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Where we are

MDP Main Building block

General settings

Model-based Model-free

Finite Dynamic Programming Discrete RL

Infinite (optimal control) Continuous RL

More about the Exploration vs Exploitation Dilemma

This course: Multi-Armed Bandits ; Monte-Carlo Tree Search
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Action selection as a Multi-Armed Bandit problem

Lai, Robbins 85

In a casino, one wants to maximize one’s gains
while playing.

Lifelong learning

Exploration vs Exploitation Dilemma

I Play the best arm so far ? Exploitation

I But there might exist better arms... Exploration
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Formalization

I K options a.k.a. arms

I Arms are independent

I The i-th arm yields a reward r drawn iid along distribution νi
In the following, νi = Bernoulli(µi )

(return 1 with proba µi , 0 otherwise).

Goals

I Find the best arm:
i∗ = arg max

i
IE[νi ]

I Find a policy π : t → it , gets reward rt s.t. the sum of rewards is maximal
in expectation

π = arg max IE[r0 + r1 + . . .
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Applications

I Find the best cure/drug for a disease.
r = 1 if patient is cured, 0 otherwise

I Find the best ad for a Web site/user
r = 1 if user clicks on the ad, 0 otherwise

I Find the best action for a robot
r = 1 if the robot grasps the banana, 0 otherwise
(What is different here ?)
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The multi-armed bandit (MAB) problem

Algorithmic setting
Unknown parameters: K unknown probability distributions on [0, 1]
Known parameters: the set of arms 1 . . .K , the number of rounds T

For each round t = 1, 2, . . . ,T

(1) the learner chooses it ∈ 1 . . .K according to its own strategy.

(2) the learner incurs and observes the reward rt∼νit independently from the
past given rewards.

T : time horizon
When T unknown, algorithm is anytime
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The multi-armed bandit (MAB) problem

I K arms

I Each arm gives reward 1 with probability µi , 0 otherwise

I Let µ∗ = argmax{µ1, . . . µK}, with ∆i = µ∗ − µi

I In each time t, one selects an arm it and gets a reward rt

ni,t =
∑t

u=1 I1i∗u =i
number of times i has been selected

µ̂i,t = 1
ni,t

∑
i∗u =i

ru average reward of arm i

Goal: Maximize
∑t

u=1 ru
⇔

Minimize Regret (t) =
t∑

u=1

(µ∗ − ru) = tµ∗ −
K∑
i=1

ni,t µ̂i,t ≈
K∑
i=1

ni,t∆i
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Objective

Goal: Maximize
∑t

u=1 ru
⇔

Minimize Regret (t) =
t∑

u=1

(r ∼ ν∗ − ru)

Regret: extra-loss incurred w.r.t. the oracle (who knows i∗).

Why using the regret ?
“Kind of” normalization w.r.t. problem difficulty: the more difficult the
problem, the lower the oracle’s gain; what matters is how well one fares
compared to the expert.
(Additive normalization).
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Notations

I ni,t : number of times i has been selected up to t

I µ̂i,t empirical reward of i-th arm as of t

µ̂i,t =
1

ni,t

t∑
u=1

ru.I1iu=i

with I1e = 1 iff e holds true

I µi = IE[νi ]

I ∆i : margin of i-th arm
∆i = µ∗ − µi

Scientific questions

I How does the regret increase with T (linear ? quadratic ? logarithmic ?)

I What are the factors of difficulty of the MAB problem ?

11 / 90



Greedy algorithm

I Draw once each arm
µ̂i = r ∼ νi

I At time u, select arm it s.t.

it = argmax{µ̂i,t−1, i = 1 . . .K}

Example
I 2 arms:

I arm 1, µ1 = .8;
I arm 2, µ2 = .2.

I Assume the first two drawings yield:
I arm 1, r1 = 0;
I arm 2, r2 = 1.

I What happens ?
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The ε-greedy algorithm

At each time t,

I With probability 1− ε
select the arm with best empirical reward

it = argmax{µ̂1,t , . . . µ̂K ,t}

I Otherwise, select it uniformly in {1 . . .K}

What is the regret ?

