Reinforcement Learning

Michele Sebag ; TP : Herilalaina Rakotoarison
TAO, CNRS — INRIA — Université Paris-Sud

[]
universite

PARIS-SACLAY

Nov. 26th, 2018
Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

UNIVERSITE

~ S PARIS
Creia— P &5

U MONDE NUMERIQU

1

90

Where we are

MDP Main Building block

General settings

Model-based Model-free

Finite | Dynamic Programming Discrete RL

Infinite (optimal control) Continuous RL

More about the Exploration vs Exploitation Dilemma

This course: Multi-Armed Bandits ; Monte-Carlo Tree Search

2/90

Multi-Armed Bandit
Regret
Multi-Armed Bandit
MAB algorithms
Around MABs
Monte-Carlo Tree Search
Go as an example

Evaluations

Evaluation and Propagation
Advanced MCTS

Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization
Open problems

MCTS and 1-player games
MCTS and CP

Optimization in expectation

Conclusion and perspectives

«0O)>» «F»r <

1PN G4
3/90

Action selection as a Multi-Armed Bandit problem

Lai, Robbins 85

In a casino, one wants to maximize one's gains
while playing.
Lifelong learning

Exploration vs Exploitation Dilemma
> Play the best arm so far ? Exploitation

> But there might exist better arms... Exploration

4 /90

Formalization

» K options a.k.a. arms
» Arms are independent
» The i-th arm yields a reward r drawn iid along distribution v;

In the following, v; = Bernoulli(u;)
(return 1 with proba p;, 0 otherwise).

Goals
» Find the best arm:
i" = argmaxE[vj]
i
» Find a policy 7 : t — i, gets reward r; s.t. the sum of rewards is maximal

in expectation
m=argmaxE[rn+n+...

5/90

Applications

» Find the best cure/drug for a disease.
r = 1 if patient is cured, 0 otherwise

» Find the best ad for a Web site/user
r =1 if user clicks on the ad, 0 otherwise

> Find the best action for a robot
r = 1 if the robot grasps the banana, 0 otherwise
(What is different here ?)

6

90

The multi-armed bandit (MAB) problem

Algorithmic setting

Unknown parameters: K unknown probability distributions on [0, 1]
Known parameters: the set of arms 1... K, the number of rounds T

Foreachround t =1,2,..., T
(1) the learner chooses i € 1... K according to its own strategy.
(2) the learner incurs and observes the reward r;~v;, independently from the

past given rewards.

T: time horizon
When T unknown, algorithm is anytime

7/90

The multi-armed bandit (MAB) problem

» K arms
» Each arm gives reward 1 with probability y;, 0 otherwise
> Let u* = argmax{p1,...ux}, with A; = p* — p;

> In each time t, one selects an arm J; and gets a reward r¢

t . .
nie = >, lpx_. number of times i has been selected
-

~ _ 1 .
fir = Zi::; ry average reward of arm |

njt

R t
Goal: Maximize >, | r,

t

Minimize Regret (t) = Z(,u,* —r) =tu" Z Nie flie & Z ni +\;

u=1

8

90

Objective

Goal: Maximize > _, r,

t
Minimize Regret (t) = > (r~v"—r,)
u=1

Regret: extra-loss incurred w.r.t. the oracle (who knows i*).

Why using the regret ?
“Kind of” normalization w.r.t. problem difficulty: the more difficult the
problem, the lower the oracle’s gain; what matters is how well one fares
compared to the expert.
(Additive normalization).

9/90

Multi-Armed Bandit
MAB algorithms
Around MABs

10 /90

Notations

> nj:: number of times i has been selected up to t

> [ii.+ empirical reward of i-th arm as of t

t

flie = ! ry.Lj,=
nit =
with Il = 1 iff e holds true
> pi = E[v]
> A;: margin of i-th arm
Aj=p" — pi

Scientific questions
» How does the regret increase with T (linear 7 quadratic ? logarithmic ?)
» What are the factors of difficulty of the MAB problem ?

