Reinforcement Learning

Michele Sebag ; TP : Herilalaina Rakotoarison
TAO, CNRS — INRIA — Université Paris-Sud

[ ]
universite

PARIS-SACLAY

Jan. 14th, 2019
Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

UNIVERSITE

~ S PARIS
Creia— P &5

U MONDE NUMERIQU



Where we are

MDP Main Building block

General settings

Model-based Model-free
Finite | Dynamic Programming Discrete RL
Infinite (optimal control) Continuous RL

Last course: Function approximation
This course: Direct policy search; Evolutionary robotics

2/62



Position of the problem

Notations
> State space S
» Action space A
> Transition model p(s, a,s’) — [0,1]
Reward r(s) bounded

\4

Mainstream RL: based on values

V¥:S— R  7*(s) = arg opt (Z p(s,a, s )V* (s'))
acA

Q" :SxA—R w'(s) = arg opt(Q*(s, a))
acA
What we want
T:S—A

Aren’t we learning something more complex than needed ?...
= Let us consider Direct policy search



From RL to Direct Policy Search

Eplsadi PILCO Actor Critic, Conservative
RERS Natural Actor Critic Policy Iteration LSPI
Direct Policy
Search
Evolutionary Policy Model-based REPS Advantage Q-Learning,
Strategies, Gradients, PS by Trajectory W9|ght§d Fitted Q
CMA-ES eNAC Optimization Regression

Direct policy search: define
> Search space (representation of solutions)
» Optimization criterion

» Optimization algorithm

Value-Based
RL



Examples

Kohl and Stone, 2004 Ng et al, 2004 Tedrake et al, 2005 Kober and Peters, 2009

Iteration 0

&
i
Silver et al, 2014 v ]
(DPG) Schulman et al, Levine*, Finn*, et Silver*, Huang*, et
Mnih et al, 2015 Lillicrap et al, 2015 2016 (TRPO + GAE) al, 2016 al, 2016
(A3C) (DDPG) (GPS) (AlphaGo**)



Representation

1.Explicit representation = Policy space
7 is represented as a function from S onto A

» Non-parametric representation, e.g. decision tree or random forest
» Parametric representation. Given a function space, 7 is defined by a vector

of parameters 6.

Linear function on S
o = Radius-based function on S
(deep) Neural net

E.g. in the linear function case, given s € S = R and 6 in RY,

mo(s) = (s, 0)

6

62



Representation
2. Implicit representation: for example Trajectory generators
m(s) is obtained by solving an auxiliary problem. For instance,

» Define desired trajectories Dynamic movement primitives
> Trajectory 7 = f(0)

> Action = getting back to the trajectory given the current state s

K

0.5¢

05

A




Direct policy search in RL

Two approaches
> Model-free approaches

» Model-based approaches

History

» Model-free approaches were the first ones; they work well but i) require
many examples; ii) these examples must be used in a smart way.

» Model-based approaches are more recent. They proceed by i) modelling
the MDP from examples (this learning step has to be smart); ii) using the
model as if it were a simulator.

Important points: the model must give a prediction and a confidence
interval (will be very important for the exploration).



DPS: The model-free approach



The model-free approach

Algorithm
1. Explore: Generate trajectories 7; = (si.¢, ai,t)i—1 after 7,
2. Evaluate:
> Compute quality of trajectories Episode-based
> Compute quality of (state-action) pairs Step-based

3. Update: compute 0y 1

Two modes

» Episode-based
> learn a distribution D) over ©
> draw 0 after Dy, generate trajectory, measure its quality
> bias Dy toward the high quality regions in © space
> Step-based
> draw ar from m(s¢, O)
> measure qgg(s, a) from the cumulative reward gathered after having visited

(s:2)



Model-free Episode-based DPS. PROS

Getting rid of Markovian assumption

11/62



Model-free Episode-based DPS. PROS

Getting rid of Markovian assumption

=+

a4

> Rover on Mars: take a picture of region 1, region 2, ...

11/62



PROS, 2

Hopes of scalability
> With respect to continuous state space

» No divergence even under function approximation

Tackling more ambitious goals also see Evolutionary RL

> Partial observability does not hurt convergence (though increases
computational cost)

» Optimize controller (software) and also morphology of the robot
(hardware);

» Possibly consider co-operation of several robots...

