. Bertsekas, 2005. (MPC = deterministic forecasts)

● “Newave vs Odin”: why MPC survives in spite of theoretical 
shortcomings

● Dallagi et Simovic (EDF R&D) : "Optimisation des actifs 
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DPS and MPC)
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