11

90

Greedy algorithm

» Draw once each arm
bi=r~vy

> At time u, select arm i; s.t.
ir = argmax{fijt—1,i =1...K}

Example
> 2 arms:

> arm 1, u3 = .8;
> arm 2, pup = .2.

> Assume the first two drawings yield:

» arm1l, n =0;
> arm 2, n = 1.

» What happens ?

12 /90

The ¢-greedy algorithm

At each time t,
» With probability 1 — ¢
select the arm with best empirical reward

ir = argmax{ i1z,

> Otherwise, select i; uniformly in {1...K?}

What is the regret ?

ik}

13

90

The ¢-greedy algorithm

At each time t,
» With probability 1 — ¢
select the arm with best empirical reward

ir = argmax{fi1,¢,... ik}

> Otherwise, select i; uniformly in {1...K?}

What is the regret ?

Regret (t) > et >, A;

But: Optimal regret rate: log(t) Lai Robbins 85

13

90

Upper Confidence Bound

Auer et al. 2002

Select iy = argmax {ﬁm-y_ 2log(t)}
nit
Arm A A .
| | L bl
‘ | | | .
Arm B Arm B

Decision: Optimism in front of unknown !

14

90

Upper Confidence bound, 2

Thm: UCB achieves the optimal regret rate log(t)

/ .
If i = argmax {ﬁ,’t_k Ceog(;:nj,:)}
it

2
Regret(t) <8 %Iog(t) + (1 + %) Sa

i

Then

Proof

Regret(t) = Z ni A
i

15 /90

Upper Confidence bound, 3

The very useful Hoeffding inequality
Given ri,...r, iid in [0,1] drawn after p, with expectation g,
Define empirical mean (i, = 1/n 25:1 ru, then

P(fin—p>e) <exp(—2¢°n),
P(p—fn>e) <exp(-2¢n),

P(|fin—pul >e) <2exp(—2&%n)

16 /90

Sketch of the proof

Auer et al., 02

Regret(t) Z Aj X nj
i#i*

with n;: = number of times i-th arm is played until step t.
Let 4; = 8’” . Then, for nj: > ¥;,

2In(t) <

it

pi + 2

For ni: > £;, wrong choice (one selects the i-th arm instead of the optimal i*
one)

= //E is underestimated and ;L,? is overestimated:

2In(t)
ni* ¢

(A w<p -
2/n(t)
(B) mf>pi+

Hoeffding =
Events (A) and (B) occur with probability less than exp{—4 In(t)} = t*

17 /90

Sketch of the proof, 2

Hence:
e} t—1

En] <6+ > (P(A)+P(B))

t=1 n; +=¢;

(first term: assume that it's always wrong in the first ¢; steps;
second term, n;; > ¢;; if it goes wrong, the two estimates are far from their
expectations.
8ln(t) d —4
Eln] < =1~ + ;2t

Which concludes the proof (UCB regret is logarithmic):

Regret(t) <8 %Iog(t) + (1 + %2) PV

i ! i

~

18

90

Multi-Armed Bandit
MAB algorithms
Around MABs

19 /90

Around MAB algorithms

v

UCB is great, but not optimal. See KL-UCB Garivier et al. 2012

> In practice, play with C. control the exploration/exploitation trade-off

v

Take into account the standard deviation of fi;: Select iy = argmax

P D' 51 +mm<4 5 4 Ce/og(an,r)>

It
nit+ ’ nj«

s s

v

When there are many arms: tendency to over-explore...

Extensions
» When there is some side information: contextual bandits

» When arm distributions are not stationary: restless bandits

A particular algorithm: BESA

Best Empirical Sampled Average Baransi Maillard 2014
Intuition

» Case 1: you compare two arms with same number of reward samples.
Easy: take the one with best average.

> Case 2: there is an arm A with many samples, and an arm B with few
samples (say k).

Easy: subsample k rewards for arm A and get back to Case 1.

Nota-bene
Same results with one hyper-parameter less == much better.

