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functional MRI (fMRI)
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functional MRI (fMRI)

Brain mapping:

The language network

Interacting sub-systems:
Sounds
Lexical access
Syntax

the language system: “say three names of animals”
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The functional connectome
View of the brain as a set of regions and their
interactions

Intrinsic brain architecture

Biomarkers of pathologies
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Resting-state fMRI
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Outline

1 Graphical structures of brain activity

2 Multi-subject graph learning

3 Beyond `1 models

G Varoquaux 6



1 Graphical structures of brain
activity

Functional connectome
Graph of interactions between regions

[Varoquaux & Craddock 2013]
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1 From correlations to connectomes

Conditional independence structure?
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1 Probabilistic model for interactions
Simplest data generating process

= multivariate normal:

P(X) ∝
√
|Σ−1|e−1

2XT Σ−1X

Model parametrized by inverse covariance matrix,
K = Σ−1: conditional covariances

Goodness of fit:
likelihood of observed covariance Σ̂ in model Σ

L(Σ̂|K) = log |K| − trace(Σ̂ K)
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1 Graphical structure from correlations

Observations
Covariance
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Inverse covariance
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node innovation
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1 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence

Reflects the large-scale
brain interaction structure

Ill-posed problem:
multi-collinearity
⇒ noisy partial correlations

Independence between nodes makes estimation
of partial correlations well-conditionned.
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1 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence

Ill-posed problem:
multi-collinearity
⇒ noisy partial correlations

Independence between nodes makes estimation
of partial correlations well-conditionned.

Chicken and egg problem
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1 Independence structure (Markov graph)

Zeros in partial correlations
give conditional independence

Ill-posed problem:
multi-collinearity
⇒ noisy partial correlations

Independence between nodes makes estimation
of partial correlations well-conditionned.
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Joint estimation:

Sparse inverse covariance
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1 Sparse inverse covariance estimation: penalized

[Varoquaux NIPS 2010] [Smith 2011]

Maximum a posteriori:
Fit models with a penalty
Sparsity ⇒ Lasso-like problem: `1 penalization

K = argmin
K�0
L(Σ̂|K) +λ `1(K)

Data fit,
Likelihood

Penalization,

x2

x1
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1 Sparse inverse covariance estimation: penalized
Maximum a posteriori:

Fit models with a penalty
Sparsity ⇒ Lasso-like problem: `1 penalization

K = argmin
K�0
L(Σ̂|K) +λ `1(K)
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Sparsity

Bias of `1:
very sparse graphs don’t fit the data

Algorithmic considerations:
Very ill-conditionned input matrices
Graph-lasso [Friedman 2008] doesn’t work well
primal-dual algorithm with approximation
when switching from dual to primal [Mazumder, 2012]

Good success with ADMM
split optimization: loss solved with SPD matrices

penalty solved with sparse matrices
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1 Very sparse graphs: greedy construction

[Varoquaux J. Physio Paris, 2012]

Sparse inverse covariance algorithm:
PC-DAG [Rutimann & Buhlmann 2009]

Greedy approach
1. PC-alg: fill graph by independence tests

conditioning on neighbors
2. Learn covariance on resulting structure

Good for very sparse graphs
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1 Sparse graphs: greedy construction

[Varoquaux J. Physio Paris, 2012]

Iterate construction alg.
High-degree nodes appear very
quickly

complexity ∝ exp degree
0 20
Fillingfactor 
(percents)

Te
st

 d
at

a 
lik

eli
ho

od

Lattice-like
structure with

hubs
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2 Multi-subject graph learning
Not enough data per subject to recover structure
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2 Subject-level data scarsity
Sparse recovery for Gaussian graphs
`1 structure recovery has phase-transitions behaviors
For Gaussian graphs with s edges, p nodes:
n = O

(
(s + p) log p

)
, s = o

(√p
)

[Lam & Fan 2009]

Need to accumulate data across subjects

Concatenate series = iid data
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2 Graphs on group data

[Varoquaux NIPS 2010]

Σ̂−1 Sparse
inverse

Sparse group
concat

Likelihood of new data (cross-validation)

Subject data, Σ−1 -57.1
Subject data, sparse inverse 43.0

Group concat data, Σ−1 40.6
Group concat data, sparse inverse 41.8

Inter-subect variability
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2 Multi-subject modeling

[Varoquaux NIPS 2010]

Common independence structure but different
connection values

{Ks} = argmin
{Ks�0}

∑
s
L(Σ̂s |Ks) + λ `21({Ks})

Multi-subject data fit,
Likelihood

Group-lasso penalization
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2 Multi-subject modeling

[Varoquaux NIPS 2010]

Common independence structure but different
connection values

{Ks} = argmin
{Ks�0}

∑
s
L(Σ̂s |Ks) + λ `21({Ks})

Multi-subject data fit,
Likelihood

`1 on the connections of
the `2 on the subjects
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2 Population-sparse graph perform better

[Varoquaux NIPS 2010]

