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Validation, the questions

1. What is the result ?

2. My results look good. Are they ?

3. Does my system outperform yours ?

4. How to set up my system ?
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Supervised Machine Learning

Context

World → instance xi →
Oracle
↓
yi

Input: Training set E = {(xi, yi ), i = 1 . . . n, xi ∈ X , yi ∈ Y}
Output: Hypothesis h : X 7→ Y
Criterion: few mistakes (details later)



Definitions

Example

I row : example/ case

I column : fea-
ture/variables/attribute

I attribute : class/label

Instance space X
I Propositionnal :
X ≡ IRd

I Relational : ex.
chemistry.

molecule: alanine
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Difficulty factors

Quality of examples / of representation

+ Relevant features Feature extraction

− Not enough data

− Noise ; missing data

− Structured data : spatio-temporal, relational, textual, videos ..

Distribution of examples

+ Independent, identically distributed examples

− Other: robotics; data stream; heterogeneous data

Prior knowledge

+ Constraints on sought solution

+ Criteria; loss function



Difficulty factors, 2

Learning criterion

+ Convex function: a single optimum

↘ Complexity : n, nlogn, n2 Scalability

− Combinatorial optimization

What is your agenda ?

I Prediction performance

I Causality

I INTELLIGIBILITY

I Simplicity

I Stability

I Interactivity, visualisation



Difficulty factors, 3

Crossing the chasm

I There exists no killer algorithm

I Few general recommendations about algorithm selection

Performance criteria

I Consistency

When number n of examples goes to ∞
and the target concept h∗ is in H

Algorithm finds ĥn, with

limn→∞hn = h∗

I Convergence speed

||h∗ − hn|| = O(1/n),O(1/
√

n),O(1/ ln n)
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Context

Related approaches criteria

I Data Mining, KDD
scalability

I Statistics and data analysis
Model selection and fitting; hypothesis testing

I Machine Learning
Prior knowledge; representations; distributions

I Optimisation
well-posed / ill-posed problems

I Computer Human Interface
No ultimate solution: a dialog

I High performance computing
Distributed data; privacy



Methodology

Phases

1. Collect data expert, DB

2. Clean data stat, expert

3. Select data stat, expert

4. Data Mining / Machine Learning
I Description what is in data ?
I Prediction Decide for one example
I Agregate Take a global decision

5. Visualisation chm

6. Evaluation stat, chm

7. Collect new data expert, stat

An interative process

depending on expectations, data, prior knowledge, current results
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Supervised Machine Learning

Context

World → instance xi →
Oracle
↓
yi

Input
Training set E = {(xi , yi ), i = 1 . . . n, xi ∈ X , yi ∈ Y}

Tasks

I Select hypothesis space H
I Assess hypothesis h ∈ H score(h)

I Find best hypothesis h∗



What is the point ?

Underfitting Overfitting

The point is not to be perfect on the training set

The villain: overfitting

Test error

Training error

Complexity of Hypotheses
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What is the point ?

Prediction good on future instances

Necessary condition:
Future instances must be similar to training instances

“identically distributed”

Minimize (cost of) errors `(y , h(x)) ≥ 0
not all mistakes are equal.



Error: theoretical approach

Minimize expectation of error cost

Minimize E [`(y , h(x))] =

∫
X×Y

`(y , h(x))p(x , y)dx dy

Principle
Si h “is well-behaved“ on E , and h is ”sufficiently regular” h will
be well-behaved in expectation.

E [F ] ≤
∑n

i=1 F (xi )

n
+ c(F , n)
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Classification, Problem posed

INPUT ∼ P(x , y)

E = {(xi , yi ), xi ∈ X , yi ∈ {0, 1}, i = 1 . . . n}

HYPOTHESIS SPACE SEARCH SPACE

H h : X 7→ {0, 1}

LOSS FUNCTION
` : Y × Y 7→ IR

OUTPUT
h∗ = arg max{score(h), h ∈ H}



Classification, criteria

Generalisation error

Err(h) = E [`(y , h(x))] =

∫
`(y , h(x))dP(x , y)

Empirical error

Erre(h) =
1

n

n∑
i=1

`(yi , h(xi ))

