
Monte-Carlo Tree Search

Michèle Sebag

TAO: Theme Apprentissage & Optimization

Acknowledgments: Olivier Teytaud, Sylvain Gelly,
Philippe Rolet, Romaric Gaudel

CP 2012

Foreword

Disclaimer 1

I There is no shortage of tree-based approaches in CP...

I MCTS is about approximate inference (propagation or
pruning: exact inference)

Disclaimer 2

I MCTS is related to Machine Learning

I Some words might have different meanings (e.g. consistency)

Motivations

I CP evolves from “Model + Search” to “Model + Run”: ML
needed

I Which ML problem is this ?

Model + Run

Wanted: For any problem instance, automatically

I Select algorithm/heuristics in a portfolio

I Tune hyper-parameters

A general problem, faced by

I Constraint Programming

I Stochastic Optimization

I Machine Learning, too...

1. Case-based learning / Metric learning

CP Hydra

Input

I Observations Representation

Output

I For any new instance, retrieve the nearest case

I (but what is the metric ?)

2. Supervised Learning
SATzilla

Input

I Observations Representation

I Target (best alg.)

Output: Prediction

I Classification

I Regression

From decision to sequential decision

Arbelaez et al. 11

I In each restart, predict the best heuristics
I ... it might solve the problem;
I otherwise the description is refined; iterate

Can we do better: Select the heuristics which will bring us
where we’ll be in good shape to select the best heuristics to solve
the problem...

3. Reinforcement learning

Features

I An agent, temporally situated

I acts on its environment

I in order to maximize its cumulative reward

Learned output
A policy mapping each state onto an action

Formalisation

Notations

I State space S
I Action space A
I Transition model

I deterministic: s ′ = t(s, a)
I probabilistic: Pa

s,s′ = p(s, a, s ′) ∈ [0, 1].

I Reward r(s) bounded

I Time horizon H (finite or infinite)

Goal

I Find policy (strategy) π : S 7→ A
I which maximizes cumulative reward from now to timestep H

π∗ = argmax IEst+1∼p(st ,π(st),s)

[∑
r(st)

]

Reinforcement learning
Context
In an uncertain environment,
Some actions, in some states, bring (delayed) rewards [with some
probability].

Goal:
find the policy (state → action)

maximizing the expected cumulative reward

This talk is about sequential decision making

I Reinforcement learning:
First learn the optimal policy; then apply it

I Monte-Carlo Tree Search:
Any-time algorithm: learn the next move; play it; iterate.

MCTS: computer-Go as explanatory example

Not just a game: same approaches apply to optimal energy
policy

MCTS for computer-Go and MineSweeper

Go: deterministic transitions
MineSweeper: probabilistic transitions

The game of Go in one slide

Rules

I Each player puts a stone on the goban, black first

I Each stone remains on the goban, except:

group w/o degree freedom is killed a group with two eyes can’t be killed

I The goal is to control the max. territory

Go as a sequential decision problem

Features

I Size of the state space 2.10170

I Size of the action space 200

I No good evaluation function

I Local and global features (symmetries,
freedom, ...)

I A move might make a difference some
dozen plies later

Setting

I State space S
I Action space A
I Known transition model: p(s, a, s ′)

I Reward on final states: win or lose

Baseline strategies do not apply:

I Cannot grow the full tree

I Cannot safely cut branches

I Cannot be greedy

Monte-Carlo Tree Search

I An any-time algorithm

I Iteratively and asymmetrically growing a search tree
most promising subtrees are more explored and developed

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Monte-Carlo Tree Search

Kocsis Szepesvári, 06
Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

MCTS Algorithm

Main
Input: number N of tree-walks
Initialize search tree T ← initial state
Loop: For i = 1 to N

TreeWalk(T , initial state)
EndLoop
Return most visited child node of root node

MCTS Algorithm, ctd

Tree walk
Input: search tree T , state s
Output: reward r

If s is not a leaf node
Select a∗ = argmax {µ̂(s, a), tr(s, a) ∈ T }
r ← TreeWalk(T , tr(s, a∗))