2/62



Model-free Episode-based DPS. CONS

Lost the global optimum properties

> Not a well-posed optimization problem in general

> Lost the Bellman equation = larger variance of solutions

A noisy optimization problem

» Policy m — a distribution over the trajectories (depending on starting
point, on noise in the environment, sensors, actuators...)

> V(0) =¢er E [Zt’ytrt+1|0] or
V(0) =qer IEq [J( trajectory )]

> In practice
K

V(0) ~ KZJ trajectory ;)

i=1

How many trajectories are needed ?

Requires tons of examples

13 /62



CONS, 2

The in-situ vs in-silico dilemma

> In-situ: launch the robot in the real-life and observe what happens
> In-silico: use a simulator
> But is the simulator realistic 777

The exploration vs exploitation dilemma
» For generating the new trajectories

» For updating the current solution 6
9t+1 = 9r - atVV(G)

Very sensitive to the learning rate .

14 /62



The model-free approach, how

An optimization objective

An optimization mechanism
> Gradient-based optimization
» Define basis functions ¢;, learn «;

> Use black-box optimization

15 /62



Cumulative value, gradient

The cumulative discounted value
V(so) = r(s)+ 3 v'r(se)
t=1
with s;+1 next state after s; for policy mp
The gradient

0V(s0,0) _ V(50,04 €)= V(0,0 —€)
20 = 2¢

> Model p(stt1|st, at, 0) not required but useful

» Laarge variance ! many samples needed.

A trick
» Using a simulator: Fix the random seed and reset

> No variance of V(sp,6), much smaller variance of its gradient

16

62



Average value, gradient

No discount: long term average reward

V(s) = lim %]E [Z r(s0)ls0 :s}

t

Assumption: ergodic Markov chain
(After a while, the initial state does not matter).

> V/(s) does not depend on s

> One can estimate the percentage of time spent in state s
q(0,s) = Prg(S =s)

Yields another value to optimize

V() = Eo[r(S)] = ) _ r(s)q(0,)

s

17 /62



Model-free Direct Policy Search
Algorithm
L V(0) = Bolr(S)] = 5, r()a(6), )
2. Compute or estimate the gradient VV/(0)
3. Oey1 =0 + 0 VV(0)

Computing the derivative

vv =V (Z r(s)q(6, s)) = Z r(s)Vq(0,s)

s s

=Esp [’(5)%]

=Es,0 [r(S)Viog q(0, S)]

Unbiased estimate of the gradient (integral = empirical sum)

a1 \Va(b,si)
VV = Nzi:r(s')iq(&s,-)

18 /62



The Success Matching Principle

Tnew(a|s) o< Success (s, a, 8).mo(als)

Different computations of “Success”
» 6 ~ Dy generates trajectory, evaluation V()
» Transform evaluation into (non-negative) probability wi

» Find mixture policy w1

p(als) x Z wip(als, Ox)

» Find 6,11 accounting for w41

v

Update Dy, iterate

19 /62



Computing the weights

wik = exp (B(V(0) — minV(6))

[: temperature of optimization simulated annealing

Example

- ( 1o VI6) — minv(6) >

maxV (0) — minV(6)

20/62



Model-free Direct Policy Search, summary

Algorithm
» Define the criterion to be optimized (cumulative value, average value)

» Define the search space (©: parametric representation of )
> Optimize it: 0y — 0, + 1
> Using gradient approaches
> Updating a distribution Dy on ©
> In the step-based mode or success matching case:
find next best q; (s, a); find 011 such that Q™ = q;

Pros

» It works

Cons

» Requires tons of examples
» Optimization process difficult to tune:

> Learning rate difficult to adjust
> Regularization (e.g. using KL divergence) badly needed and difficult to
adjust

62



DPS: The model-based approach
Gaussian processes

22 /62



Direct Policy Search. The model-based approach

Algorithm
1. Use data 77 = (si,t, a1, )11 to learn a forward model p(s’|s, a)

2. Use the model as a simulator
(you need the estimation, and the confidence of the estimation, for
exploration)

3. Optimize policy

4. (Use policy on robot and improve the model)

Internal
Simulations

fodel Learning

‘Apply Policy
te Robot

23 /62



DPS: The model-free approach

DPS: The model-based approach
Gaussian processes

Evolutionary robotics

Others

24 /62



Learning the model

Modeling

S 4082101284567 8
X



Learning the model

Modeling and predicting

543210123456
X

~ -
[as]