Bound
risk minimization

Err(h) < Erre(h) + F(n, d(H))

d(H) = VC-dimension of H



Dimension of Vapnik Cervonenkis

Principle Given hypothesis space H: X 7→ {0, 1} Given n points
x1, . . . , xn in X .
If, ∀(yi )

n
i=1 ∈ {0, 1}n,∃h ∈ H/h(xi ) = yi ,

H shatters {x1, . . . , xn}
Example: X = IRp

d(hyperplanes in IRp) = p + 1
WHY: if H shatters E , E doesn’t tell anything

o

o

o

o

o

o

o

3 pts shattered by a line 4 points, non shattered

Definition

d(H) = max{n/∃(x1 . . . , xn} shattered by H}



Classification: Ingredients of error

Bias
Bias (H): error of the best hypothesis h∗ in H

Variance
Variance of hn depending on E

h

BIAS
h

h
h

h

VARIANCE*

^
^

^

Hypothesis space

Optimization

negligible in small scale
takes over in large scale (Google)
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Validation: Three questions

Define a good indicator of quality

I Misclassification cost

I Area under the ROC curve

Computing an estimate thereof

I Validation set

I Cross-Validation

I Leave one out

I Bootstrap

Compare estimates: Tests and confidence levels



Which indicator, which estimate: it depends.

Settings

I Large/few data

Data distribution

I Dependent/independent examples

I balanced/imbalanced classes
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Performance indicators

Binary class

I h∗ the truth

I ĥ the learned hypothesis

Confusion matrix

ĥ / h∗ 1 0

1 a b a + b
0 c d c+d

a+c b+d a + b + c + d



Performance indicators, 2

ĥ / h∗ 1 0

1 a b a + b
0 c d c+d

a+c b+d a + b + c + d

I Misclassification rate b+c
a+b+c+d

I Sensitivity, True positive rate (TP) a
a+c

I Specificity, False negative rate (FN) b
b+d

I Recall a
a+c

I Precision a
a+b

Note: always compare to random guessing / baseline alg.



Performance indicators, 3

The Area under the ROC curve

I ROC: Receiver Operating Characteristics

I Origin: Signal Processing, Medicine

Principle

h : X 7→ IR h(x) measures the risk of patient x

h leads to order the examples:
+ + +−+−+ + + +−−−+−−−+−−−−−−−−−−−−

Given a threshold θ, h yields a classifier: Yes iff h(x) > θ.
+ + +−+−+ + ++ | − − −+−−−+−−−−−−−−−−−−

Here, TP (θ)= .8; FN (θ) = .1
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ROC



The ROC curve

θ 7→ IR2 : M(θ) = (1− TNR,FPR)

Ideal classifier: (0 False negative,1 True positive)
Diagonal (True Positive = False negative) ≡ nothing learned.



ROC Curve, Properties

Properties
ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + c × # false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with ∆(−c ,−1)



ROC Curve, Properties, foll’d

Used to compare learners Bradley 97

multi-objective-like
insensitive to imbalanced distributions
shows sensitivity to error cost.



Area Under the ROC Curve

Often used to select a learner
Don’t ever do this ! Hand, 09

Sometimes used as learning criterion Mann Whitney Wilcoxon

AUC = Pr(h(x) > h(x ′)|y > y ′)

WHY Rosset, 04

I More stable O(n2) vs O(n)

I With a probabilistic interpretation Clemençon et al. 08

HOW

I SVM-Ranking Joachims 05; Usunier et al. 08, 09

I Stochastic optimization
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Validation, principle

Desired: performance on further instances

Further examples

WORLD

h

Quality

Dataset

Assumption: Dataset is to World, like Training set is to Dataset.