Else
As = { admissible actions not yet visited in s}
Select a∗ in As

Add tr(s, a∗) as child node of s
r ← RandomWalk(tr(s, a∗))

End If

Update ns , ns,a∗ and µ̂s,a∗

Return r

MCTS Algorithm, ctd

Random walk
Input: search tree T , state u
Output: reward r

Arnd ← {} // store the set of actions visited in the random phase
While u is not final state

Uniformly select an admissible action a for u
Arnd ← Arnd ∪ {a}
u ← tr(u, a)

EndWhile

r = Evaluate(u) //reward vector of the tree-walk
Return r

Monte-Carlo Tree Search

Properties of interest

I Consistency: Pr(finding optimal path) → 1 when
the number of tree-walks go to infinity

I Speed of convergence; can be exponentially slow.

Coquelin Munos 07

Comparative results
2012 MoGoTW used for physiological measurements of human players

2012 7 wins out of 12 games against professional players and 9 wins out of 12 games against 6D players
MoGoTW

2011 20 wins out of 20 games in 7x7 with minimal computer komi MoGoTW

2011 First win against a pro (6D), H2, 13×13 MoGoTW

2011 First win against a pro (9P), H2.5, 13×13 MoGoTW

2011 First win against a pro in Blind Go, 9×9 MoGoTW

2010 Gold medal in TAAI, all categories MoGoTW
19×19, 13×13, 9×9

2009 Win against a pro (5P), 9× 9 (black) MoGo

2009 Win against a pro (5P), 9× 9 (black) MoGoTW

2008 in against a pro (5P), 9× 9 (white) MoGo

2007 Win against a pro (5P), 9× 9 (blitz) MoGo

2009 Win against a pro (8P), 19× 19 H9 MoGo

2009 Win against a pro (1P), 19× 19 H6 MoGo

2008 Win against a pro (9P), 19× 19 H7 MoGo

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

Action selection as a Multi-Armed Bandit problem

Lai, Robbins 85

In a casino, one wants to maximize
one’s gains while playing.

Lifelong learning

Exploration vs Exploitation Dilemma

I Play the best arm so far ? Exploitation

I But there might exist better arms... Exploration

The multi-armed bandit (MAB) problem

I K arms

I Each arm gives reward 1 with probability µi , 0 otherwise

I Let µ∗ = argmax{µ1, . . . µK}, with ∆i = µ∗ − µi
I In each time t, one selects an arm i∗t and gets a reward rt

ni ,t =
∑t

u=1 I1i∗u =i number of times i has been selected

µ̂i ,t = 1
ni,t

∑
i∗u =i ru average reward of arm i

Goal: Maximize
∑t

u=1 ru
⇔

Minimize Regret (t) =
t∑

u=1

(µ∗−ru) = tµ∗−
K∑
i=1

ni ,t µ̂i ,t ≈
K∑
i=1

ni ,t∆i

The simplest approach: ε-greedy selection

At each time t,

I With probability 1− ε
select the arm with best empirical reward

i∗t = argmax{µ̂1,t , . . . µ̂K ,t}

I Otherwise, select i∗t uniformly in {1 . . .K}

Regret (t) > εt 1
K

∑
i ∆i

Optimal regret rate: log(t) Lai Robbins 85

Upper Confidence Bound

Auer et al. 2002

Select i∗t = argmax

{
µ̂i ,t +

√
C

log(
∑

nj ,t)

ni ,t

}

Arm A

Arm B

Arm A

Arm B

Arm A

Arm B

Decision: Optimism in front of unknown !