21/90

Monte-Carlo Tree Search
Go as an example
Evaluations
Evaluation and Propagation

MCTS: computer-Go as explanatory example

23 /90

Not just a game: same approaches apply to optimal energy policy

24 /90

MCTS for computer-Go and MineSweeper

Go: deterministic transitions
MineSweeper: probabilistic transitions

1=
1121111
2 =[3 =[3]2]1]
2=[3[2 =[%J2
1122332
1=[1/101

111
I11 1[1[1]
141 121

25 /90

The game of Go in one slide
Rules

» Each player puts a stone on the goban, black first
> Each stone remains on the goban, except:

group w/o degree freedom is killed

> The goal is to control the max. territory

a group with two eyes can't be killed

1PN G4
26 /90

Go as a sequential decision problem

Features
> Size of the state space 2.10'7°
» Size of the action space 200
» No good evaluation function

> Local and global features (symmetries, freedom,

)

» A move might make a difference some dozen plies
later

o = = = = 9Dae
27 /90

Setting

» State space S
» Action space A
» Known transition model: p(s, a,s’)

» Reward on final states: win or lose

Baseline strategies do not apply:
» Cannot grow the full tree
» Cannot safely cut branches

» Cannot be greedy

Monte-Carlo Tree Search
» An any-time algorithm

> |teratively and asymmetrically growing a search tree
most promising subtrees are more explored and developed

28 /90

Monte-Carlo Tree Search
Go as an example
Evaluations
Evaluation and Propagation

29 /90

Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:

> lterate Tree-Walk
> Building Blocks
> Select next action Bandit-B
Bandit phase Phas

> Add a node
Grow a leaf of the search tree
> Select next action bis
Random phase, roll-out

. .
Compute instant reward u New Node

Evaluate

Random”
Phase™,

> Update information in visited nodes
Propagate

» Returned solution:
> Path visited most often

30/90

Random phase — Roll-out policy

Monte-Carlo-based Briigman 93 ’ 900

1. Until the goban is filled,
add a stone (black or white in turn) ‘e (
at a uniformly selected empty position) g
2. Compute r = Win(black) "

3. The outcome of the tree-walk is r

o

31/90

Random phase — Roll-out policy

Monte-Carlo-based Briigman 93

1. Until the goban is filled,
add a stone (black or white in turn)
at a uniformly selected empty position
2. Compute r = Win(black)

3. The outcome of the tree-walk is r

Improvements ?
» Put stones randomly in the neighborhood of a previous stone
» Put stones matching patterns prior knowledge

» Put stones optimizing a value function Silver et al. 07

31/90

Evaluation and Propagation

The tree-walk returns an evaluation r win(black)

Propagate

» For each node (s, a) in the tree-walk

Ns a <_ns,a+1

B

ﬂs,a <~ /’)Js,a +

(r—ps.a)

1
Ns,a

32/90

Evaluation and Propagation

The tree-walk returns an evaluation r win(black)

Propagate

» For each node (s, a) in the tree-walk

Nsa < Nsa+ 1
[2573 < /”\Lsaa + ?la(r - ,Ufs,a)

Variants Kocsis & Szepesviéri, 06

N min{fix, x child of (s,a)} if (s,a) is a black node
Hs,2 max{fix, x child of (s,a)} if (s, a) is a white node

32/90

Dilemma

> smarter roll-out policy —
more computationally expensive —
less tree-walks on a budget

» frugal roll-out —
more tree-walks —
more confident evaluations

33/90

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

34 /90

Action selection revisited

* ~ I S
Select a* = argmax {,us,a + 1/ Ce Oi(n)}
s,a

» Asymptotically optimal

» But visits the tree infinitely often !

Being greedy is excluded not consistent

Frugal and consistent
Nb win(s, a)

* + :
Select a" = argmax Nb loss(s, a) + 2

Further directions

» Optimizing the action selection rule

35

90

Controlling the branching factor

What if many arms ? degenerates into exploration

» Continuous heuristics
Use a small exploration constant c.