25 /62



Learning the model

Modeling

3_
2_

S 4350 01 2 3 456 7 8

X
prediction

When optimizing a model: very useful to have a measure of uncertainty on the

1PN G4
25 /62



Learning the model, 2

Gaussian Processes

http://www.gaussianprocess.org/

f(x)

5 4324012345678
X

Prior belief about the function

1PN G4
26 /62



Learning the model, 2

Gaussian Processes

http://www.gaussianprocess.org/

Posterior belief about the function

1PN G4
26 /62



Learning the model, 2

Gaussian Processes

http://www.gaussianprocess.org/

X
Posterior belief about the function

543210123 45678

1PN G4
26 /62



Learning the model, 2

Gaussian Processes

http://www.gaussianprocess.org/

%43 2 1

Posterior belief about the function

1PN G4
26 /62



Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

o = N W

f(x)

-1t
-2

XA 320 01 2 3 456 78
X
Posterior belief about the function

o = = = = 9Dae
26 /62



Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

3
ol
1
0

f(x)

-1t
2t

X 432401 23 456 7 8
X
Posterior belief about the function

o = = = = 9Dae
26 /62



Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

o = N W

f(x)

4321 0123 45067 8
X
Posterior belief about the function

o = = = = 9Dae
26 /62



Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

o = N W

f(x)

1t
ol

4 32401 23 456 7 8
X
Posterior belief about the function

o = = = = 9Dae
26 /62



Learning the model, 2

Gaussian Processes

http://www.gaussianprocess.org/

X

X 4324 01 23 45067 8
Posterior belief about the function

1PN G4
26 /62



Learning the model, 2

Gaussian Processes http://www.gaussianprocess.org/

4324 01 23 456 7 8
X
Posterior belief about the function

26 /62



Computing the gradient

Given
» Forward model
St+1 = f(St, at)

» Differentiable policy
a=m(s,0)

t
= E Y re+1
t

It comes

Exact gradient computation

3V(0) _ t@rt+1
90 =27 90

_Z ¢+ Ortq1 35t+1

851:+1

:Z ral’t+1 (85t+1 Os¢ + 35t+1 33:)

0st41

Js: 00 da; 00

27 /62



Model-based Direct Policy Search, summary

Algorithm
» Learn a model (prediction and confidence interval)
» Derive the gradient of the policy return

» Optimize it standard gradient optimization, e.g. BFGS

Pros
» Sample efficient (= does not require tons of examples)
» Fast (standard gradient-based optimization)

> Best ever results on some applications (pendulum on a car, picking up
objects, controlling throttle valves)

Cons

> Gaussian processes (modelling also the confidence interval) hardly scale
up: in O(n®), with n the number of examples

» Require specific parametrizations of the policy and the reward function
> Only works if the model is good (otherwise, disaster)



Evolutionary robotics
Reminder
Evolution of morphology

29 /62



Evolutionary Robotics

1. Select the search space ©

2. Define the objective function F(6) in simulation or in-situ
Sky is the limit: controller; morphology of the robot; co-operation of several
robots...

3. Optimize: Evolutionary Computation (EC) and variants

4. Test the found solution reality gap



Covariance-Matrix-Adaptation-ES

Hansen-Ostermeier, 2001; Auger-Hansen, 2010-2017

9N'Dk :N(,Lbk,zk)

> easy to adapt
» Computationally heavy to adapt X«
» does not scale up to high dimensions (> 200)

yi~N(0,0), C=1 Cu= 1T wiavis Mnew ™+ 5 3 Yin
e, =m+toy, o=1 C—(1-1)xC+1xC,

> Invariances under monotonous transform of optimization criterion and
affine transf. of ©.

> A particular case of Information Geometry Optimization

31/62



Effects of step size

19

Conservative

small step-size = high exploration = slow convergence

E—77 | Aa=

Moderate

Greedy Update

o = = = = 9Dae
32/62



Search Space, 1

Neural Nets
» Universal approximators; continuity; generalization hoped for.

» Fast computation

v

Can include priors in the structure

v

Feedforward architecture: reactive policy

» Recurrent architecture: internal state
encoding memory (fast vanishing)

Critical issues

» Non-parametric optimization much more difficult

Other options

> Finite state automaton (find states; write rules; optimize thresholds...)
The Braitenberg controller.

