NeuroComp Machine Learning and Validation

Michèle Sebag

http://tao.lri.fr/tiki-index.php

Nov. 16th 2011

Validation, the questions

- 1. What is the result ?
- 2. My results look good. Are they ?
- 3. Does my system outperform yours ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4. How to set up my system ?

Contents

Position of the problem

Background notations Difficulties The learning process The villain

Validation

Performance indicators Estimating an indicator Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

- Racing
- Expected Global Improvement

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Contents

Position of the problem

Background notations

Difficulties The learning process The villain

Validation

Performance indicators Estimating an indicator Testing a hypothesis Comparing hypotheses

Validation Campaign

- The point of parameter setting
- Racing
- Expected Global Improvement

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Supervised Machine Learning

Context

 $\begin{array}{c} \mathsf{Oracle} \\ \mathsf{World} \to \mathsf{instance} \; \mathbf{x}_i \to & \downarrow \\ & y_i \end{array}$

Input:Training set $\mathcal{E} = \{(\mathbf{x}_i, y_i), i = 1 \dots n, x_i \in \mathcal{X}, y_i \in \mathcal{Y}\}$ Output:Hypothesis $h : \mathcal{X} \mapsto \mathcal{Y}$ Criterion:few mistakes (details later)

Definitions

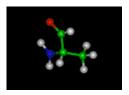
Example

- row : example/ case
- column : feature/variables/attribute
- attribute : class/label

Instance space \mathcal{X}

- Propositionnal : $\mathcal{X} \equiv \mathbb{R}^d$
- Relational : ex. chemistry.

age	employme	education	edun	marital	job	relation	race	gender	hour	country	wealt
20	State gov	Pachalora	12	Never mar	 Adm. alaris	Not in fan	White	Male	40	United St	0000
				Married	Exec man			Male		United_St	
	Self_emp_										
	Private	HS_grad		Divorced		Not_in_fan		Male		United_St	
	Private	11th		Married	Handlers_			Male		United_St	
28	Private	Bachelors		Married	Prof_speci			Female		Cuba	poor
38	Private	Masters		Married	Exec_man		White	Female	40	United_St	poor
50	Private	9th	5	Married_sp	Other_serv	Not_in_fan	Black	Female	16	Jamaica	poor
52	Self_emp_	HS_grad	9	Married	Exec_man	Husband	White	Male	45	United_St	rich
31	Private	Masters	14	Never_mar	Prof_speci	Not_in_fan	White	Female	50	United_St	rich
42	Private	Bachelors	13	Married	Exec_man	Husband	White	Male	40	United_St	rich
37	Private	Some_coll	10	Married	Exec_man	Husband	Black	Male	80	United_St	rich
30	State_gov	Bachelors	13	Married	Prof_speci	Husband	Asian	Male	40	India	rich
24	Private	Bachelors	13	Never_mar	Adm_clerid	Own_child	White	Female	30	United_St	poor
33	Private	Assoc_ac	12	Never_mar	Sales	Not_in_fan	Black	Male	50	United_St	poor
41	Private	Assoc_voo	11	Married	Craft_repai	Husband	Asian	Male	40	*MissingV	rich
34	Private	7th 8th	4	Married	Transport	Husband	Amer India	Male	45	Mexico	poor
26	Self emp	HS grad	9	Never man	Farming fi	Own child	White	Male	35	United St	poor
33	Private	HS grad	9	Never man	Machine of	Unmarried	White	Male	40	United St	poor
38	Private	11th	7	Married	Sales	Husband	White	Male	50	United St	poor
44	Self_emp_	Masters	14	Divorced	Exec_man	Unmarried	White	Female	45	United_St	rich
41	Private	Doctorate	16	Married	Prof speci	Husband	White	Male	60	United St	rich



molecule: alanine

Contents

Position of the problem

Background notations Difficulties

The learning process The villain

Validation

Performance indicators Estimating an indicator Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

- Racing
- Expected Global Improvement

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Difficulty factors

Quality of examples / of representation

- + Relevant features
- Not enough data
- Noise ; missing data
- $-\,$ Structured data : spatio-temporal, relational, textual, videos $..\,$

Distribution of examples

- + Independent, identically distributed examples
- Other: robotics; data stream; heterogeneous data

Prior knowledge

- + Constraints on sought solution
- + Criteria; loss function

Feature extraction

Difficulty factors, 2

Learning criterion

- + Convex function: a single optimum
- \searrow Complexity : *n*, *nlogn*, n^2
- Combinatorial optimization

What is your agenda ?