» Discrete heuristics Progressive Widening
Coulom 06; Rolet et al. 09
Limit the number of considered actions to | /n(s)]
(usually b=2 or 4)

Number of
considered actions

Number of iterations

Introduce a new action when | ¢/n(s) + 1] > | {/n(s)]

(which one ? See RAVE, below).

36 /90

RAVE: Rapid Action Value Estimate

Gelly Silver 07
Motivation
> |t needs some time to decrease the variance of fis,,
» Generalizing across the tree ?
a
a
RAVE (s, a) =
average {fi(s’, a),s parent of s’}
. a
Ly
L
local RAVE

global RAVE

37

90

Rapid Action Value Estimate, 2

Using RAVE for action selection
In the action selection rule, replace [is,, by

afis,a + (1 — o) (BRAVE(s, a) + (1 — B)RAVE,(s, a))

o =

ns a+ci

Using RAVE with Progressive Widening

» PW: introduce a new action if | ¢/n(s) + 1] > | ¢/n(s)]

> Select promising actions: it takes time to recover from bad ones
> Select argmax RAVE,(parent(s)).

Ns,a ﬂ — parent s)
Nparent(s) +c2

38

90

A limit of RAVE

> Brings information from bottom to top of tree

» Sometimes harmful:

HON W A U W e W

A BLC BDEE F G 'H
B2 is the only good move for white

B2 only makes sense as first move (not in subtrees)
= RAVE rejects B2.

J

39/90

Improving the roll-out policy 7

mo Put stones uniformly in empty positions

Trandom Put stones uniformly in the neighborhood of a previous stone

TMoGo Put stones matching patterns prior knowledge
mriGo Put stones optimizing a value function Silver et al. 07
Beware! Gelly Silver 07

m better ©' %A MCTS(w) better MCTS(n')

40

90

Improving the roll-out policy 7, followed

TRLGO AGaINSt Trandom

TRLGO against Tyoco

|
. 09 E2
5 o8 e & L: o8
H . K
|- o & or
« %
g i
E
g
)
¥ £ o5
g £
w y
£ E oo
2 s
02 02
o1
v w2 o m m oz m os e]
© %% L 2 1

MSE over labeled positions

41 /90

Interpretation

What matters:

» Being biased is more harmful than being weak...

> Introducing a stronger but biased rollout policy 7 is detrimental.

if there exist situations where you (wrongly) think you are in good shape
then you go there

and you are in bad shape...

Using prior knowledge

Assume a value function Qprior(s, a)
» Then when action a is first considered in state s, initialize

Ns,a = Nprior(S,3) equivalent experience / confidence of priors
Ms,a = Qprior(57 a)

The best of both worlds
» Speed-up discovery of good moves

» Does not prevent from identifying their weaknesses

43

90

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

44 /90

Parallelization. 1 Distributing the roll-outs

comp. comp
node 1 node k

Distributing roll-outs on different computational nodes does not work.

45 /90

Parallelization. 2 With shared memory

comp. comp
node 1 node k

> Launch tree-walks in parallel on the same MCTS

> (micro) lock the indicators during each tree-walk update.

Use virtual updates to enforce the diversity of tree walks.

46

90

Parallelization. 3. Without shared memory

» Launch one MCTS per computational node
> k times per second k=3

> Select nodes with sufficient number of simulations
> .05 X # total simulations
> Aggregate indicators

Good news
Parallelization with and without shared memory can be combined.

47

90

It works !

32 cores against || Winning rate on 9 X 9 | Winning rate on 19 x 19
1 75.8 £ 25 951+ 14
2 66.3 +£ 2.8 82.4 £ 27
4 62.6+ 2.9 735 + 34
8 59.6+ 2.9 63.1 + 4.2
16 52+ 3. 63 + 5.6
32 48.9+ 3. 48 + 10

Then:

» Try with a bigger machine ! and win against top professional players !

> Not so simple... there are diminishing returns.