» Genetic programming (optimization of programs)

33/62



Example: Swarm robots moving in column formation

Robot

34 /62



Robotic swarm, 2

Constants
11 blind zone
12 sensor range
Representation ¢ Vision angular range
Variables(t)
r(t), s(t) positions
o(t) angular direction

35/62



Example of a (almost manual) controller

CONTROLLER OF A ROBOT

Info. from the IR sensors

Info. from the image sensors

0= xR < By BoZzr <P 0=z
0 = Tinage = @ move backward or turn right turn left
@ < Timage < (19 — ) move backward or turn right stop move forward
@ £ Timgge £ 19 move backward or turn right turn right
preceding robot NOT FOUND  move backward or turn right move forward

36

62



Toward defining F

e The i-th robot follows the k-th robot at time ¢ iff the
center of gravity of & belongs to the perception range of
i (si(t) € Ailt)).

« The i-th robot is a leader if 1) it does not follow any other
robot; ii) there exists at least one robot following it.

e A column is a subset {iy,...ix} such that robot iz,
follows robot i;, and robot i, is a leader.

o A deadlock is a subset {i1,...ix} such that robot iz
follows robot iz and robot i; follows robot ij.

37/62



Optimization criterion

Brooks 89-01
The promise: no need to decompose the goal

» Behavioral robotics hand crafted decomposition

Manipulations

Construction d'une carte

Capteurs > Exploration > Moteurs

Evitement d’obstacles

Deplacement

» Evolutionary robotics emergence of a structure

Capteurs > ? > Moteurs

38



In practice: fitness shaping

v

All initial (random) individuals are just incompetent

v

Fitness landscape: Needle in the Haystack ? (doesn’t work)

v

Start with something simple

v

Switch to more complex during evolution

» Example: visual recognition

39/62



Optimization criterion, 2

v

Fonctional vs behavioral
state of controller vs distance walked

v

Implicit vs explicit

Survival vs Distance to socket
> Internal vs external information
Sensors, ground truth

\4

Co-evolution: e.g. predator/prey
performance depends on the other robots

State of art
» Standard: function, explicit, external variables
> In-situ: behavioral, implicit, internal variables

» Interactive: behavioral, explicit, external variables

40 /62



Optimization criterion, 3

Fitness shaping

» Obstacle avoidance
» Obstacle avoidance, and move !
> Obstacle avoidance, and (non circular) move !!

Finally Floreano Nolfi 2000

F(6) = /T Al —VAB)(1—1i)

exp.

» A sum of wheel speed r; € [-0.5,0.5]

— move
» AB = |I’1 + rz‘

— ahead
» i maximum (normalised) of sensor values

— obstacle avoidance

Behavioral, internal variables, explicit

41 /62



Result analysis

» First generations

> Most rotate

> Best ones slowly go forward

> No obstacle avoidance

> Perf. depends on starting point
» After ~ 20 gen.

> Obstacle avoidance
> No rotation

» Thereafter, gradually speed up

2/62



Result analysis, 2

» Max. speed 48mm/s (true max = 80)
Inertia, bad sensors

> Never stuck in a corner
contrary to Braitenberg

Going further
» Changing environment

» Changing robotic platform

Limitations
» From simulation to real-world Reality gap !
» Opportunism of evolution

» Roboticists not impressed...

43 /62



Carl S

Goal

ims

Evolve both morphology and controller
using a grammar (oriented graph)

Heavy computational cost

simulation, several days on Connection Machine — 65000 proc.

Evolving locomotion (walk, swim, jump)

and competitive co-evolution (catch an object)

44 /62



The creatures

Karl Sims, 1994

j:lmbe | tete |

ey ‘

Video: https://www.youtube.com/watch?v=JBgG_VSP7f8

45 /62



Reset-Free Trial and Error

Jean-Baptiste Mouret, 17
https://www.youtube.com /watch?v=IqtyHFrb3BU

46 / 62



Intrinsic rewards, swarm robotics

https://www.youtube.com/watch?v=btNLWKdngq4 47/62



Internal rewards

Delarboulas et al., PPSN 2010
Requirements

1. No simulation

2. On-board training

> Frugal (computation, memory)
> No ground truth

3. Providing “interesting results”
“Human — robot communication”

Goal: self-driven Robots :  Defining instincts

48 /62



Starting from (almost) nothing

Robot = a data stream

t — x[t] = (sensor|t], motor|[t])

Trajectory = {x[t],t=1... T} T
Robot trajectory

49 /62



Starting from (almost) nothing

Robot = a data stream

t — x[t] = (sensor|t], motor|[t])

Trajectory = {x[t],t=1... T} T
Robot trajectory
Computing the quantity of information of the stream

Given xi,...X,, visited with frequency p; ... pn,

Entropy(trajectory) = Z pi log p;

Conjecture
Controller quality oc Quantity of information of the stream

49 /62



Building sensori-motor states

Avoiding trivial solutions...
If sensors and motors are continuous / high dimensional

> then all vectors x[t] are different
» then Vi, pi =1/ T; Entropy =log T

requires generalization
From the sensori-motor stream sequence of points in RY
to clusters sensori-motor states

Trajectory —
X1X2X3X1...