- Prediction performance
- Causality
- INTELLIGIBILITY
- Simplicity
- Stability
- Interactivity, visualisation

Scalability

Difficulty factors, 3

Crossing the chasm

- There exists no killer algorithm
- Few general recommendations about algorithm selection

Performance criteria

Consistency

When number *n* of examples goes to ∞ and the target concept h^* is in \mathcal{H} Algorithm finds \hat{h}_n , with

$$lim_{n\to\infty}h_n = h^*$$

Convergence speed

$$||h^* - h_n|| = \mathcal{O}(1/n), \mathcal{O}(1/\sqrt{n}), \mathcal{O}(1/\ln n)$$

Contents

Position of the problem

Background notations Difficulties The learning process

The villain

Validation

Performance indicators Estimating an indicator Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

- Racing
- Expected Global Improvement

Context

Related approaches

Data Mining, KDD

scalability

criteria

- Statistics and data analysis
 Model selection and fitting; hypothesis testing
- Machine Learning

Prior knowledge; representations; distributions

Optimisation

well-posed / ill-posed problems

Computer Human Interface

No ultimate solution: a dialog

High performance computing

Distributed data; privacy

Methodology

Phases

1. Collect data	expert, DB
2. Clean data	stat, expert
3. Select data	stat, expert
4. Data Mining / Machine Learning	
 Description 	what is in data ?
 Prediction 	Decide for one example
 Agregate 	Take a global decision
5. Visualisation	chm
6. Evaluation	stat, chm
7. Collect new data	expert, stat

An interative process

depending on expectations, data, prior knowledge, current results

Contents

Position of the problem

Background notations Difficulties The learning process The villain

Validation

Performance indicators Estimating an indicator Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

- Racing
- Expected Global Improvement

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Supervised Machine Learning

Context

 $\begin{array}{c} \text{Oracle} \\ \text{World} \rightarrow \text{instance } \mathbf{x}_i \rightarrow & \downarrow \\ & \downarrow \\ & y_i \end{array}$

Input

Training set $\mathcal{E} = \{(\mathbf{x}_i, y_i), i = 1 \dots n, \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y}\}$

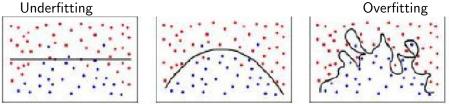
Tasks

- Select hypothesis space \mathcal{H}
- Assess hypothesis $h \in \mathcal{H}$
- Find best hypothesis h*

score(h)

What is the point ?

Underfitting

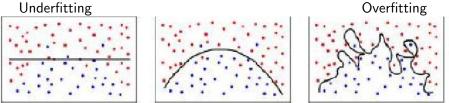


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The point is not to be perfect on the training set

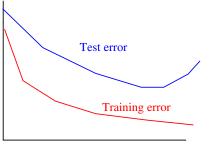
What is the point ?

Underfitting



The point is not to be perfect on the training set

The villain: overfitting



Complexity of Hypotheses <□▶ <□▶ < 三▶ < 三▶ = 三 のへぐ Prediction good on future instances

Necessary condition:

Future instances must be similar to training instances "identically distributed"

Minimize (cost of) errors not all mistakes are equal. $\ell(y,h(x))\geq 0$

Error: theoretical approach

Minimize expectation of error cost

Minimize
$$E[\ell(y, h(x))] = \int_{X \times Y} \ell(y, h(x)) p(x, y) dx dy$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Error: theoretical approach

Minimize expectation of error cost

Minimize
$$E[\ell(y, h(x))] = \int_{X \times Y} \ell(y, h(x)) p(x, y) dx dy$$

Principle

Si h "is well-behaved " on \mathcal{E} , and h is "sufficiently regular" h will be well-behaved in expectation.

$$E[F] \leq \frac{\sum_{i=1}^{n} F(x_i)}{n} + c(F, n)$$

Classification, Problem posed

$$\label{eq:constraint} \begin{array}{ll} \mathsf{NPUT} & \sim \mathcal{P}(x,y) \\ \mathcal{E} = \{(x_i,y_i), x_i \in \mathcal{X}, y_i \in \{0,1\}, i=1 \dots n\} \\ \\ \mathsf{HYPOTHESIS} \end{tabular} \\ \mathsf{HYPOTHESIS} \end{tabular} \\ \mathsf{FURCH} \\ \mathcal{H} & h: \mathcal{X} \mapsto \{0,1\} \\ \\ \mathsf{LOSS} \end{tabular} \\ \mathsf{LOSS} \end{tabular} \\ \mathcal{L}: \mathcal{Y} \times \mathcal{Y} \mapsto \mathbb{R} \\ \\ \mathsf{OUTPUT} \\ h^* = arg \; max\{score(h), h \in \mathcal{H}\} \end{array}$$