Increasing the number N of tree-walks

N

1,000

4,000

16,000
256,000

711+ 0.1
68.7 £ 0.2
66.5+ 0.9

2N against N
Winning rate on 9 X 9 | Winning rate on 19 x 19
90.5 + 0.3
845+ 0,3
80.2 £ 0.4
58.5 + 1.7

61+ 0,2

49

90

The limits of parallelization

R. Coulom

Improvement in terms of performance against humans
<
Improvement in terms of performance against computers
<

Improvements in terms of self-play

More: https://hal.inria.fr/inria-00512854 /document

50

90

Multi-Armed Bandit
Regret
Multi-Armed Bandit
MAB algorithms
Around MABs
Monte-Carlo Tree Search
Go as an example

Evaluations

Evaluation and Propagation
Advanced MCTS

Rapid Action Value Estimate

Improving the rollout policy

Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP

Optimization in expectation

Conclusion and perspectives

«O0)>» «Fr «

1PN G4
51/90

Failure: Semeai

o = = = = DA
52/90

Failure: Semeai

0000000
I 90000000
00000000

52/90

= DA

Failure: Semeai

1PN G4
52/90

Failure: Semeai

o = = = = DA
52/90

Failure: Semeai

o = = = = DA
52/90

Failure: Semeai

CIRY= = = z 9ac
52/90

Failure: Semeai

Failure: Semeai

B |
e | |

Failure: Semeai

Why does it fail
» First simulation gives 50%
» Following simulations give 100% or 0%

» But MCTS tries other moves: doesn’t see all moves on the black side are
equivalent.

CIRY= = = z 9ac
53/90

Implication 1

MCTS does not detect invariance

too short-sighted
and parallelization does not help.

= & = = E 9DaC
54 /90

Implication 2

MCTS does not build abstractions — too short-sighted
and parallelization does not help.

1PN G4
55 /90

MCTS and 1-player games
MCTS and CP
Optimization in expectation

56 /90

MCTS for one-player game

» The MineSweeper problem

» Combining CSP and MCTS

11(1

111

-

1

1/1(1

1/1/12]1]1]1|1

1(1|12|2(3|3

1/1]1

Motivation

N
L
N

NNNNNN M
HRNWWWN R

> All locations have same probability of death 1/3

> Are then all moves equivalent ?

N
W
N

58 /90

Motivation

N
w
el

NNNNNN M
HRNWWWN R

> All locations have same probability of death 1/3

> Are then all moves equivalent ? NO !

N
W
N

58 /90

Motivation

> All locations have same probability of death 1/3
> Are then all moves equivalent ? NO !
> Top, Bottom: Win with probability 2/3

58 /90

Motivation

> All locations have same probability of death 1/3
> Are then all moves equivalent ? NO !
> Top, Bottom: Win with probability 2/3

v

MYOPIC approaches LOSE.

NNNNNN M

58 /90

MineSweeper, State of the art

Markov Decision Process Very expensive; 4 X 4 is solved
Single Point Strategy (SPS) local solver
CSP

» Each unknown location j, a variable x[j]

» Each visible location, a constraint, e.g. loc(15) = 4 —
x[04] + x[05] + x[06] + x[14] + x[16] + x[24] + x[25] + x[26] = 4

Find all N solutions

. ... number of solutions with mine in j
P(mine in j) = N

v

v

> Play j with minimal P(mine in j)

59 /90

Constraint Satisfaction for MineSweeper

State of the art
> 80% success beginner (9x9, 10 mines)
> 45% success intermediate (16x16, 40 mines)

> 34% success expert (30x40, 99 mines)

PROS
> Very fast

CONS
> Not optimal

> Beware of first move (opening
book)

NNNNNNM

60 /90

Upper Confidence Tree for MineSweeper

Couetoux Teytaud 11
» Cannot compete with CSP in terms of speed

» But consistent (find the optimal solution if given enough time)

Lesson learned
> Initial move matters
» UCT improves on CSP

v

3x3, 7 mines

v

Optimal winning rate: 25%

v

Optimal winning rate if uniform
initial move: 17/72

UCT improves on CSP by 1/72

v

61 /90

UCT for MineSweeper

Another example
» 5x5, 15 mines
» GnoMine rule

(first move gets 0)
» if 1st move is center, optimal winning rate is 100 %

» UCT finds it; CSP does not.