Σ̂−1 Sparse
inverse

Population
prior

Likelihood of new data (cross-validation) sparsity
Subject data, Σ−1 -57.1

Subject data, sparse inverse 43.0 60% full
Group concat data, Σ−1 40.6

Group concat data, sparse inverse 41.8 80% full
Group sparse model 45.6 20% full
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2 Independence structure of brain activity

Subject-sparse
estimate
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2 Independence structure of brain activity

Population-
sparse estimate
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2 Large scale organization
High-level cognitive function arises from the
interplay of specialized brain regions:
The functional segregation of local areas [...]
contrasts sharply with their global integration during
perception and behavior [Tononi 1994]

Functional segregation: nodes of connectome
atomic functions – tonotopy

Global integration: functional networks
high-level functions – language
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2 Large scale organization
High-level cognitive function arises from the
interplay of specialized brain regions:
The functional segregation of local areas [...]
contrasts sharply with their global integration during
perception and behavior [Tononi 1994]

Scale-free hierarchical integration / segregation

Graph modularity =
divide in communities to
maximize intra-class
connections versus extra-class

[Eguiluz 2005]
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2 Graph cuts to isolate functional communities
Find communities to maximize modularity:

Q =
k∑

c=1

A(Vc ,Vc)

A(V ,V )
−
A(V ,Vc)

A(V ,V )

2
A(Va,Vb): sum of edges going from Va to Vb

Rewrite as an eigenvalue problem [White 2005]

A ·1
1
0
0

1  1  0  0

⇒ Spectral clustering = spectral embedding + k-means

Similar to normalized graph cuts
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2 Large scale organization

Neural communities

Non-sparse
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2 Large scale organization

Neural communities
= large known functional networks

Group-sparse
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2 Brain integration between communities
Proposed measure for functional integration:
mutual information (Tononi)

[Marrelec 2008, Varoquaux & Craddock 2013]

Integration:
Ic1 = 1

2 log det(Kc1)
“energy” in network

Mutual information:
Mc1,c2 = Ic1∪c2 − Ic1 − Is2

“cross-talks” between networks
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2 Brain integration between communities

[Varoquaux NIPS 2010]

With population prior:

Posterior inferior
temporal 2

Posterior inferior
temporal 1

Lateral visual
areas

Medial visual areas
Occipital pole 
visual areasDefault mode network

Fronto-parietal
networks

Fronto-lateral
network

Pars 
opercularis

Dorsal motor

Ventral motor
Auditory Basal ganglia

Left Putamen
Cingulo-insular
network

Right Thalamus
Raw
correlations:
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3 Beyond `1 models
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3 Weighted-`1: incorporating additional prior

[Ng MICCAI 2012]

Not all connections are as likely
Tractography: the physical wiring

Noisy estimate of likelihood of
functional connection
⇒ Provides a soft prior:
P(func conn) ∝ exp

(
−anat conn

σ

)

Graph MAP estimate:

K = argmin
K�0
L(Σ̂|K) + λ `1(K)

λi ,j = λ0 exp
(
−anat conn

σ

)

Limitation:
Tractography estimates unreliable

G Varoquaux 26



3 Weighted-`1: incorporating additional prior

[Ng MICCAI 2012]

Not all connections are as likely
Tractography: the physical wiring

Noisy estimate of likelihood of
functional connection
⇒ Provides a soft prior:
P(func conn) ∝ exp

(
−anat conn

σ

)

Graph MAP estimate:

K = argmin
K�0
L(Σ̂|K) + λ `1(K)

λi ,j = λ0 exp
(
−anat conn

σ

)

Limitation:
Tractography estimates unreliable

G Varoquaux 26



3 Reweighted-`1: learning inhomogenous penalty

[Phlypo MICCAI 2014]

Ideas
As in regression reweighted `1 [Candes 2008]:
First `1 estimates gives rescaling for penalties
⇒ Support recovery in heteroschedastic settings

Equivalent to non-convex `0 approximation
But we have no edge-level residual

As in stability selection [Meinshausen 2010]:
Edges stable to perturbations most likely
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3 Reweighted-`1: learning inhomogenous penalty

[Phlypo MICCAI 2014]

Perturbations
We have many subjects:
run an `1 model per subject
⇒ Posterior probability of edge presence: Pij

fit a binomial

Reweighting

K = argmin
K�0
L(Σ̂|K) + λ `1(K)

λi ,j = λ0Pij
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Statistical learning for functional connectomes
fMRI: scarsity of data + low SNR

Graphical Gaussian models: sparse inverse covariance
`1/`21 penalty Iterative non convexity

Software: Python, open source
http://scikit-learn.org http://nilearn.github.io



Statistical learning for functional connectomes

Complex graph with a modular
structure

The communities are cognitive
networks that link to behavior

Posterior inferior
temporal 2

Posterior inferior
temporal 1

Lateral visual
areas

Medial visual areas
Occipital pole 
visual areasDefault mode network

Fronto-parietal
networks

Fronto-lateral
network

Pars 
opercularis

Dorsal motor

Ventral motor
Auditory Basal ganglia

Left Putamen
Cingulo-insular
network

Right Thalamus

Requires the definition of regions
[Abraham 2013]

@GaelVaroquaux


	Graphical structures of brain activity
	Multi-subject graph learning
	Beyond 1 models