Upper Confidence bound, followed

UCB achieves the optimal regret rate log(t)

Select i∗t = argmax

{
µ̂i ,t +

√
ce

log(
∑

nj ,t)

ni ,t

}

Extensions and variants

I Tune ce control the exploration/exploitation trade-off

I UCB-tuned: take into account the standard deviation of µ̂i :
Select i∗t = argmaxµ̂i ,t +

√√√√ce
log(

∑
nj ,t)

ni ,t
+ min

(
1

4
, σ̂2i ,t +

√
ce

log(
∑

nj ,t)

ni ,t

)
I Many-armed bandit strategies

I Extension of UCB to trees: UCT Kocsis & Szepesvári, 06

Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random

Random phase − Roll-out policy

Monte-Carlo-based Brügman 93

1. Until the goban is filled,
add a stone (black or white in turn)
at a uniformly selected empty position

2. Compute r = Win(black)

3. The outcome of the tree-walk is r

Improvements ?

I Put stones randomly in the neighborhood of a previous stone

I Put stones matching patterns prior knowledge

I Put stones optimizing a value function Silver et al. 07

Random phase − Roll-out policy

Monte-Carlo-based Brügman 93

1. Until the goban is filled,
add a stone (black or white in turn)
at a uniformly selected empty position

2. Compute r = Win(black)

3. The outcome of the tree-walk is r

Improvements ?

I Put stones randomly in the neighborhood of a previous stone

I Put stones matching patterns prior knowledge

I Put stones optimizing a value function Silver et al. 07

Evaluation and Propagation

The tree-walk returns an evaluation r win(black)

Propagate

I For each node (s, a) in the tree-walk

ns,a ← ns,a + 1
µ̂s,a ← µ̂s,a + 1

ns,a
(r − µs,a)

Variants Kocsis & Szepesvári, 06

µ̂s,a ←
{

min{µ̂x , x child of (s, a)} if (s, a) is a black node
max{µ̂x , x child of (s, a)} if (s, a) is a white node

Evaluation and Propagation

The tree-walk returns an evaluation r win(black)

Propagate

I For each node (s, a) in the tree-walk

ns,a ← ns,a + 1
µ̂s,a ← µ̂s,a + 1

ns,a
(r − µs,a)

Variants Kocsis & Szepesvári, 06

µ̂s,a ←
{

min{µ̂x , x child of (s, a)} if (s, a) is a black node
max{µ̂x , x child of (s, a)} if (s, a) is a white node

Dilemma

I smarter roll-out policy →
more computationally expensive →
less tree-walks on a budget

I frugal roll-out →
more tree-walks →
more confident evaluations

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

Action selection revisited

Select a∗ = argmax

{
µ̂s,a +

√
ce

log(ns)

ns,a

}

I Asymptotically optimal

I But visits the tree infinitely often !

Being greedy is excluded not consistent

Frugal and consistent

Select a∗ = argmax
Nb win(s, a) + 1
Nb loss(s, a) + 2

Berthier et al. 2010

Further directions

I Optimizing the action selection rule Maes et al., 11

Controlling the branching factor

What if many arms ? degenerates into exploration

I Continuous heuristics
Use a small exploration constant ce

I Discrete heuristics Progressive Widening
Coulom 06; Rolet et al. 09

Limit the number of considered actions to b b
√

n(s)c
(usually b = 2 or 4)

Number of iterations

N
u

m
b

e
r

o
f

c
o

n
s
id

e
re

d
 a

c
ti

o
n

s

Introduce a new action when b b
√

n(s) + 1c > b b
√

n(s)c
(which one ? See RAVE, below).

RAVE: Rapid Action Value Estimate

Gelly Silver 07

Motivation

I It needs some time to decrease the variance of µ̂s,a
I Generalizing across the tree ?

RAVE (s, a) =
average {µ̂(s ′, a), s parent of s ′}

global RAVE

local RAVE

s

a

a

a

a

a

a

a

a

Rapid Action Value Estimate, 2

Using RAVE for action selection
In the action selection rule, replace µ̂s,a by

αµ̂s,a + (1− α) (βRAVE`(s, a) + (1− β)RAVEg (s, a))

α =
ns,a

ns,a+c1
β =

nparent(s)
nparent(s)+c2

Using RAVE with Progressive Widening

I PW: introduce a new action if b b
√

n(s) + 1c > b b
√

n(s)c
I Select promising actions: it takes time to recover from bad

ones

I Select argmax RAVE`(parent(s)).