1PN G4
62 /90

The best of both worlds

CSP
» Fast

» Suboptimal (myopic)

UCT
> Needs a generative model

» Asymptotic optimal

Hybrid
» UCT with generative model based on CSP

63 /90

UCT needs a generative model

Given
> A state, an action
» Simulate possible transitions

Initial state, play top left
probabilistic transitions

Simulating transitions
> Using rejection (draw mines and check if consistent) SLOW
» Using CSP FAST

64 /90

The algorithm: Belief State Sampler UCT

v

One node created per simulation/tree-walk

> Progressive widening

v

Evaluation by Monte-Carlo simulation

v

Action selection: UCB tuned (with variance)
Monte-Carlo moves

v

> If possible, Single Point Strategy (can propose riskless moves if any)

> Otherwise, move with null probability of mines (CSP-based)

> Otherwise, with probability .7, move with minimal probability of mines
(CSP-based)

> Otherwise, draw a hidden state compatible with current observation
(CSP-based) and play a safe move.

65

90

The results

» BSSUCT: Belief State Sampler UCT
» CSP-PGMS: CSP + initial moves in the corners

Format CSP-PGMS BSSUCT

4 mines on 4x4 | 64.7 % 70.0% + 0.6%
I mine on 1x3 100 % |100% (2000 games)
3 mines on 2xH 22.6% 25.4 % + 1.0%
10 mines on 5xb| 8.20% | 9% (p-value: (.14)
5 mines on 1x10| 12.93% 18.9% + 0.2%
10 mines on 3x7| 4.50% 5.96% + 0.16%
15 mines on 5x5| 0.63% 0.9% + 0.1%

66 /90

Partial conclusion

Given a myopic solver
> It can be combined with MCTS / UCT:

» Significant (costly) improvements

67 /90

MCTS and 1-player games
MCTS and CP
Optimization in expectation

68 /90

Feature Selection

Biolnformatics

» 30 000 genes

» Find genes relevant to (cancer, obesity, you name it)

69 /90

Position of the problem

Goals

e Selection

e Ranking

Formalization

Given feature set 7 = {fi,..fy}. Define

G:P(F) »R
F CF + Err(F)= min error of models using F

Find Argmin(G)
Difficulties
o Combinatorial optimization problem (29)
e F unknown; noisy

70 /90

Some approaches

> Filter approaches [1]
» Wrapper approaches

> Tackling combinatorial optimization [2,3,4]
» Embedded approaches

> Using the learned hypothesis [5,06]
> Using a regularization term [7,8]

> Restricted to linear models [7] or linear combinations of kernels [8]

K. Kira, and L. A. Rendell ML'92

D. Margaritis NIPS'09

T. Zhang NIPS'08

M. Boullé J. Mach. Learn. Res. 07

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Mach. Learn. 2002
J. Rogers, and S. R. Gunn SLSFS'05

R. Tibshirani Journal of the Royal Statistical Society 94

F. Bach NIPS'08

71/90

FS as A Markov Decision Process

Set of features F
Set of states S =27
Initial state @
Set of actions A= {add f, f € F}
Final state any state
Reward function V : S+ [0,1]

Goal: Find argmin Err (A(F, D))
FCF

72 /90

Optimal Policy

Policy m: S — A
Final state following a policy Fx

Optimal policy 7* = argmin Err (A (Fx,E))

Bellman's optimality principle
7*(F) = argmin V*(F U{f})
feF

N Err(A(F)) if final(F)
Vi(F) = { ?ér,; V*(FU{f}) othe:\,/vise

. » 7 intractable = approximation using UCT
In practice

» Computing Err(F) using a fast estimate

73 /90

FS as a game

Exploration vs Exploitation tradeoff
> Virtually explore the whole lattice

> Gradually focus the search on most promising
Fs

» Use a frugal, unbiased assessment of F

How ?