Training set

h

Quality

Test examples

DATASET



Validation, 2

Training set

hTest examples Learning parameters

DATASET

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

Validation set

True performance

parameter*, h*, perf (h*)

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Confidence intervals
Definition
Given a random variable X on IR, a p%-confidence interval is
I ⊂ IR such that

Pr(X ∈ I ) > p

Binary variable with probability ε
Probability of r events out of n trials:

Pn(r) =
n!

r !(n − r)!
εr (1− ε)n−r

I Mean: nε

I Variance: σ2 = nε(1− ε)
Gaussian approximation

P(x) =
1√

2πσ2
exp−

1
2
x−µ
σ

2



Confidence intervals

Bounds on (true value, empirical value) for n trials, n > 30

Pr(|x̂n − x∗| > 1.96
√

x̂n.(1−x̂n)
n ) < .05

z ε

Table
z .67 1. 1.28 1.64 1.96 2.33 2.58
ε 50 32 20 10 5 2 1



Empirical estimates

When data abound (MNIST)

Training Test Validation

Cross validation
Fold

2 31

Run

N

2

1

N

Error =  Average (error on 

N−fold Cross Validation

of h

learned from )



Empirical estimates, foll’d

Cross validation → Leave one out

2 31

Run 2

1

Fold

n

n

Leave one out

Same as N-fold CV, with N = number of examples.
Properties
Low bias; high variance; underestimate error if data not
independent



Empirical estimates, foll’d

Bootstrap

Dataset

Training set

Test set.

rest of examples

with replacement

uniform sampling

Average indicator over all (Training set, Test set) samplings.
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Is ĥ better than random ?

The McNemar test McNemar 47

ĥ / h∗ 1 0

1 a b a + b
0 c d c+d

a+c b+d a + b + c + d
Property
|b−c|−1
b+c follows a χ2 law with degre of freedom 1



Types of test error

Type I error
The hypothesis is not significant, and the test thinks it’s significant

Type II error
The hypothesis is valid, and the test discards it.



Comparing algorithms A and B

A B A-B

run 1 30 28 2
run 2 17 25 -8

28 25 3
17 28 -11
30 26 4

Assumption
A and B have normal distribution

Simplest case
two samples with same size, (quasi)
same variance.

Define

t =
Ā− B̄

SA,B ·
√

2
n

with SA,B =
√

1
2(S2

A + S2
B) and S2

A = 1
n

∑
(Ai − Ā)2



Comparing algorithms A and B

t follows a Student law with (2n-2)-dof

I Compute t

I See confidence of t



Comparing algorithms A and B

Recommended: Use paired t-test

I Apply A and B with same (training, test) sets

I Variance is lower:

Var(A− B) = Var(A) + Var(B)− 2coVar(A,B)

I Thus easier to make significant differences

What if variances are different ?
See Welch’ test:

Ā− B̄√
S2
A

NA
+

S2
B

NB



Summary: single dataset (if we had enough data...)

The 5 x 2CV Dietterich 98

I 5 times

I split the data into 2 halves

I gives 10 estimates of error indicator

+ More independent

− Each training set is 1/2 data.

With a single dataset

I 5x2 CV

I paired t-test

I McNemar test on a validation set



Multiple datasets

If A and B results don’t follow a normal distribution

Zi = Ai − Bi

A B |Z| rank sign
19 23 4 6th −
22 21 1 1st +
21 19 2 2nd +
25 28 3 4th −
24 22 2 2nd +
23 20 3 4th +

Wilcoxon signed rank test

1. Rank the |Zi |
2. W+ = sum of ranks when Zi > 0

3. W− = sum of ranks when Zi < 0

4. Wmin = min(W+,W−)

z =
1/4n(n + 1)−Wmin − 1/2√

1/24n(n + 1)(2n + 1)

5. z ∼ N (0, 1) n > 20



Multiple hypothesis testing
Beware

I If you test many hypotheses on the same dataset

I one of them will appear confidently true...
increase in type I error

Corrections Over n tests, the global significance level αglobal is
related to the elementary significance level αunit :

αglobal = 1− (1− αunit)
n

I Bonferroni correction pessimistic

αunit =
αglobal

n

I Sidak correction

αunit = 1− (1− αglobal)
1
n
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How to set up my system ?

Parameter tuning

I Setting the parameters for feature extraction

I Select the best learning algorithm

I Setting the learning parameters (e.g. type of kernel, the
parameters in SVMs)

I Setting the validation parameters

Goal: find the best setting a pervasive concern

I Algorithm selection in Operational Research

I Parameter tuning in Stochastic Optimization

I Meta-Learning in Machine Learning



From Design of Experiments to ...