Regret (t) > εt 1
K

∑
i ∆i

But: Optimal regret rate: log(t) Lai Robbins 85
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Upper Confidence Bound

Auer et al. 2002

Select it = argmax

{
µ̂i,t +

√
2

log(t)

ni,t

}

Arm A

Arm B

Arm A

Arm B

Arm A

Arm B

Decision: Optimism in front of unknown !
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Upper Confidence bound, 2

Thm: UCB achieves the optimal regret rate log(t)

If it = argmax

{
µ̂i,t +

√
ce

log(
∑

nj,t)

ni,t

}
Then

Regret(t) ≤ 8
∑
i 6=i∗

1

∆i
log(t) +

(
1 +

π2

3

)∑
i

∆i

Proof

Regret(t) =
∑
i 6=i∗

ni,t∆i
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Upper Confidence bound, 3

The very useful Hoeffding inequality
Given r1, . . . rn iid in [0, 1] drawn after p, with expectation µ,
Define empirical mean µ̂n = 1/n

∑n
u=1 ru, then

P (µ̂n − µ ≥ ε) ≤ exp
(
−2 ε2n

)
,

P (µ− µ̂n ≥ ε) ≤ exp
(
−2 ε2n

)
,

P (|µ̂n − µ| ≥ ε) ≤ 2 exp
(
−2 ε2n

)
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Sketch of the proof

Auer et al., 02

Regret(t) =
∑
i 6=i∗

∆i × ni,t

with ni,t = number of times i-th arm is played until step t.

Let `i = 8ln(t)

∆2
i

. Then, for ni,t > `i ,

µi + 2

√
2ln(t)

ni,t
< µ∗

For ni,t > `i , wrong choice (one selects the i-th arm instead of the optimal i∗

one)

⇒ µ̂∗ is underestimated and µ̂∗i is overestimated:

(A) µ̂∗ < µ∗ −
√

2ln(t)
ni∗,t

(B) µ̂∗i > µ∗i +
√

2ln(t)
ni,t

Hoeffding ⇒
Events (A) and (B) occur with probability less than exp{−4 ln(t)} = t−4

17 / 90



Sketch of the proof, 2

Hence:

IE[ni,t ] ≤ `i +
∞∑
t=1

t−1∑
ni,t=`i

(P(A) + P(B))

(first term: assume that it’s always wrong in the first `i steps;
second term, ni,t ≥ `i ; if it goes wrong, the two estimates are far from their
expectations.

IE[ni,t ] ≤
8ln(t)

∆i
+
∞∑
t=`

2t−4

Which concludes the proof (UCB regret is logarithmic):

Regret(t) ≤ 8
∑
i 6=i∗

1

∆i
log(t) +

(
1 +

π2

3

)∑
i

∆i
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Around MAB algorithms

I UCB is great, but not optimal. See KL-UCB Garivier et al. 2012

I In practice, play with C . control the exploration/exploitation trade-off

I Take into account the standard deviation of µ̂i : Select it = argmaxµ̂i,t +

√√√√ce
log(

∑
nj,t)

ni,t
+ min

(
1

4
, σ̂2

i,t +

√
ce

log(
∑

nj,t)

ni,t

)
I When there are many arms: tendency to over-explore...

Extensions

I When there is some side information: contextual bandits

I When arm distributions are not stationary: restless bandits
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A particular algorithm: BESA

Best Empirical Sampled Average Baransi Maillard 2014

Intuition

I Case 1: you compare two arms with same number of reward samples.
Easy: take the one with best average.

I Case 2: there is an arm A with many samples, and an arm B with few
samples (say k).
Easy: subsample k rewards for arm A and get back to Case 1.