A limit of RAVE

I Brings information from bottom to top of tree

I Sometimes harmful:

B2 is the only good move for white
B2 only makes sense as first move (not in subtrees)
⇒ RAVE rejects B2.

Improving the roll-out policy π

π0 Put stones uniformly in empty positions

πrandom Put stones uniformly in the neighborhood of a previous stone

πMoGo Put stones matching patterns prior knowledge

πRLGO Put stones optimizing a value function Silver et al. 07

Beware! Gelly Silver 07

π better π′ 6⇒ MCTS(π) better MCTS(π′)

Improving the roll-out policy π, followed
πRLGO against πrandom πRLGO against πMoGo

Evaluation error on 200 test cases

Interpretation

What matters:

I Being biased is more harmful than being weak...

I Introducing a stronger but biased rollout policy π is
detrimental.

if there exist situations where you (wrongly) think you are in good shape
then you go there

and you are in bad shape...

Using prior knowledge

Assume a value function Qprior (s, a)

I Then when action a is first considered in state s, initialize

ns,a = nprior (s, a) equivalent experience / confidence of priors
µs,a = Qprior (s, a)

The best of both worlds

I Speed-up discovery of good moves

I Does not prevent from identifying their weaknesses

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

Parallelization. 1 Distributing the roll-outs

comp.

node 1

comp

node k

Distributing roll-outs on different computational nodes does not
work.

Parallelization. 2 With shared memory

comp.

node 1

comp

node k

I Launch tree-walks in parallel on the same MCTS

I (micro) lock the indicators during each tree-walk update.

Use virtual updates to enforce the diversity of tree walks.

Parallelization. 3. Without shared memory

comp.

node 1

comp

node k

I Launch one MCTS per computational node
I k times per second k = 3

I Select nodes with sufficient number of simulations
> .05×# total simulations

I Aggregate indicators

Good news
Parallelization with and without shared memory can be combined.

It works !

32 cores against Winning rate on 9× 9 Winning rate on 19× 19

1 75.8 ± 2.5 95.1 ± 1.4
2 66.3 ± 2.8 82.4 ± 2.7
4 62.6± 2.9 73.5 ± 3.4
8 59.6± 2.9 63.1 ± 4.2

16 52± 3. 63 ± 5.6
32 48.9± 3. 48 ± 10

Then:

I Try with a bigger machine ! and win against top professional
players !

I Not so simple... there are diminishing returns.

Increasing the number N of tree-walks

N 2N against N
Winning rate on 9× 9 Winning rate on 19× 19

1,000 71.1 ± 0.1 90.5 ± 0.3
4,000 68.7 ± 0.2 84.5 ± 0,3

16,000 66.5± 0.9 80.2 ± 0.4
256,000 61± 0,2 58.5 ± 1.7

The limits of parallelization

R. Coulom

Improvement in terms of performance against humans

�

Improvement in terms of performance against computers

�

Improvements in terms of self-play

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

Failure: Semeai

Failure: Semeai

Failure: Semeai

Failure: Semeai

Failure: Semeai

Failure: Semeai

Failure: Semeai

Failure: Semeai

Failure: Semeai

Why does it fail

I First simulation gives 50%

I Following simulations give 100% or 0%

I But MCTS tries other moves: doesn’t see all moves on the
black side are equivalent.

Implication 1

MCTS does not detect invariance → too short-sighted
and parallelization does not help.

Implication 2

MCTS does not build abstractions → too short-sighted
and parallelization does not help.

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

MCTS for one-player game

I The MineSweeper problem
I Combining CSP and MCTS

Motivation

I All locations have same probability of
death 1/3

I Are then all moves equivalent ?

NO !

I Top, Bottom: Win with probability 2/3

I MYOPIC approaches LOSE.