Main approaches

1. Design of experiments (Latin square)

2. Anova (Analysis of variance)-like methods:
I Racing
I Sequential parameter optimization



Parameter Tuning: A Meta-Optimization problem

Learner Dataset

Validation

performance

Optimization: the Black-Box Scenario

I Need to perform several runs to compute performance
Cross-Validation

I Need to specify the # runs and tune it optimally

I Overall cost is the total number of evaluations

I And don’t forget to tune the parameters of the
meta-optimizer!
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Parameter Tuning: A Meta-Optimization problem

Learner Dataset

Validation

performance

Learning
& valid.

parameters

Best performance

PARAMETER

TUNING

Optimization: the Black-Box Scenario

I Need to perform several runs to compute performance
Cross-Validation

I Need to specify the # runs and tune it optimally

I Overall cost is the total number of evaluations

I And don’t forget to tune the parameters of the
meta-optimizer!



Ingredients

Design Of Experiments (DOE)

I A long-known method from statistics

I Choose a finite number of parameter sets

I Compute their performance

I Return the statistically significantly best sets

Analysis of Variance (ANOVA)

I Assumes normally distributed data

I Tests if means are significantly different
for a given confidence level; generalizes T-Test

I Perform pairwise tests if ANOVA reports some difference
T-Test, rank-based tests, . . .



DOE: Issues

Choice of sample parameter sets
I Full Factorial Design

I Discretize all parameters if continuous
I Choose all possible combinations

I Latin Hypercube Sampling: to generate k sets,
I Discretize all parameters in k values
I Repeat k times:

for each parameter, (uniformly) choose one value out of k
I For each parameter, each value is taken once

fine if no correlation

Cost

I For each parameter set, the full cost of learning validation

I Combinatorial explosion with number of parameters and
precision



Racing algorithms

Birattari & al. 02, Yuan & Gallagher 04

Rationale

I All parameter settings are run the same number of times
whereas very bad settings could be detected earlier

Implementation
I Repeat

I Perform only a few runs per parameter set
I Statistically check all sets against the best one

at given confidence level
I Discard the bad ones

I Until only survivor, or maximum number of runs per setting
reached



Racing algorithms

How?

Example: Initialization

I R = 0
I while R < Rmax and more than 1

set
I Compute empirical value of

performance for all sets doing r
additional runs

average, median, . . .
I Compute X% confidence intervals

Hoeffding bounds, Friedman
tests, . . .

I Remove sets whose best possible
value is worse than worse possible
value of the best empirical set.

I R+ = r
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Racing algorithms

How?

Example: Best parametere sets

I R = 0
I while R < Rmax and more than 1

set
I Compute empirical value of

performance for all sets doing r
additional runs

average, median, . . .
I Compute X% confidence intervals

Hoeffding bounds, Friedman
tests, . . .

I Remove sets whose best possible
value is worse than worse possible
value of the best empirical set.
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Racing algorithms: Discussion

Results

I Published results claim saving between 50 and 90% of the runs

Useful for

I Multiple algorithms on single problem for efficiency

I Single algorithm on multiple problems
to assess problem difficulties

I Multiple algorithms on multiple problems for robustness

Issues

I Nevertheless costly

I Can only find the best one in initial sample



Sequential Parameter Optimization

Bartz-Beielstein & al. 05-07

Rationale

I Start with some very coarse sampling DOE

I Evaluate performance using few runs per set

I Build a model of the performance landscape using Gaussian
Processes aka Kriging

I Select best points based on Expected Improvement according
to current model Monte-Carlo sampling

I Compute actual performance of best estimates
using same number of runs as current best

I Increase # runs of best if unchanged



Gaussian Processes in one slide
An optimization algorithm for expensive functions

D.R. Jones, Schonlau, & Welch, 98
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SPO: Discussion

Pros

I Similar ideas as racing,

I but allows to refine initial sampling a true optimization

algorithm

I Compatible with a fixed budget scenario racing is not

I Authors also report gains up to 90%

Cons

I Works best with . . . some tuning



Take home messages

What is the performance criterion

I Cost function

I Account for class imbalance

I Account for data correlations

Assessing a result

I Compute confidence intervals

I Consider baselines

I Use a validation set

If the result looks too good, beware
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