
Reinforcement Learning

Michèle Sebag ; TP : Herilalaina Rakotoarison
TAO, CNRS − INRIA − Université Paris-Sud

Nov. 19h, 2018
Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

1 / 33

Markov Decision Process

Dynamic Programming
Temporal differences and eligibility traces
Q-learning
Partial summary

2 / 33

Ingredients

Issues

I How does the world behave ?

I How does the agent behave ?

I What is the goal

I Markov Decision Process (S,A,p,r)

I Policy π : S 7→ A

I Optimize expected cumulative
rewards

3 / 33

Markov Decision Process

I State space S Terminal states T ⊂ S

I Action space A

I Transition p(s, a, s ′) : probability of arriving in s ′ after doing a in s

I Reward r(s, a): goodies for doing a in s
sometimes, r(s): just for being in s

Markov property
Future only depends upon current state

Remark
This can always hold.
But ?

more expensive

4 / 33

Markov Decision Process

I State space S Terminal states T ⊂ S

I Action space A

I Transition p(s, a, s ′) : probability of arriving in s ′ after doing a in s

I Reward r(s, a): goodies for doing a in s
sometimes, r(s): just for being in s

Markov property
Future only depends upon current state

Remark
This can always hold.
But ? more expensive

4 / 33

Policy − Quality

π : S 7→ A

A

A’

B

B’

B −> B’, reward 5

A −> A’, reward 10

s0, a0 = π(s0), r0, s1, a1 = π(s1), r1, s2, . . .

Episodic
R(π) = r(s0) + r(s1) + . . . r(sK)

Continuous
R(π) =

∑
γk+1r(sk)

I s0 drawn after probability pInit

I si drawn with probability p(si−1, π(si−1, ·))

5 / 33

Designing an RL problem

Choices

I Which state space ?

I Size of the search space

I Reward function

I How unpredictable is the environment (if multiple agents...)

I Which discount factor ?

Some problems...

I Optimal autonomous driving (safe, fast, comfortable)

I Optimal trading on the stock-market

I Policy that optimizes your happiness during your life

I Policy that optimizes long-term hapiness of humanity
Which discount factor ?

6 / 33

Features of RL problems

I Finite vs. Infinite

I Discrete vs. Continuous

I Model-based vs. Model-free

I Episodic vs. Continuing

I Markovian vs. Non-Markovian

I Observable vs. Partially Observ.

7 / 33

The coin problem

Compute return

I Random policy

Which optimal policy ?

8 / 33

The global RL problem

3 interleaved tasks

I Learn a world model (p, r)

I Decide/select (the best) action

I Explore the world
OPTIMIZE

EXPERIMENT

LEARN

9 / 33

Milestones

MDP Main Building block

General settings

Model-based Model-free

Finite Dynamic Programming Discrete RL

Infinite (optimal control) Continuous RL

10 / 33

Markov Decision Process

Dynamic Programming
Temporal differences and eligibility traces
Q-learning
Partial summary

11 / 33

Algorithmic paradigms

Greedy optimization
Define incrementally a solution, based on myopic optimization of some criterion

Divide and conquer

I Define subproblems

I Find optimal solutions for subproblems

I Combine solutions to subproblems

Dynamic programming

I Recursively decompose the problem in subproblems

I Bottom-up: solve small sub-problems

I Assemble their solutions to solve larger subproblems

I Can be close to brute-force search.

12 / 33

Dynamic programming, an example

Algorithm recursion + memoization

I D(N,N ′) =∞
I D(N,N) = 0

I D(N,N ′) = c(Edge(N,N ′)) iff it exists
I Repeat until no change

I If D(N1,N2) > D(N1,N3) + D(N3,N2),
D(N1,N2) = D(N1,N3) + D(N3,N2)

Exo: Computational complexity ?

13 / 33

Dynamic Programming

Bellman, 50s

Context

I Computer Science: theory, AI, graphics,

I Information theory

I Control theory

I BioInformatics

I Operation research

Algorithms

I Viterbi for Hidden Markov Models

I Smith-Waterman for sequence alignment

I diff in Unix for comparing two files

I Bellman-Ford for shortest paths in graphs

14 / 33

Value function

Intuition

I What is the value of being in a state ?

I The value is good if this state is associated to a (delayed) reward

Caveat

I The value depends on the state

I The value depends on the policy

I Vπ(s) is the expected cumulative reward when starting in s and following π

Observation
Rt = r0 + γr1 + . . .+ γk rk + . . .

=
∑∞

k=0 γ
k rk

Expectation
Vπ(s) = IE[Rt |s0 = s]

15 / 33

Bellman equation

Vπ(s) = IE[Rt |s0 = s]

= IE[
∑∞

k=0 γ
k rk |s0 = s]

= IE[r(s)] + IE(
∑∞

k=1 γ
k rk |s0 = s]

= IE[r(s)] +
∑

s′ p(s, π(s), s ′)IE[
∑∞

k=1 γ
k rk |s1 = s ′]

= IE[r(s)] + γ
∑

s′ p(s, π(s), s ′) IE[
∑∞

k=0 γ
k rk |s0 = s ′]

= IE[r(s)] + γ
∑

s′ p(s, π(s), s ′)V (s ′)

16 / 33

Bellman equation

I A theoretical property of value functions

I Optimal Bellman equation
Define

V ∗(s) = maxπVπ(s)

Then, π∗ is an optimal policy if and only if

Vπ∗ = V∗

π∗(s) = arg max
a

p(s, a, s ′)V∗(s
′)

(What is needed to compute π∗(s) from V∗ ?)

