Reinforcement Learning

Michele Sebag ; TP : Herilalaina Rakotoarison
TAO, CNRS — INRIA — Université Paris-Sud

[]
universite

PARIS-SACLAY

Nov. 19h, 2018
Credit for slides: Richard Sutton, Freek Stulp, Olivier Pietquin

UNIVERSITE

~ S PARIS
Creia— P &5

U MONDE NUMERIQU

Markov Decision Process

Ingredients

Issues

Goal states are given
aterminal value of 1

» How does the world behave ?

» How does the agent behave ?
» What is the goal

4 rooms
4 hallways

4 unreliable
primitive actions

up

Fail 33%

left right of e ime

down

8 multi-step options
(1o each room's 2 hallways)

Given goal location,
quickly plan shortest route

All rewards zero
Y=.9

» Markov Decision Process (S,A,p,r)
> Policym: S+— A

» Optimize expected cumulative

rewards

Markov Decision Process

v

State space S Terminal states T C S

» Action space A

v

Transition p(s, a,s’) : probability of arriving in s” after doing a in s

v

Reward r(s, a): goodies for doing a in s
sometimes, r(s): just for being in s

Markov property
Future only depends upon current state

Remark
This can always hold.
But 7

Markov Decision Process

v

State space S Terminal states T C S

» Action space A

v

Transition p(s, a,s’) : probability of arriving in s” after doing a in s

v

Reward r(s, a): goodies for doing a in s
sometimes, r(s): just for being in s

Markov property
Future only depends upon current state

Remark
This can always hold.
But ? more expensive

Policy — Quality

T:S—A

A B
A —>A’, reward 10

) B —>B’, reward 5

A

S0, 30 = 7(%0), ro, 51, a1 = 7(s1), 1, %2, - - -

Episodic
R(m) = r(so) + r(s1) + ... r(sk)

Continuous

R(m) = 37" r(s0)

> so drawn after probability ppit

» s; drawn with probability p(si—1, 7(si—1, "))

Designing an RL problem

Choices
» Which state space ?
> Size of the search space
» Reward function
» How unpredictable is the environment (if multiple agents...)
» Which discount factor ?

Some problems...
» Optimal autonomous driving (safe, fast, comfortable)
» Optimal trading on the stock-market
» Policy that optimizes your happiness during your life

» Policy that optimizes long-term hapiness of humanity
Which discount factor ?

6/33

Features of RL problems

v

Finite vs. Infinite

» Discrete vs. Continuous

v

Model-based vs. Model-free
» Episodic vs. Continuing

» Markovian vs. Non-Markovian

v

Observable vs. Partially Observ.

The coin problem

Compute return

» Random policy

Which optimal policy ?

The global RL problem

3 interleaved tasks

> Learn a world model (p, r)
> Decide/select (the best) action

» Explore the world

OPTIMIZE

EXPERIMENT

LEARN

Milestones

MDP Main Building block

General settings

‘ Model-based

Model-free

Finite Dynamic Programming

Infinite (optimal control)

Discrete RL

Continuous RL

10/33

Dynamic Programming
Temporal differences and eligibility traces
Q-learning
Partial summary

11/33

Algorithmic paradigms

Greedy optimization
Define incrementally a solution, based on myopic optimization of some criterion

Divide and conquer
» Define subproblems
» Find optimal solutions for subproblems

» Combine solutions to subproblems

Dynamic programming
> Recursively decompose the problem in subproblems
» Bottom-up: solve small sub-problems
> Assemble their solutions to solve larger subproblems

» Can be close to brute-force search.

Dynamic programming, an example

Finding the shortest
path in a graph

Algorithm recursion + memoization
» D(N,N") = o0
» D(N,N)=0
» D(N,N’') = c(Edge(N, N")) iff it exists

v

Repeat until no change
> If D(Nl, N2) > D(Nl, N3) -+ D(N?,7 Nz),
D(N17 Nz) = D(Nl, N3) + D(N3, N2)

Exo: Computational complexity ?

13/33

Dynamic Programming

Bellman, 50s
Context

» Computer Science: theory, Al, graphics,

\{

Information theory

v

Control theory

v

Biolnformatics

» Operation research

Algorithms
» Viterbi for Hidden Markov Models
» Smith-Waterman for sequence alignment
» diff in Unix for comparing two files

> Bellman-Ford for shortest paths in graphs

Value function

Intuition
» What is the value of being in a state ?

» The value is good if this state is associated to a (delayed) reward

Caveat
» The value depends on the state
» The value depends on the policy

> Vi(s) is the expected cumulative reward when starting in s and following 7

Observation .
R: =rnt+yn—+...+y r+...
=20 Vr

Expectation
Vr(s) = E[R:|so = s]

15/33

Bellman equation

V(s) =IE[R:s =s]
= E[C720 7 relso = 5]
= E[r(s)] + B2, 7 relso = o]
= E[r(s)] + X2, p(s, 7(s), s YE[LZ, 7 relst = 5]
= E[r(s)] +7 Xy p(s, 7(s), s) B0 v relso = 5]

=E[r(s)] +v 2o p(s,7(s),s") V(s')

16 /33

Bellman equation

> A theoretical property of value functions

» Optimal Bellman equation
Define
V*(s) = maxx Vi (s)

Then, 7* is an optimal policy if and only if
Viex = Vi
m*(s) = argmax p(s, a, s’) Vi (s")
a

(What is needed to compute 7*(s) from V. 7)

17 /33

Policy evaluation

Truncate at k time steps

Vi k(s) = {Z'y relso = s:|

limi_ 00 Ve k(s) = Vi (s)

(Vi is an approximation of V;; can we bound the approximation error ?)