» Monte-Carlo Tree Search

74

90

FUSE: bandit-based phase
The many arms problem

» Bottleneck
> A many-armed problem (hundreds of features)
= need to guide UCT

» How to control the number of arms?
> Continuous heuristics [1]
> Use a small exploration constant ce
> Discrete heuristics [2,3]: Progressive Widening
> Consider only | T?] actions (b < 1)

Number of
considered actions

Number of iterations
[1] S. Gelly, and D. Silver ICML'07
[2] R. Coulom Computer and Games 2006
[3] P. Rolet, M. Sebag, and O. Teytaud ECML'09

75

90

FUSE: bandit-based phase
Sharing information among nodes

» How to share information among nodes?
> Rapid Action Value Estimation (RAVE) [1]

RAVE(f) = average reward when f € F

[1] S. Gelly, and D. Silver ICML'07

76

90

FUSE: random phase
Dealing with an unknown horizon

» Bottleneck
> Finite unknown horizon

» Random phase policy
P With probability 1 — g/l stop
| Else e add a uniformly selected feature
\ o [Fl=I|Fl+1
| Ilterate Random >
Phasg«l,‘\\c\

77 /90

FUSE: reward(F)
Generalization error estimate

» Requisite
> fast (to be computed 10 times)
> unbiased

> Proposed reward
> k-NN like .
> + AUC criterion * .

» Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

78 /90

FUSE: reward(F)
Generalization error estimate

» Requisite
> fast (to be computed 10 times)
> unbiased

- e
» Proposed reward St
> k-NN like S .o
> + AUC criterion * . B

» Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

78 /90

FUSE: reward(F)
Generalization error estimate

» Requisite

> fast (to be computed 10 times)
> unbiased @ : . ’.
» Proposed reward ’ @ :
> k-NN like L
> + AUC criterion * . @

» Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

78 /90

FUSE: reward(F)
Generalization error estimate

» Requisite

> fast (to be computed 10 times)
> unbiased @ : . ’.
» Proposed reward ’ ’ :
> k-NN like L
> + AUC criterion * . ‘

» Complexity: O(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m < n)

78 /90

FUSE: reward(F)
Generalization error estimate

» Requisite
> fast (to be computed 10 times)
> unbiased

> Proposed reward @ ’ .
> k-NN like .7 ‘

» + AUC criterion * :

» Complexity: O(mnd) "’ ‘/‘®
d Number of selected features - - =
n Size of the training set %
m Size of sub-sample (m < n)

78 /90

FUSE: update

» Explore a graph
= Several paths to the same node

» Update only current path

79 /90

The FUSE algorithm

> N iterations:
each iteration i) follows a path; ii) evaluates a final node

Search tree (most visited path) <— RAVE score
_ I U
> Result: Wrapper approach Filter approach
FUSE FUSE®

» On the feature subset, use end learner A

> Any Machine Learning algorithm
> Support Vector Machine with Gaussian kernel in experiments

80

90

Experimental setting

» Questions

> FUSE vs FUSER

> Continuous vs discrete exploration heuristics

> FS performance w.r.t. complexity of the target concept
> Convergence speed

» Experiments on

DATA SET SAMPLES FEATURES PROPERTIES
MADELON [1] 2,600 500 XOR-LIKE
ARCENE [1] 200 10, 000 REDUNDANT FEATURES
COLON 62 2,000 “EAsy”

[1] NIPS'03

81/90

Experimental setting

> Baselines

CFS (Constraint-based Feature Selection) [1]

Random Forest [2]

Lasso [3]

RANDR: RAVE obtained by selecting 20 random features at each iteration

v

vyvyy

> Results averaged on 50 splits (10 x 5 fold cross-validation)

» End learner
> Hyper-parameters optimized by 5 fold cross-validation
[1] M. A. Hall ICML'00

[2] J. Rogers, and S. R. Gunn SLSFS'05
[8] R. Tibshirani Journal of the Royal Statistical Society 94

Results on Madelon after 200,000 iterations

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Test error

D—FUSEE
C-FUSE
CFS

Random Forest

Lassg
RAND"