Classification, criteria

Generalisation error

$$Err(h) = E[\ell(y, h(x))] = \int \ell(y, h(x)) dP(x, y)$$

Empirical error

$$Err_{e}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_{i}, h(x_{i}))$$

Bound

risk minimization

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $\mathit{Err}(h) < \mathit{Err}_e(h) + \mathcal{F}(n, d(\mathcal{H}))$ $d(\mathcal{H}) = \mathsf{VC} ext{-dimension of }\mathcal{H}$

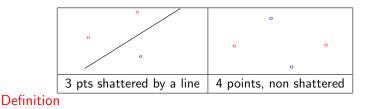
Dimension of Vapnik Cervonenkis

Principle Given hypothesis space $\mathcal{H}: \mathcal{X} \mapsto \{0, 1\}$ Given *n* points x_1, \ldots, x_n in \mathcal{X} . If, $\forall (y_i)_{i=1}^n \in \{0, 1\}^n, \exists h \in \mathcal{H}/h(x_i) = y_i,$ \mathcal{H} shatters $\{x_1, \ldots, x_n\}$

Example: $\mathcal{X} = \mathbb{R}^p$

$$d(\text{hyperplanes in } \mathbb{R}^p) = p + 1$$

WHY: if \mathcal{H} shatters \mathcal{E} , \mathcal{E} doesn't tell anything



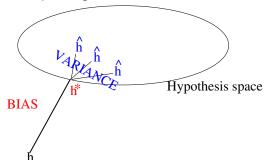
 $d(\mathcal{H}) = max\{n/\exists (x_1...,x_n)\}$ shattered by $\mathcal{H}\}$

Classification: Ingredients of error

Bias Bias (\mathcal{H}) : error of the best hypothesis h^* in \mathcal{H}

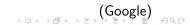
Variance

Variance of h_n depending on \mathcal{E}



Optimization

negligible in small scale takes over in large scale



Contents

Position of the problem

Background notations Difficulties The learning process The villain

Validation

Performance indicators Estimating an indicator Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

- Racing
- Expected Global Improvement

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Validation: Three questions

Define a good indicator of quality

- Misclassification cost
- Area under the ROC curve

Computing an estimate thereof

- Validation set
- Cross-Validation
- Leave one out
- Bootstrap

Compare estimates: Tests and confidence levels

Which indicator, which estimate: it depends.

Settings

Large/few data

Data distribution

Dependent/independent examples

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

balanced/imbalanced classes

Contents

Position of the problem

Background notations Difficulties The learning process The villain

Validation Performance indicators

Estimating an indicator Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

- Racing
- Expected Global Improvement

Performance indicators

Binary class

- h* the truth
- \hat{h} the learned hypothesis

Confusion matrix

\hat{h} / h^*	1	0	
1	а	b	a + b
0	с	d	c+d
	a+c	b+d	a + b + c + d

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Performance indicators, 2

\hat{h} / h^*	1	0	
1	а	b	a + b
0	С	d	c+d
	a+c	b+d	a + b + c + d

- Misclassification rate $\frac{b+c}{a+b+c+d}$
- Sensitivity, True positive rate (TP) $\frac{a}{a+c}$
- Specificity, False negative rate (FN) $\frac{b}{b+d}$
- Recall $\frac{a}{a+c}$
- Precision $\frac{a}{a+b}$

Note: always compare to random guessing / baseline alg.

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

h leads to order the examples:

Performance indicators, 3

The Area under the ROC curve

- ROC: Receiver Operating Characteristics
- Origin: Signal Processing, Medicine

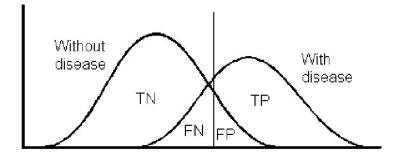
Principle

 $h: X \mapsto \mathbb{R}$ h(x) measures the risk of patient x

h leads to order the examples:

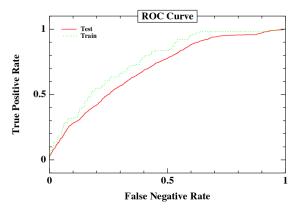
Here, TP (θ) = .8; FN (θ) = .1

ROC



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The ROC curve



Ideal classifier: (0 False negative,1 True positive) Diagonal (True Positive = False negative) \equiv nothing learned.