Motivation

I All locations have same probability of
death 1/3

I Are then all moves equivalent ? NO !

I Top, Bottom: Win with probability 2/3

I MYOPIC approaches LOSE.

Motivation

I All locations have same probability of
death 1/3

I Are then all moves equivalent ? NO !

I Top, Bottom: Win with probability 2/3

I MYOPIC approaches LOSE.

Motivation

I All locations have same probability of
death 1/3

I Are then all moves equivalent ? NO !

I Top, Bottom: Win with probability 2/3

I MYOPIC approaches LOSE.

MineSweeper, State of the art

Markov Decision Process Very expensive; 4× 4 is solved

Single Point Strategy (SPS) local solver

CSP

I Each unknown location j , a variable x [j]

I Each visible location, a constraint, e.g. loc(15) = 4→

x [04] + x [05] + x [06] + x [14] + x [16] + x [24] + x [25] + x [26] = 4

I Find all N solutions

I P(mine in j) = number of solutions with mine in j
N

I Play j with minimal P(mine in j)

Constraint Satisfaction for MineSweeper

State of the art

I 80% success beginner (9x9, 10 mines)

I 45% success intermediate (16x16, 40 mines)

I 34% success expert (30x40, 99 mines)

PROS

I Very fast

CONS

I Not optimal

I Beware of first move
(opening book)

Upper Confidence Tree for MineSweeper

Couetoux Teytaud 11

I Cannot compete with CSP in terms of speed

I But consistent (find the optimal solution if given enough time)

Lesson learned

I Initial move matters

I UCT improves on CSP

I 3x3, 7 mines

I Optimal winning rate: 25%

I Optimal winning rate if
uniform initial move: 17/72

I UCT improves on CSP by
1/72

UCT for MineSweeper

Another example

I 5x5, 15 mines

I GnoMine rule (first move gets 0)

I if 1st move is center, optimal winning rate is 100 %

I UCT finds it; CSP does not.

The best of both worlds

CSP

I Fast

I Suboptimal (myopic)

UCT

I Needs a generative model

I Asymptotic optimal

Hybrid

I UCT with generative model based on CSP

UCT needs a generative model
Given

I A state, an action

I Simulate possible transitions

Initial state, play top left

probabilistic transitions

Simulating transitions

I Using rejection (draw mines and check if consistent) SLOW

I Using CSP FAST

The algorithm: Belief State Sampler UCT

I One node created per simulation/tree-walk

I Progressive widening

I Evaluation by Monte-Carlo simulation

I Action selection: UCB tuned (with variance)
I Monte-Carlo moves

I If possible, Single Point Strategy (can propose riskless moves if
any)

I Otherwise, move with null probability of mines (CSP-based)
I Otherwise, with probability .7, move with minimal probability

of mines (CSP-based)
I Otherwise, draw a hidden state compatible with current

observation (CSP-based) and play a safe move.

The results

I BSSUCT: Belief State Sampler UCT

I CSP-PGMS: CSP + initial moves in the corners

Partial conclusion

Given a myopic solver

I It can be combined with MCTS / UCT:

I Significant (costly) improvements

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

Active Learning, position of the problem

Supervised learning, the setting

I Target hypothesis h∗

I Training set E = {(xi , yi), i = 1 . . . n}
I Learn hn from E

Criteria

I Consistency: hn → h∗ when n→∞.

I Sample complexity: number of examples needed to reach the
target with precision ε

ε→ nε s.t. ||hn − h∗|| < ε

Active Learning, definition

Passive learning iid examples

E = {(xi , yi), i = 1 . . . n}

Active learning
xn+1 selected depending on {(xi , yi), i = 1 . . . n}
In the best case, exponential improvement:

A motivating application

Numerical Engineering

I Large codes

I Computationally heavy ∼
days

I not fool-proof

Inertial Confinement Fusion, ICF

Goal

Simplified models

I Approximate answer

I ... for a fraction of the computational cost

I Speed-up the design cycle

I Optimal design More is Different

Active Learning as a Game

Ph. Rolet, 2010

Optimization problem

Find F ∗ = argmin
IEh∼A(E,σ,T)Err(h, σ,T)

E : Training data set

A: Machine Learning algorithm

Z: Set of instances

σ : E 7→ Z sampling strategy

T : Time horizon

Err: Generalization error

Bottlenecks

I Combinatorial optimization problem

I Generalization error unknown

Where is the game ?
I Wanted: a good strategy to find, as accurately as possible,

the true target concept.
I If this is a game, you play it only once !
I But you can train...