Nota-bene
Same results with one hyper-parameter less == much better.
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MCTS: computer-Go as explanatory example
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Not just a game: same approaches apply to optimal energy policy

24 / 90



MCTS for computer-Go and MineSweeper

Go: deterministic transitions
MineSweeper: probabilistic transitions
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The game of Go in one slide

Rules

I Each player puts a stone on the goban, black first

I Each stone remains on the goban, except:

group w/o degree freedom is killed a group with two eyes can’t be killed

I The goal is to control the max. territory
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Go as a sequential decision problem

Features

I Size of the state space 2.10170

I Size of the action space 200

I No good evaluation function

I Local and global features (symmetries, freedom,
...)

I A move might make a difference some dozen plies
later

27 / 90



Setting

I State space S
I Action space A
I Known transition model: p(s, a, s ′)

I Reward on final states: win or lose

Baseline strategies do not apply:

I Cannot grow the full tree

I Cannot safely cut branches

I Cannot be greedy

Monte-Carlo Tree Search

I An any-time algorithm

I Iteratively and asymmetrically growing a search tree
most promising subtrees are more explored and developed
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Monte-Carlo Tree Search. Random phase

Gradually grow the search tree:

I Iterate Tree-Walk
I Building Blocks

I Select next action
Bandit phase

I Add a node
Grow a leaf of the search tree

I Select next action bis
Random phase, roll-out

I Compute instant reward
Evaluate

I Update information in visited nodes
Propagate

I Returned solution:
I Path visited most often

Explored Tree

Search Tree
Phase

Bandit−Based

New Node

Phase
Random
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Random phase − Roll-out policy

Monte-Carlo-based Brügman 93

1. Until the goban is filled,
add a stone (black or white in turn)
at a uniformly selected empty position

2. Compute r = Win(black)

3. The outcome of the tree-walk is r

Improvements ?

I Put stones randomly in the neighborhood of a previous stone

I Put stones matching patterns prior knowledge

I Put stones optimizing a value function Silver et al. 07
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Evaluation and Propagation

The tree-walk returns an evaluation r win(black)

Propagate

I For each node (s, a) in the tree-walk

ns,a ← ns,a + 1
µ̂s,a ← µ̂s,a + 1

ns,a
(r − µs,a)

Variants Kocsis & Szepesvári, 06

µ̂s,a ←
{

min{µ̂x , x child of (s, a)} if (s, a) is a black node
max{µ̂x , x child of (s, a)} if (s, a) is a white node
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Dilemma

I smarter roll-out policy →
more computationally expensive →
less tree-walks on a budget

I frugal roll-out →
more tree-walks →
more confident evaluations
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Action selection revisited

Select a∗ = argmax

{
µ̂s,a +

√
ce

log(ns)

ns,a

}

I Asymptotically optimal

I But visits the tree infinitely often !

Being greedy is excluded not consistent

Frugal and consistent

Select a∗ = argmax
Nb win(s, a) + 1
Nb loss(s, a) + 2

Further directions

I Optimizing the action selection rule
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Controlling the branching factor

What if many arms ? degenerates into exploration

I Continuous heuristics
Use a small exploration constant ce

I Discrete heuristics Progressive Widening
Coulom 06; Rolet et al. 09

Limit the number of considered actions to b b
√

n(s)c
(usually b = 2 or 4)

Number of iterations

N
u
m

b
e
r 

o
f

c
o
n
s
id

e
re

d
 a

c
ti

o
n
s

Introduce a new action when b b
√

n(s) + 1c > b b
√

n(s)c
(which one ? See RAVE, below).
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RAVE: Rapid Action Value Estimate

Gelly Silver 07

Motivation

I It needs some time to decrease the variance of µ̂s,a

I Generalizing across the tree ?

