Learning graphical models of the brain
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functional MRI (fMRI)

Recordings of brain activity

Brain mapping:

mthe motor system: “move the right hand”
mthe language system: “say three names of animals”
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functional MRI (fMRI)

Brain mapping:

The language network

mthe language system: “say three names of animals”
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functional MRI (fMRI)

Brain mapping:

The language network

Interacting sub-systems:
m Sounds
m Lexical access
m Syntax

mthe language system: “say three names of animals”
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The functional connectome _

View of the brain as a set of regions and their
interactions




The functional connectome -

View of the brain as a set of regions and their
interactions

m Intrinsic brain architecture

Biomarkers of pathologies

Learn a
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Human Connectome
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Resting-state fMRI
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1 Graphical structures of brain activity
2 Multi-subject graph learning

3 Beyond /; models
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1 Graphical structures of brain
activity

\ Functional connectome

o _:Graph of interactions between regions
[Varoquaux & Craddock 2013]
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1 From correlations to connectomes
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1 Probabilistic model for interactions

mSimplest data generating process
= multivariate normal:

P(X) x \/ﬁe_%xﬁ:lx

m Model parametrized by inverse covariance matrix,
K = X1 conditional covariances

m Goodness of fit:
likelihood of observed covariance X in model X

L(X|K) = log |K| — trace(X K)
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1 Graphical structure from correlations

Observations P~ Direct connections
Covariance Inverse covariance

Diagonal: Diagonal:
signal variance node innovation
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1 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence

Reflects the large-scale
brain interaction structure
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1 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence

lll-posed problem:
multi-collinearity

= noisy partial correlations

Independence between nodes makes estimation
of partial correlations well-conditionned.

Chicken and egg problem
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1 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence

lll-posed problem:
multi-collinearity

= noisy partial correlations

Independence between nodes makes estimation
of partial correlations well-conditionned.

Joint estimation:
arse inverse covariance
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1 Sparse inverse covariance estimation: penalized

Maximum a posteriori:
m Fit models with a penalty

mSparsity = Lasso-like problem: ¢; penalization

K = argmin LZIK)+ A 0(K) 2o

AU fl

Likelihood \

G Varoquaux [Varoquaux NIPS 2010] [Smith 2011] 4,



1 Sparse inverse covariance estimation: penalized

Maximum a posteriori:
m Fit models with a penalty

mSparsity = Lasso-like problem: ¢; penalization

K= argmin L(Z]|K) 4+ A l1(K)

m Optimal graph
almost dense

) it
i parsity

 Test-data likelihood

5 3.0 3.5 4.0
—log; oA
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1 Sparse inverse covariance estimation: penalized

\VEV'm Bias of /;:

very sparse graphs don’t fit the data
mSparsity = Lasso-like problem: ¢; penalization

K= argmin L(Z]|K) 4+ A l1(K)

m Optimal graph
almost dense

Sparsit
parsity

 Test-data likelihood

5 3.0 3.5 4.0
—log; oA
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1 Sparse inverse covariance estimation: penalized

\WEXw Bias of /;:
1MW very sparse graphs don't fit the data

mSparsity = Lasso-like problem: ¢; penalization
Algorithmic considerations:

m Very ill-conditionned input matrices
m Graph-lasso [Friedman 2008] doesn’t work well

primal-dual algorithm with approximation
when switching from dual to primal [Mazumder, 2012] i{
o m Good success with ADMM : ‘
split optimization: loss solved with SPD matrices
penalty solved with sparse matrices "
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1 Very sparse graphs: greedy construction

@ Sparse inverse covariance algorithm:
PC-DAG [Rutimann & Buhlmann 2009]

Greedy approach

1. PC-alg: fill graph by independence tests
conditioning on neighbors

2. Learn covariance on resulting structure

Good for very sparse graphs

[Varoquaux J. Physio Paris, 2012]
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1 Sparse graphs: greedy construction

Iterate construction alg.
High-degree nodes appear very
quickly

complexity o< exp degree

0 20
Fillingfactor
(percents)

Test data likelihood

Lattice-like

structure with
hubs

[Varoquaux J. Physio Paris, 2012]
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2 Multi-subject graph learning

Not enough data per subject to recover structure

G Varoquaux
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2 Subject-level data scarsity
Sparse recovery for Gaussian graphs
m (1 structure recovery has phase-transitions behaviors

m For Gaussian graphs with s edges, p nodes:
n= (9((5 + p) log p), = o(\/ﬁ) [Lam & Fan 2009]

Need to accumulate data across subjects

Concatenate series = iid data

G Varoquaux 16



2 Graphs on group data

R, ',
=

Sparse grotip
concat b

Sparse
inverse

Likelihood of new data (cross-validation)
Subject data, Y1 -57.1
Subject data, sparse inverse 43.0
Group concat data, ¥ 1 40.6
Group concat data, sparse inverse 41.8

Inter-subect variability

G Varoquaux [Varoquaux NIPS 2010] 17



2 Multi-subject modeling

Common independence structure but different
connection values

(K} = argmin ¥ L(Z°|K®) + Al ({K*})
{Ks>0} =

Multi-subject data fit, Group-lasso penalization
Likelihood

[Varoquaux NIPS 2010]
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2 Multi-subject modeling