Clusters in sensori-motor space (IR?)

50 /62



Clustering

k-Means
1. Draw k points x[ti]
2. Define a partition C in k subsets C; Voronoi' cells
G = {x/d(x,x[ti]) < d(x,x[t;]),) # i}
e-Means
1. Init: C={} Initial site list
2. Fort=1to T loop on trajectory

> 1f d(x[t],C) > €, C « C U {x[t]}

51/62



Curiosity Instinct

Search space
> Neural Net, 1 hidden layer.

Definition
» Controller F + environment — Trajectory
» Apply Clustering on Trajectory

» For each C;, compute its frequency p;

F(F) = —pr « log(pi)



Curiosity instinct: Maximizing Controller 1Q

Properties
> Penalizes inaction: a single state — entropy = 0
» Robust w.r.t. sensor noise (outliers count for very little)
» Computable online, on-board (use e-clustering)

» Evolvable onboard

Limitations: does not work if

» Environment too poor
(in desert, a single state — entropy = 0)

» Environment too rich
(if all states are distinct, Fitness(controller) = log T)

both under and over-stimulation are counter-effective.

53/62



From curiosity to discovery

Intuition
» An individual learns sensori-motor states (x[t;] center of C;)
» The SMSs can be transmitted to offspring
» giving the offspring an access to “history”

> The offspring can try to “make something different”

fitness(offspring) = Entropy(Trajectory(ancestors | J offspring))

NB: does not require to keep the trajectory of all ancestors.
One only needs to store {C;, n;}

54 /62



From curiosity to discovery

Cultural evolution transmits genome + “culture”

W

parent = (controller genome, (Ci, m),...(Ck, nk))
Perturb parent controller — offspring controller
Run the offspring controller and record x[1],...x[T]

Run e-clustering variant.

Fitness(offspring) = Z pi log pi

55/62



e-clustering variant

Algorithm

1. Init: C={(C,m),...(Ck,nk))}
2. Fort=1to T
> 1f d(x[t],C) > €, C « C U {x[t]}

3. Define pi = n;/ Zj n;

Fitness(offspring) =

Z pi log pi

Initial site list

loop on trajectory

56

62



Limitation

In stochastic environments

> High entropy in highly stochastic regions

Intrinsic motivations, neuro-curiosity Oudeyer et al. 2005-2017
> More exploration — more data
> Are these data useful ?
> Yes if Reduction of error of learned forward model.

https://www.youtube.com /watch?v=bkv83GKY pkl

57 /62



Validation

Experimental setting
Robot = Cortex M3, 8 infra-red sensors, 2 motors.
Controller space = ML Perceptron, 10 hidden neurons.

Medium and Hard Arenas

500F 700E
i E )
300 P !
100f 1
H 100 «‘ - H
s L L L L L L L L L in ) E . . . . .
100 300 500 700 900 100 300 500 700

58 /62



Validation, 2

Plot points in hard arena visited 10 times or more by the 100 best individuals.

{J

Nolfi & Floreano

Lehman & Stanley

e o e

Curiosity

Discovery

PPSN 2010

59 /62



Partial conclusions

Entropy-minimization

» computable on-board;

> yields “interesting” behavior

> needs stimulating environment

no need of prior knowledge/ground truth

60 /62



DPS: The model-free approach

DPS: The model-based approach
Gaussian processes

Evolutionary robotics
Reminder

Evolution of morphology

Others

«O0)>» «Fr «

it
v

1PN G4
61/62



Not covered

> Inverse Reinforcement Learning
https: //www.youtube.com /watch?v=VCdxqgnOfcnE

» Programming by Feedback

> Deep Reinforcement Learning
https://www.youtube.com/watch?v=eKaYnXQUb2g



	DPS: The model-free approach
	DPS: The model-based approach
	Gaussian processes

	Evolutionary robotics
	Reminder
	Evolution of morphology

	Others