RAVE(s, a) =
average {µ̂(s ′, a), s parent of s ′}

global RAVE

local RAVE

s

a

a

a

a

a

a

a

a
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Rapid Action Value Estimate, 2

Using RAVE for action selection
In the action selection rule, replace µ̂s,a by

αµ̂s,a + (1− α) (βRAVE`(s, a) + (1− β)RAVEg (s, a))

α =
ns,a

ns,a+c1
β =

nparent(s)

nparent(s)+c2

Using RAVE with Progressive Widening

I PW: introduce a new action if b b
√

n(s) + 1c > b b
√

n(s)c
I Select promising actions: it takes time to recover from bad ones

I Select argmax RAVE`(parent(s)).
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A limit of RAVE

I Brings information from bottom to top of tree

I Sometimes harmful:

B2 is the only good move for white
B2 only makes sense as first move (not in subtrees)
⇒ RAVE rejects B2.
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Improving the roll-out policy π

π0 Put stones uniformly in empty positions

πrandom Put stones uniformly in the neighborhood of a previous stone

πMoGo Put stones matching patterns prior knowledge

πRLGO Put stones optimizing a value function Silver et al. 07

Beware! Gelly Silver 07

π better π′ 6⇒ MCTS(π) better MCTS(π′)
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Improving the roll-out policy π, followed
πRLGO against πrandom πRLGO against πMoGo

Evaluation error on 200 test cases
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Interpretation

What matters:

I Being biased is more harmful than being weak...

I Introducing a stronger but biased rollout policy π is detrimental.

if there exist situations where you (wrongly) think you are in good shape
then you go there

and you are in bad shape...
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Using prior knowledge

Assume a value function Qprior (s, a)

I Then when action a is first considered in state s, initialize

ns,a = nprior (s, a) equivalent experience / confidence of priors
µs,a = Qprior (s, a)

The best of both worlds

I Speed-up discovery of good moves

I Does not prevent from identifying their weaknesses

43 / 90



Multi-Armed Bandit
Regret

Multi-Armed Bandit
MAB algorithms
Around MABs

Monte-Carlo Tree Search
Go as an example
Evaluations
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

44 / 90



Parallelization. 1 Distributing the roll-outs

comp.

node 1

comp

node k

Distributing roll-outs on different computational nodes does not work.
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Parallelization. 2 With shared memory

comp.

node 1

comp

node k

I Launch tree-walks in parallel on the same MCTS

I (micro) lock the indicators during each tree-walk update.

Use virtual updates to enforce the diversity of tree walks.
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Parallelization. 3. Without shared memory

comp.

node 1

comp

node k

I Launch one MCTS per computational node
I k times per second k = 3

I Select nodes with sufficient number of simulations
> .05×# total simulations

I Aggregate indicators

Good news
Parallelization with and without shared memory can be combined.
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It works !

32 cores against Winning rate on 9× 9 Winning rate on 19× 19
1 75.8 ± 2.5 95.1 ± 1.4
2 66.3 ± 2.8 82.4 ± 2.7
4 62.6± 2.9 73.5 ± 3.4
8 59.6± 2.9 63.1 ± 4.2

16 52± 3. 63 ± 5.6
32 48.9± 3. 48 ± 10

Then:

I Try with a bigger machine ! and win against top professional players !

I Not so simple... there are diminishing returns.
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Increasing the number N of tree-walks

N 2N against N
Winning rate on 9× 9 Winning rate on 19× 19

1,000 71.1 ± 0.1 90.5 ± 0.3
4,000 68.7 ± 0.2 84.5 ± 0,3

16,000 66.5± 0.9 80.2 ± 0.4
256,000 61± 0,2 58.5 ± 1.7
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The limits of parallelization

R. Coulom

Improvement in terms of performance against humans

�

Improvement in terms of performance against computers

�

Improvements in terms of self-play

More: https://hal.inria.fr/inria-00512854/document
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Failure: Semeai
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Failure: Semeai

Why does it fail

I First simulation gives 50%

I Following simulations give 100% or 0%

I But MCTS tries other moves: doesn’t see all moves on the black side are
equivalent.
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Implication 1

MCTS does not detect invariance → too short-sighted
and parallelization does not help.
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Implication 2

MCTS does not build abstractions → too short-sighted
and parallelization does not help.
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MCTS for one-player game

I The MineSweeper problem

I Combining CSP and MCTS
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Motivation

I All locations have same probability of death 1/3

I Are then all moves equivalent ?

NO !