Common independence structure but different
connection values

(K} = argmin ¥ L(Z°|K®) + Al ({K*})
{Ks>0} =

Multi-subject data fit, /1 on the connections of
Likelihood the ¢/, on the subjects

[Varoquaux NIPS 2010]
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2 Population-sparse graph perform better

Sparse
inverse

Likelihood of new data (cross-validation) sparsity
Subject data, ¥ 1 -57.1

Subject data, sparse inverse 43.0  60% full
Group concat data, ¥~!  40.6

Group concat data, sparse inverse 41.8  80% full

Group sparse model 45.6  20% full

[Varoquaux NIPS 2010]
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2 Independence structure of brain activity

Subject-sparse

estimate

G Varoquaux
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2 Independence structure of brain activity

G Varoquaux



2 Large scale organization
High-level cognitive function arises from the
interplay of specialized brain regions:

The functional segregation of local areas |[...]

contrasts sharply with their global integration during

perception and behavior [Tononi 1994]

Functional segregation: nodes of connectome
° atomic functions — tonotopy

Global integration: functional networks
high-level functions - language

G Varoquaux 21



2 Large scale organization
High-level cognitive function arises from the
interplay of specialized brain regions:

The functional segregation of local areas |[...]
contrasts sharply with their global integration during
perception and behavior [Tononi 1994]

Scale-free hierarchical integration / segregation

Graph modularity =
divide in communities to
maximize intra-class
connections versus extra-class

[Eguiluz 2005]
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2 Graph cuts to isolate functional communities

mFind communities to maximize modularity:
0 Z A(Ve, Vo) (AV, V)Y
A(V, V) AV, V)
A(V,, V}p): sum of edges going from V, to V,

m Rewrite as an eigenvalue problem [White 2005]

a

= Spectral clustering = spectral embedding + k-means

m Similar to normalized graph cuts

G Varoquaux
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2 Large scale organization




2 Large scale organization

<>>. %%EB%

Neural communities
= large known functional networks




2 Brain integration between communities

Proposed measure for functional integration:

mutual information (Tononi)
[Marrelec 2008, Varoquaux & Craddock 2013]

m Integration:
l, = %Iog det(K,,)
“energy” in network

m Mutual information:

Mcl,cz - IClUC2 - /c1 - /52
“cross-talks” between networks

G Varoquaux
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2 Brain integration between communities

With population prior:
Occipital pole
Default mode network visual areas

Fronto-parietal ) “N\__Lateral visual
network i

Fronto-lateral

Posterior inferior
temporal 2

Right Thalamus

Raw ; Ventral moto
correlations: ntral motor AN\

\ —

Cingulo-insular
network
Auditory 5 Left Putamen

Basal ganglia

[Varoquaux NIPS 2010]
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3 Beyond /; models

S it
parsity

Test-data likelihood

25 3.0 35 4.0
_10g10)\ 25
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3 Weighted-/;: incorporating additional prior
m Not all connections are as likely
Tractography: the physical wiring
Noisy estimate of likelihood of

functional connection

= Provides a soft prior: . ,
anat conn\_
P(func conn) o< exp(——————)
o

Graph MAP estimate:
K= argmin L(E|K) + A6 (K)

/\i’j ~ Ao eXp(_anataconn)

G Varoquaux [Ng MICCAI 2012] 26



3 Weighted-/;: incorporating additional prior

m Not all connections are as likely

Tractography: the physical wiring
Noisy estimate of likelihood of f
functional connection
= Provides a soft prior:

P(func cogalocoxnlo
Limitation:

Tractography estimates unreliable
Graph MAP estimate:

K= argmin L(X|K) + )@()

Aij = Ao exp(— .

[Ng MICCAI 2012] 6

anat conn\&:

anat conn>
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3 Reweighted-/;: learning inhomogenous penalty

Ideas
mAs in regression reweighted /1 [Candes 2008]:
First /1 estimates gives rescaling for penalties
= Support recovery in heteroschedastic settings

Equivalent to non-convex f; approximation
But we have no edge-level residual

m As in stability selection [Meinshausen 2010]:
Edges stable to perturbations most likely

[Phlypo MICCAI 2014]
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3 Reweighted-/;: learning inhomogenous penalty
Perturbations
mWe have many subjects:

run an /1 model per subject

= Posterior probability of edge presence: P;;

fit a binomial
Reweighting
K = argmin £(X|K) + )41 (K)

K>0 \

>\i,j - )\0 PU

G Varoquaux [Phlypo MICCAI 2014] 8



Statistical learning for functional connectomes
fMRI: scarsity of data + low SNR

Graphical Gaussian models: sparse inverse covariance
m /(1 /0l penalty m [terative non convexity

Software: Python, open source
mhttp://scikit-learn.org  mhttp://nilearn.github.io




Statistical learning for functional connectomes

4 mComplex graph with a modular
structure

Occipital pole
Default mode network wsual areas
Fronto-parietal

Medlal visual areas

i 4’. ‘ Laarteeargl visual
Fronto-lateral ,/n\ y'l‘ \\\\ Posterior inferior
.. .. networl ATV VA\ Rgtempora
m [he communities are cognitive s 1 LI
i temporal

networks that link to behavior  oesmow "

m Requires the definition of regions
[Abraham 2013]

’@GaelVaroquaux




	Graphical structures of brain activity
	Multi-subject graph learning
	Beyond 1 models