17 / 33

Policy evaluation

Truncate at k time steps

Vπ,k(s) = IE

[
k∑
`=1

γ`r`|s0 = s

]

limk→∞Vπ,k(s) = Vπ(s)

(Vπ,k is an approximation of Vπ; can we bound the approximation error ?)

18 / 33

Iterative policy evaluation

Given policy π

Init
∀s ∈ S ,Vπ(s) = 0

Loop
∆ = 0
For each s ∈ S

v = V (s)
V (s) = r(s) + γ

∑
s′ p(s, π(s), s ′)V (s ′)

∆ = max(∆, |v − V (s)|)

Until ∆ < ε

Output V ≈ Vπ

19 / 33

Policy Improvement

Intuition

I Build Vπ(s)

I You are in s

I This is the model-based setting

I Can you think of better than doing π(s) ?

Improved π′

π′(s) = arg max
a

{
p(s, a, s ′)Vπ(s ′)

}
Algorithm

1. Define π

2. Build Vπ

3. π′: Policy improvement(π)

4. π = π′; Goto 2

This converges toward optimal π∗ but takes for ever

20 / 33

Policy Improvement

Intuition

I Build Vπ(s)

I You are in s

I This is the model-based setting

I Can you think of better than doing π(s) ?

Improved π′

π′(s) = arg max
a

{
p(s, a, s ′)Vπ(s ′)

}
Algorithm

1. Define π

2. Build Vπ

3. π′: Policy improvement(π)

4. π = π′; Goto 2

This converges toward optimal π∗ but takes for ever

20 / 33

Value Iteration

Policy evaluation recall

Vπ,k+1(s) = r(s) + γ
∑
s′

p(s, π(s), s ′)Vπ,k(s ′)

Value iteration more greedy

Vk+1 = r(s) + γ arg max
a

∑
s′

p(s, a, s ′)Vk(s ′)

21 / 33

Value Iteration

Policy evaluation recall

Vπ,k+1(s) = r(s) + γ
∑
s′

p(s, π(s), s ′)Vπ,k(s ′)

Value iteration more greedy

Vk+1 = r(s) + γ arg max
a

∑
s′

p(s, a, s ′)Vk(s ′)

21 / 33

Policy evaluation vs Value iteration

Policy evaluation Value iteration

Init π V

loop a = π(s) a = argmax

Output Vπ Greedy policy (V)

22 / 33

Initialization

Random ?

I Educated initialisation is better

I See Inverse Reinforcement Learning

I https://www.youtube.com/watch?v=0JL04JJjocc

I https://www.youtube.com/watch?v=VCdxqn0fcnE

I More: ICML 2004, Pieter Abbeel and Andrew Ng

23 / 33

Policy iteration

Principle

I Modify π step 1

I Update V until convergence step 2

Getting faster

I Don’t wait until V has converged before modifying π.

24 / 33

Discussion

Policy and value iteration

I Must wait until the end of the episode

I Episodes might be long

Can we update V on the fly ?

I I have estimates of how long it takes to go to RER, to catch the train, to
arrive at Cité-U

I Something happens on the way (bump into a friend, chat, delay, miss the
train,...)

I I can update my estimates of when I’ll be home...

25 / 33

TD(0)

1. Initialize V and π

2. Loop on episode
2.1 Initialize s
2.2 Repeat

Select action a = π(s)
Observe s′ and reward r
V (s)← V (s) + α(r + γV (s′)︸ ︷︷ ︸

R

−V (s))

s ← s′

2.3 Until s′ terminal state

26 / 33

Discussion

Update on the spot ?

I Might be brittle

I Instead one can consider several steps

R = rt + γrt+1 + γ2V (st+2)

Find an intermediate between

I Policy iteration
Rt = rt+1 + γrt+2 + γ2rt+3 + . . .

I TD(0)
Rt = rt+1 + γVt(st+1)

27 / 33

TD(λ), intuition

28 / 33

TD(λ), intuition, followed

29 / 33

TD(λ)

1. Initialize V and π

2. Loop on episode
2.1 Initialize s
2.2 Repeat

a = π(s)
Observe s′ and reward r
δ ← r + V (s′)− V (s)
e(s)← e(s) + 1

For all s“
V (s′′)← V (s“) + αδe(s′′)
e(s′′)← γλe(s′′)

s ← s′

2.3 Until s′ terminal state

30 / 33

Q-learning

Principle: Iterate

I During an episode (from initial state until reaching a final state)

I At some point explore and choose another action;

I If it improves, update Q(s, a):

Q(st , at)← Q(st , at)︸ ︷︷ ︸
old value

+

α︸︷︷︸
learning rate

×


learned value︷ ︸︸ ︷

r(st+1)︸ ︷︷ ︸
reward

+ γ︸︷︷︸
discount factor

max
at+1

Q(st+1, at+1)︸ ︷︷ ︸
max future value

−Q(st , at)︸ ︷︷ ︸
old value


Equivalent to

Q(st , at)← Q(st , at)(1− α) + α[r(st+1) + γmax
at+1

Q(st+1, at+1)]

31 / 33

Partial summary

Strengths

I Optimality guarantees (converge to global optimum)...

Weaknesses

I ...if each state is visited often, and each action is tried in each state

I Number of states: exponential wrt number of features

32 / 33

Discussion

Values and emotions
More: Antonio Damasio. Descartes’ Error: Emotion, Reason, and the Human
Brain

33 / 33

	Markov Decision Process
	Dynamic Programming
	Temporal differences and eligibility traces
	Q-learning
	Partial summary