I Top, Bottom: Win with probability 2/3

I MYOPIC approaches LOSE.
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MineSweeper, State of the art

Markov Decision Process Very expensive; 4× 4 is solved

Single Point Strategy (SPS) local solver

CSP

I Each unknown location j , a variable x [j ]

I Each visible location, a constraint, e.g. loc(15) = 4→

x [04] + x [05] + x [06] + x [14] + x [16] + x [24] + x [25] + x [26] = 4

I Find all N solutions

I P(mine in j) =
number of solutions with mine in j

N

I Play j with minimal P(mine in j)
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Constraint Satisfaction for MineSweeper

State of the art

I 80% success beginner (9x9, 10 mines)

I 45% success intermediate (16x16, 40 mines)

I 34% success expert (30x40, 99 mines)

PROS

I Very fast

CONS

I Not optimal

I Beware of first move (opening
book)
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Upper Confidence Tree for MineSweeper

Couetoux Teytaud 11

I Cannot compete with CSP in terms of speed

I But consistent (find the optimal solution if given enough time)

Lesson learned

I Initial move matters

I UCT improves on CSP

I 3x3, 7 mines

I Optimal winning rate: 25%

I Optimal winning rate if uniform
initial move: 17/72

I UCT improves on CSP by 1/72
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UCT for MineSweeper

Another example

I 5x5, 15 mines

I GnoMine rule (first move gets 0)

I if 1st move is center, optimal winning rate is 100 %

I UCT finds it; CSP does not.
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The best of both worlds

CSP

I Fast

I Suboptimal (myopic)

UCT

I Needs a generative model

I Asymptotic optimal

Hybrid

I UCT with generative model based on CSP
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UCT needs a generative model

Given

I A state, an action

I Simulate possible transitions

Initial state, play top left

probabilistic transitions

Simulating transitions

I Using rejection (draw mines and check if consistent) SLOW

I Using CSP FAST
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The algorithm: Belief State Sampler UCT

I One node created per simulation/tree-walk

I Progressive widening

I Evaluation by Monte-Carlo simulation

I Action selection: UCB tuned (with variance)
I Monte-Carlo moves

I If possible, Single Point Strategy (can propose riskless moves if any)
I Otherwise, move with null probability of mines (CSP-based)
I Otherwise, with probability .7, move with minimal probability of mines

(CSP-based)
I Otherwise, draw a hidden state compatible with current observation

(CSP-based) and play a safe move.
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The results

I BSSUCT: Belief State Sampler UCT

I CSP-PGMS: CSP + initial moves in the corners

66 / 90



Partial conclusion

Given a myopic solver

I It can be combined with MCTS / UCT:

I Significant (costly) improvements

67 / 90



Multi-Armed Bandit
Regret

Multi-Armed Bandit
MAB algorithms
Around MABs

Monte-Carlo Tree Search
Go as an example
Evaluations
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives

68 / 90



Feature Selection

BioInformatics

I 30 000 genes

I Find genes relevant to (cancer, obesity, you name it)
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Position of the problem

Goals
• Selection
• Ranking
Formalization
Given feature set F = {f1, ..fd}. Define

G : P(F) 7→ IR
F ⊂ F 7→ Err(F ) = min error of models using F

Find Argmin(G)
Difficulties
• Combinatorial optimization problem (2d)
• F unknown; noisy
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Some approaches

I Filter approaches [1]
I Wrapper approaches

I Tackling combinatorial optimization [2,3,4]

I Embedded approaches
I Using the learned hypothesis [5,6]
I Using a regularization term [7,8]

I Restricted to linear models [7] or linear combinations of kernels [8]

[1] K. Kira, and L. A. Rendell ML’92
[2] D. Margaritis NIPS’09
[3] T. Zhang NIPS’08
[4] M. Boullé J. Mach. Learn. Res. 07
[5] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik Mach. Learn. 2002
[6] J. Rogers, and S. R. Gunn SLSFS’05
[7] R. Tibshirani Journal of the Royal Statistical Society 94
[8] F. Bach NIPS’08
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FS as A Markov Decision Process