18 /33

Iterative policy evaluation

Given policy 7

Init
Vs e S, Vq(s)=0
Loop
A=0
Foreach seS
v=V(s)
V(s) = r(s) +v 2. p(s,7(s),s") V(s')
A = max(A, v — V(s)])
Until A < e

Output V ~ V,

19/33

Policy Improvement

Intuition
» Build Vx(s)
» You arein s

» This is the model-based setting

v

Can you think of better than doing 7(s) ?

20/33

Policy Improvement

Intuition
» Build Vx(s)
> You are in s
» This is the model-based setting
» Can you think of better than doing 7(s) ?

Improved 7’
7'(s) = arg max {p(s,a,s") Vx(s")}
Algorithm
1. Define 7
2. Build V;
3. «': Policy improvement ()
4. m=q7'; Goto 2

This converges toward optimal 7* but takes for ever

20/33

Value lteration

Policy evaluation recall
Veksa(s) = r(s) +7 Y p(s,7(s),s") Viek(s')

Value iteration more greedy

21/33

Value lteration

Policy evaluation

Value iteration

Vekia(s) = r(s) +v > p(s,m(s),s") V(s

Vig1 = r(s) + yarg maxz p(s,a,s") Vi(s")

recall

more greedy

21/33

Policy evaluation vs Value iteration

Policy evaluation Value iteration
Init s 4
loop a=m(s) a = argmax

Output Vi Greedy policy (V)

Initialization

Random ?
» Educated initialisation is better

> See Inverse Reinforcement Learning

v

https://www.youtube.com/watch?v=0JL04JJjocc

v

https://www.youtube.com /watch?v=VCdxqnOfcnE
More: ICML 2004, Pieter Abbeel and Andrew Ng

v

23/33

Policy iteration

Principle
> Modify m step 1
» Update V until convergence step 2

Getting faster

» Don’t wait until V has converged before modifying 7.

24 /33

Discussion

Policy and value iteration
» Must wait until the end of the episode

» Episodes might be long

Can we update V on the fly ?
> | have estimates of how long it takes to go to RER, to catch the train, to
arrive at Cité-U
» Something happens on the way (bump into a friend, chat, delay, miss the
train,...)
» | can update my estimates of when I'll be home...

25/33

TD(0)

1. Initialize V and 7
2. Loop on episode

2.1 Initialize s
2.2 Repeat
Select action a = 7(s)
Observe s’ and reward r
V(s) + V(s) +a(r +vV(s') = V(s))
N———

R
s« s

2.3 Until s’ terminal state

26

33

Discussion

Update on the spot ?
» Might be brittle
> Instead one can consider several steps

R=re+vra+ ’Y2 V(sti2)

Find an intermediate between

» Policy iteration

R = rey1 + yrepo + ’Y2rr+3 + ...

» TD(0)
Re = rey1 + v Ve(se41)

27/33

TD()), intuition

weight given to
the 3-step retum total area =1

weight given to
actual, final return

T=i=1

R‘,A:(l_/l) Z/{u IR?”"!‘AT f]R'
\ n=1 J

TD(\), intuition, followed

Time

\“*

5{ =hat m(sprl)_vr(st)

TD())

1. Initialize V and 7
2. Loop on episode
2.1 Initialize s
2.2 Repeat
a=m(s)
Observe s’ and reward r
S+ r+V(s')—V(s)
e(s) «+ e(s)+1
For all s*
V(s") + V(s") + ade(s")
e(s") «+ yXe(s”)
s« s

2.3 Until s’ terminal state

Q-learning

Principle: lterate
» During an episode (from initial state until reaching a final state)
» At some point explore and choose another action;

> If it improves, update Q(s, a):

Q(st, ar) < Q(se, ar) +
———

old value

learned value

~—
learning rate reward discount factor S —— old value

max future value

a X | r(se1) + v max Q(St+1, ar+1) — Q(st, ar)
SN—— ~~ at+1 N——

Equivalent to

Q(se ac) <= Q(se; ac)(1 — @) + afr(ser1) + 7y max Q(ser1, ar41)]

31/33

Partial summary

Strengths

» Optimality guarantees (converge to global optimum)...

Weaknesses
» ...if each state is visited often, and each action is tried in each state

> Number of states: exponential wrt number of features

Discussion

Values and emotions
More: Antonio Damasio. Descartes’ Error: Emotion, Reason, and the Human
Brain

33/33

	Markov Decision Process
	Dynamic Programming
	Temporal differences and eligibility traces
	Q-learning
	Partial summary