5 10

15

20

25

Number of used top-ranked features

» Remark: FUSER = best of both worlds

> Removes redundancy (like CFS)

> Keeps conditionally relevant features (like Random Forest)

83

90

Results on Arcene after 200,000 iterations

0.4 R
D-FUSE;, ——
0.35 C-FUSE™ —
CFS
Random Forest 1
= Lassg
S RANDR ------- 1
5
g
|_
0.1
0.05
0
0 50 100 150 200

Number of used top-ranked features

» Remark: FUSER = best of both worlds

> Removes redundancy (like CFS)
> Keeps conditionally relevant features (like Random Forest)

OT—test “CFS vs. FUSER" with 100 features: p-value=0.036

84

90

Results on Colon after 200,000 iterations

0.4 ¢

D-FUSER ——
0.35 C-FUSER ——
‘ o -
0.3 Random Forest -
i Lasso
s 025y RANDR ------- 1
o 0.2 g i
2
[0.15
0.1
0.05
0
0 50 100 150 200

Number of used top-ranked features

» Remark
> All equivalent

85/90

NIPS 2003 Feature Selection challenge

> Test error on the NIPS 2003 Feature Selection challenge
> On an disjoint test set

DATABASE ALGORITHM CHALLENGE SUBMITTED IRRELEVANT
ERROR FEATURES FEATURES
MADELON FSPP2 [1] 6.22% (1%) 12 0
D-FUSEFR 6.50% (24'") 18 0
BAYES-NN-RED [2] 7.20% (1%) 100 0
ARCENE | D-FUSEFR(oN aLL) 8.42% (3) 500 34
D-FUSER 9.42% 500 (8t 500 0
» Remarks

> Selected features: accurate

> Promising results

[1]
[2]

K. Q. Shen, C. J. Ong, X. P. Li, E. P. V. Wilder-Smith Mach. Learn. 2008
R. M. Neal, and J. Zhang Feature extraction, foundations and applications, Springer 2006

86

90

Conclusion and Perspectives

» Contributions

> Formalization of Feature Selection as a Markov Decision Process
> Efficient approximation of the optimal policy (based on UCT)

= Any-time algorithm
> Experimental results

> State of the art
> High computational cost (45 minutes on Madelon)

» Perspectives

> Other end learners
» Extend to Feature construction

> Inspired by [1]

PX

P(XN(X,Y) P(X),

[1] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Piischel ICML'09

87

90

Multi-Armed Bandit
Regret
Multi-Armed Bandit
MAB algorithms
Around MABs
Monte-Carlo Tree Search
Go as an example

Evaluations

Evaluation and Propagation
Advanced MCTS

Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization
Open problems
MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

«0O)>» «F»r <

1PN G4
88/90

Conclusion

Take-home message: MCTS/UCT

> enables any-time smart look-ahead for better sequential decisions in front
of uncertainty.
> is an integrated system involving two main ingredients:

> Exploration vs Exploitation rule UCB, UCBtuned, others
> Roll-out policy

> can take advantage of prior knowledge

Caveat
» The UCB rule was not an essential ingredient of MoGo

> Refining the roll-out policy # refining the system
Many tree-walks might be better than smarter (biased) ones.

89

90

On-going

Extensions
» Continuous bandits: action ranges in a R
» Contextual bandits: state ranges in R?

» Multi-objective sequential optimization

\4

Duelling bandits

Controlling the size of the search space
» Building abstractions

» Considering nested MCTS (partially observable settings, e.g. poker)

90 /90

	Multi-Armed Bandit
	Regret

	Multi-Armed Bandit
	MAB algorithms
	Around MABs

	Monte-Carlo Tree Search
	Go as an example
	Evaluations
	Evaluation and Propagation

	Advanced MCTS
	Rapid Action Value Estimate
	Improving the rollout policy
	Using prior knowledge
	Parallelization

	Open problems
	MCTS and 1-player games
	MCTS and CP
	Optimization in expectation

	Conclusion and perspectives