Set of features F
Set of states S = 2F

Initial state ∅
Set of actions A = {add f , f ∈ F}

Final state any state

Reward function V : S 7→ [0, 1]

f1 f3f2

f , f 1    3 f , f 2    3

f , f 1    2
f3

f , f 1    2

f3
f1

f2

f1 f3 f2f2

f2 f1f3

f3
f1

Goal: Find argmin
F⊆F

Err (A (F ,D))
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Optimal Policy

Policy π : S → A

Final state following a policy Fπ

Optimal policy π? = argmin
π

Err (A (Fπ, E))

Bellman’s optimality principle

π?(F ) = argmin
f∈F

V ?(F ∪ {f })

V ?(F ) =

{
Err(A(F )) if final(F )
min
f∈F

V ?(F ∪ {f }) otherwise

f1 f3

f , f 1    3 f , f 2    3

f , f 1    2

f3

f3
f1

f3 f2
f2

f2 f1f3

f3
f1f1

f2

f2

f , f 1    2

In practice
I π? intractable ⇒ approximation using UCT

I Computing Err(F ) using a fast estimate
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FS as a game

Exploration vs Exploitation tradeoff

I Virtually explore the whole lattice

I Gradually focus the search on most promising
F s

I Use a frugal, unbiased assessment of F

How ?

I Monte-Carlo Tree Search

f1 f3

f , f 1    3 f , f 2    3

f , f 1    2

f3

f2

f , f 1    2
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FUSE: bandit-based phase
The many arms problem

I Bottleneck
I A many-armed problem (hundreds of features)

⇒ need to guide UCT

I How to control the number of arms?
I Continuous heuristics [1]

I Use a small exploration constant ce
I Discrete heuristics [2,3]: Progressive Widening

I Consider only bT bc actions (b < 1)

Number of iterations

N
u

m
b

e
r 

o
f

c
o

n
s
id

e
re

d
 a

c
ti

o
n

s

Search Tree
Phase

Bandit−Based ?

[1] S. Gelly, and D. Silver ICML’07
[2] R. Coulom Computer and Games 2006
[3] P. Rolet, M. Sebag, and O. Teytaud ECML’09
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FUSE: bandit-based phase
Sharing information among nodes

I How to share information among nodes?
I Rapid Action Value Estimation (RAVE) [1]

RAVE(f ) = average reward when f ∈ F
F

8

F
3

F
5

F
2

F
9 F

4
F

11
µ

F
7

F
10

F
1

F
6

g−RAVE

F

f

f
f

f

f

ℓ-RAVE

[1] S. Gelly, and D. Silver ICML’07
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FUSE: random phase
Dealing with an unknown horizon

I Bottleneck
I Finite unknown horizon

I Random phase policy

� With probability 1− q|F | stop
| Else • add a uniformly selected feature
|

Else

• |F | = |F |+ 1
b Iterate

Explored Tree

Search Tree

Random
Phase ?
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FUSE: reward(F )
Generalization error estimate

I Requisite
I fast (to be computed 104 times)
I unbiased

I Proposed reward
I k-NN like
I + AUC criterion *

I Complexity: Õ(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m� n)
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FUSE: reward(F )
Generalization error estimate

I Requisite
I fast (to be computed 104 times)
I unbiased

I Proposed reward
I k-NN like
I + AUC criterion *

I Complexity: Õ(mnd)
d Number of selected features
n Size of the training set
m Size of sub-sample (m� n)

+ + −
AUC
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FUSE: update

I Explore a graph
⇒ Several paths to the same node

I Update only current path

New Node

Search Tree

Bandit−Based
Phase

Random
Phase
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The FUSE algorithm

I N iterations:
each iteration i) follows a path; ii) evaluates a final node

I Result:

Search tree (most visited path) ←→ RAVE score
⇓ ⇓

Wrapper approach Filter approach
FUSE FUSER

I On the feature subset, use end learner A
I Any Machine Learning algorithm
I Support Vector Machine with Gaussian kernel in experiments
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Experimental setting