Training game: Iterate
I Draw a possible goal (fake target concept h∗); use it as oracle
I Try a policy (sequence of instances
Eh∗,T = {(x1, h

∗(x1)), . . . (xT , h
∗(xT))}

I Evaluate: Learn h from Eh∗,T . Reward = ||h − h∗||

BAAL: Outline

s
0

s
11

s
01

s
00

 x
0

x
1

… x
P

s
10

s
11

s
10

s
01

s
00

s
T

 0 1 h(x
1
)=0 1 0 1

Overview

Motivations

Monte-Carlo Tree Search
Multi-Armed Bandits
Random phase
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

Conclusion

Take-home message: MCTS/UCT

I enables any-time smart look-ahead for better sequential
decisions in front of uncertainty.

I is an integrated system involving two main ingredients:
I Exploration vs Exploitation rule UCB, UCBtuned, others
I Roll-out policy

I can take advantage of prior knowledge

Caveat

I The UCB rule was not an essential ingredient of MoGo

I Refining the roll-out policy 6⇒ refining the system
Many tree-walks might be better than smarter (biased) ones.

On-going, future, call to arms

Extensions

I Continuous bandits: action ranges in a IR Bubeck et al. 11

I Contextual bandits: state ranges in IRd Langford et al. 11

I Multi-objective sequential optimization Wang Sebag 12

Controlling the size of the search space

I Building abstractions

I Considering nested MCTS (partially observable settings, e.g.
poker)

I Multi-scale reasoning

Bibliography

I Peter Auer, Nicolò Cesa-Bianchi, Paul Fischer: Finite-time
Analysis of the Multiarmed Bandit Problem. Machine
Learning 47(2-3): 235-256 (2002)

I Vincent Berthier, Hassen Doghmen, Olivier Teytaud:
Consistency Modifications for Automatically Tuned
Monte-Carlo Tree Search. LION 2010: 111-124

I Sébastien Bubeck, Rémi Munos, Gilles Stoltz, Csaba
Szepesvári: X-Armed Bandits. Journal of Machine Learning
Research 12: 1655-1695 (2011)

I Pierre-Arnaud Coquelin, Rémi Munos: Bandit Algorithms for
Tree Search. UAI 2007: 67-74

I Rémi Coulom: Efficient Selectivity and Backup Operators in
Monte-Carlo Tree Search. Computers and Games 2006: 72-83

I Romaric Gaudel, Michèle Sebag: Feature Selection as a
One-Player Game. ICML 2010: 359-366

I Sylvain Gelly, David Silver: Combining online and offline
knowledge in UCT. ICML 2007: 273-280

I Levente Kocsis, Csaba Szepesvári: Bandit Based Monte-Carlo
Planning. ECML 2006: 282-293

I Francis Maes, Louis Wehenkel, Damien Ernst: Automatic
Discovery of Ranking Formulas for Playing with Multi-armed
Bandits. EWRL 2011: 5-17

I Arpad Rimmel, Fabien Teytaud, Olivier Teytaud: Biasing
Monte-Carlo Simulations through RAVE Values. Computers
and Games 2010: 59-68

I David Silver, Richard S. Sutton, Martin Müller:
Reinforcement Learning of Local Shape in the Game of Go.
IJCAI 2007: 1053-1058

I Olivier Teytaud, Michèle Sebag: Combining Myopic
Optimization and Tree Search: Application to MineSweeper,
LION 2012.