ヘロト 人間ト 人団ト 人団ト

э

ROC Curve, Properties

Properties

ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + $c \times \#$ false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with $\Delta(-c, -1)$

ROC Curve, Properties, foll'd

Used to compare learners

multi-objective-like insensitive to imbalanced distributions shows sensitivity to error cost.

ROC Curves on Atherosclerosis ROGER 1 SVM 0.5 0.5

Bradley 97

Area Under the ROC Curve

Often used to select a learner Don't ever do this !

Hand, 09

Sometimes used as learning criterion

Mann Whitney Wilcoxon

$$AUC = Pr(h(x) > h(x')|y > y')$$

WHY

Rosset, 04

- More stable $\mathcal{O}(n^2)$ vs $\mathcal{O}(n)$
- With a probabilistic interpretation Clemençon et al. 08 HOW
 - SVM-Ranking Joachims 05; Usunier et al. 08, 09
 - Stochastic optimization

Contents

Position of the problem

Background notations Difficulties The learning process The villain

Validation

Performance indicators

Estimating an indicator

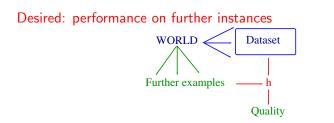
Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

- Racing
- Expected Global Improvement

Validation, principle



Assumption: Dataset is to World, like Training set is to Dataset.

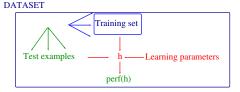
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Validation, 2

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Validation, 2

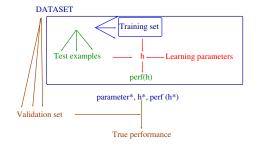


parameter*, h*, perf (h*)

Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Validation, 2



Unbiased Assessment of Learning Algorithms T. Scheffer and R. Herbrich, 97

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Contents

Position of the problem

Background notations Difficulties The learning process The villain

Validation

Performance indicators

Estimating an indicator

Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

- Racing
- Expected Global Improvement

Confidence intervals

Definition

Given a random variable X on ${\rm I\!R},$ a p%-confidence interval is $I \subset {\rm I\!R}$ such that

 $Pr(X \in I) > p$

Binary variable with probability ϵ

Probability of r events out of n trials:

$$P_n(r) = \frac{n!}{r!(n-r)!} \epsilon^r (1-\epsilon)^{n-r}$$

▶ Mean: *n*€

• Variance:
$$\sigma^2 = n\epsilon(1-\epsilon)$$

Gaussian approximation

$$P(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp^{-\frac{1}{2}\frac{x-\mu^2}{\sigma}^2}$$

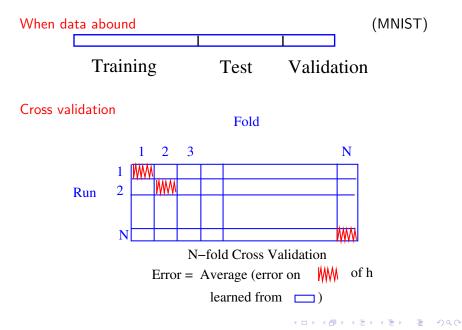
Confidence intervals

Bounds on (true value, empirical value) for *n* trials, n > 30

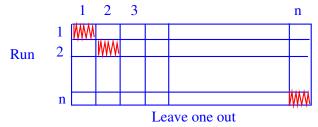
		$Pr(\hat{x}_n - x^* >$			1.96	$\sqrt{\frac{\hat{x}_{n}}{x_{n}}}$	$\left(\frac{1-\hat{x}_n}{n}\right)$	< .05
					Ζ			ε
Table	z	.67	1.	1.28	1.64	1.96	2.33	2.58
	ε	50	32	20	10	5	2	1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Empirical estimates



Empirical estimates, foll'd

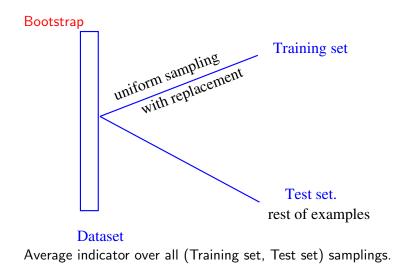


▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Same as N-fold CV, with N = number of examples. Properties

Low bias; high variance; underestimate error if data not independent

Empirical estimates, foll'd



▲□▶ ▲□▶ ▲注▶ ▲注▶ ……注: のへ(?).