I Questions
I FUSE vs FUSER

I Continuous vs discrete exploration heuristics
I FS performance w.r.t. complexity of the target concept
I Convergence speed

I Experiments on

Data set Samples Features Properties
Madelon [1] 2,600 500 XOR-like
Arcene [1] 200 10, 000 Redundant features

Colon 62 2, 000 “Easy”

[1] NIPS’03
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Experimental setting

I Baselines
I CFS (Constraint-based Feature Selection) [1]
I Random Forest [2]
I Lasso [3]
I RANDR : RAVE obtained by selecting 20 random features at each iteration

I Results averaged on 50 splits (10 × 5 fold cross-validation)

I End learner
I Hyper-parameters optimized by 5 fold cross-validation

[1] M. A. Hall ICML’00
[2] J. Rogers, and S. R. Gunn SLSFS’05
[3] R. Tibshirani Journal of the Royal Statistical Society 94
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Results on Madelon after 200,000 iterations
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I Remark: FUSER = best of both worlds
I Removes redundancy (like CFS)
I Keeps conditionally relevant features (like Random Forest)
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Results on Arcene after 200,000 iterations
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I Remark: FUSER = best of both worlds
I Removes redundancy (like CFS)
I Keeps conditionally relevant features (like Random Forest)

0
T-test “CFS vs. FUSER ” with 100 features: p-value=0.036
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Results on Colon after 200,000 iterations
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I Remark
I All equivalent
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NIPS 2003 Feature Selection challenge

I Test error on the NIPS 2003 Feature Selection challenge
I On an disjoint test set

database algorithm challenge submitted irrelevant
error features features

Madelon FSPP2 [1] 6.22% (1st) 12 0

D-FUSER 6.50% (24th) 18 0
Bayes-nn-red [2] 7.20% (1st) 100 0

Arcene D-FUSER(on all) 8.42% (3rd ) 500 34

D-FUSER 9.42% 500 (8th) 500 0

I Remarks
I Selected features: accurate
I Promising results

[1] K. Q. Shen, C. J. Ong, X. P. Li, E. P. V. Wilder-Smith Mach. Learn. 2008
[2] R. M. Neal, and J. Zhang Feature extraction, foundations and applications, Springer 2006
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Conclusion and Perspectives

I Contributions
I Formalization of Feature Selection as a Markov Decision Process
I Efficient approximation of the optimal policy (based on UCT)

⇒ Any-time algorithm
I Experimental results

I State of the art
I High computational cost (45 minutes on Madelon)

I Perspectives
I Other end learners
I Extend to Feature construction

I Inspired by [1]

R(X,Y)P(X)P(X) R(X,Y)

P(X) R(X,Y)Q(X)

Q(X)P(Y)

P(X) Q(Y)

[1] F. de Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel ICML’09
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Multi-Armed Bandit
Regret

Multi-Armed Bandit
MAB algorithms
Around MABs

Monte-Carlo Tree Search
Go as an example
Evaluations
Evaluation and Propagation

Advanced MCTS
Rapid Action Value Estimate
Improving the rollout policy
Using prior knowledge
Parallelization

Open problems

MCTS and 1-player games
MCTS and CP
Optimization in expectation

Conclusion and perspectives
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Conclusion

Take-home message: MCTS/UCT

I enables any-time smart look-ahead for better sequential decisions in front
of uncertainty.

I is an integrated system involving two main ingredients:
I Exploration vs Exploitation rule UCB, UCBtuned, others
I Roll-out policy

I can take advantage of prior knowledge

Caveat

I The UCB rule was not an essential ingredient of MoGo

I Refining the roll-out policy 6⇒ refining the system
Many tree-walks might be better than smarter (biased) ones.
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On-going

Extensions

I Continuous bandits: action ranges in a IR

I Contextual bandits: state ranges in IRd

I Multi-objective sequential optimization

I Duelling bandits

Controlling the size of the search space

I Building abstractions

I Considering nested MCTS (partially observable settings, e.g. poker)
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