Contents

Position of the problem

Background notations Difficulties The learning process The villain

Validation

Performance indicators Estimating an indicator

Testing a hypothesis

Comparing hypotheses

Validation Campaign

The point of parameter setting

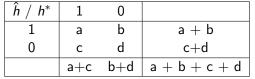
- Racing
- Expected Global Improvement

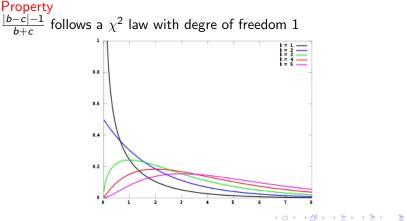
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Is \hat{h} better than random ?

The McNemar test

McNemar 47





Types of test error

Type I error

The hypothesis is not significant, and the test thinks it's significant

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Type II error

The hypothesis is valid, and the test discards it.

Comparing algorithms A and B

	Α	В	A-B
run 1	30	28	2
run 2	17	25	-8
	28	25	3
	17	28	-11
	30	26	4

Assumption

A and B have normal distribution

Simplest case

two samples with same size, (quasi) same variance.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Define

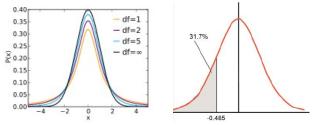
$$t = \frac{\bar{A} - \bar{B}}{S_{A,B} \cdot \sqrt{\frac{2}{n}}}$$

with
$$S_{A,B}=\sqrt{rac{1}{2}(S_A^2+S_B^2)}$$
 and $S_A^2=rac{1}{n}\sum(A_i-ar{A})^2$

Comparing algorithms A and B

t follows a Student law with (2n-2)-dof

- Compute t
- See confidence of t



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Comparing algorithms A and B

Recommended: Use paired t-test

- ► Apply A and B with same (training, test) sets
- Variance is lower:

$$Var(A - B) = Var(A) + Var(B) - 2coVar(A, B)$$

Thus easier to make significant differences

What if variances are different ? See Welch' test:

$$\frac{\bar{A}-\bar{B}}{\sqrt{\frac{S_A^2}{N_A}+\frac{S_B^2}{N_B}}}$$

Summary: single dataset (if we had enough data...)

The $5 \times 2CV$

Dietterich 98

- 5 times
- split the data into 2 halves
- gives 10 estimates of error indicator
- + More independent
- Each training set is 1/2 data.

With a single dataset

- ▶ 5x2 CV
- paired t-test
- McNemar test on a validation set

Multiple datasets

If A and B results don't follow a normal distribution

 $Z_i = A_i - B_i$

Wilcoxon signed rank test

А	В	Z	rank	sign
19	23	4	6th	_
22	21	1	1st	+
21	19	2	2nd	+
25	28	3	4th	_
24	22	2	2nd	+
23	20	3	4th	+

1. Rank the $|Z_i|$ 2. $W_+ = \text{sum of ranks when } Z_i > 0$ 3. $W_- = \text{sum of ranks when } Z_i < 0$ 4. $W_{min} = min(W_+, W_-)$ $z = \frac{1/4n(n+1) - W_{min} - 1/2}{\sqrt{1/24n(n+1)(2n+1)}}$ 5. $z \sim \mathcal{N}(0, 1)$ n > 20

Multiple hypothesis testing Beware

- If you test many hypotheses on the same dataset
- one of them will appear confidently true... increase in type I error

Corrections Over *n* tests, the global significance level α_{global} is related to the elementary significance level α_{unit} :

$$\alpha_{global} = 1 - (1 - \alpha_{unit})^n$$

Bonferroni correction

pessimistic

$$\alpha_{\textit{unit}} = \frac{\alpha_{\textit{global}}}{\textit{n}}$$

Sidak correction

$$\alpha_{unit} = 1 - (1 - \alpha_{global})^{\frac{1}{n}}$$

Contents

Position of the problem

Background notations Difficulties The learning process The villain

Validation

Performance indicators Estimating an indicator Testing a hypothesis Comparing hypotheses

Validation Campaign

The point of parameter setting

Racing Expected Global Improvement

How to set up my system ?

Parameter tuning

- Setting the parameters for feature extraction
- Select the best learning algorithm
- Setting the learning parameters (e.g. type of kernel, the parameters in SVMs)
- Setting the validation parameters

Goal: find the best setting

a pervasive concern

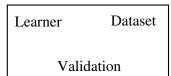
- Algorithm selection in Operational Research
- Parameter tuning in Stochastic Optimization
- Meta-Learning in Machine Learning

From Design of Experiments to ...

Main approaches

- 1. Design of experiments (Latin square)
- 2. Anova (Analysis of variance)-like methods:
 - Racing
 - Sequential parameter optimization

Parameter Tuning: A Meta-Optimization problem



performance

Optimization: the Black-Box Scenario

Need to perform several runs to compute performance

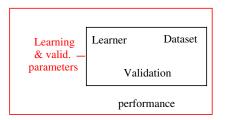
Cross-Validation

Need to specify the # runs

and tune it optimally

- Overall cost is the total number of evaluations
- And don't forget to tune the parameters of the meta-optimizer!

Parameter Tuning: A Meta-Optimization problem



Optimization: the Black-Box Scenario

Need to perform several runs to compute performance

Cross-Validation

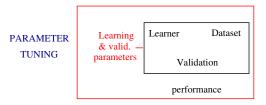
Need to specify the # runs

and tune it optimally

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

- Overall cost is the total number of evaluations
- And don't forget to tune the parameters of the meta-optimizer!

Parameter Tuning: A Meta-Optimization problem



Best performance

Optimization: the Black-Box Scenario

Need to perform several runs to compute performance

Cross-Validation

- Need to specify the # runs and tune it optimally
- Overall cost is the total number of evaluations
- And don't forget to tune the parameters of the meta-optimizer!

Ingredients

Design Of Experiments (DOE)

- A long-known method from statistics
- Choose a finite number of parameter sets
- Compute their performance
- Return the statistically significantly best sets

Analysis of Variance (ANOVA)

- Assumes normally distributed data
- Tests if means are significantly different

for a given confidence level; generalizes T-Test

 Perform pairwise tests if ANOVA reports some difference T-Test, rank-based tests, ...

DOE: Issues

Choice of sample parameter sets

- Full Factorial Design
 - Discretize all parameters if continuous
 - Choose all possible combinations
- ► Latin Hypercube Sampling: to generate k sets,
 - Discretize all parameters in k values
 - Repeat k times: for each parameter, (uniformly) choose one value out of k
 - For each parameter, each value is taken once

fine if no correlation

Cost

- ► For each parameter set, the full cost of learning validation
- Combinatorial explosion with number of parameters and precision

Birattari & al. 02, Yuan & Gallagher 04

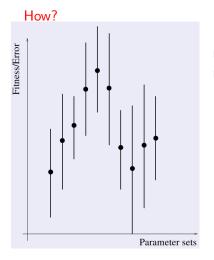
Rationale

 All parameter settings are run the same number of times whereas very bad settings could be detected earlier

Implementation

- Repeat
 - Perform only a few runs per parameter set
 - Statistically check all sets against the best one
 - at given confidence level

- Discard the bad ones
- Until only survivor, or maximum number of runs per setting reached

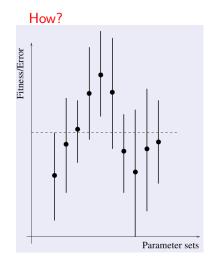


Example: Initialization

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- \blacktriangleright R+=r

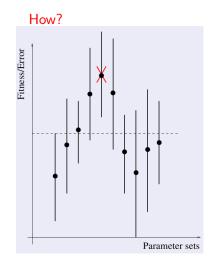


Example: Initialization

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

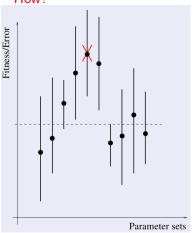
- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- \blacktriangleright R+=r



Example: Initialization

- ► *R* = 0
- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- \blacktriangleright R+=r

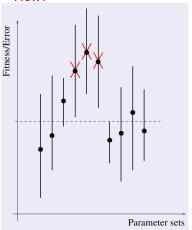


Example: Iteration 1

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, . . .
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

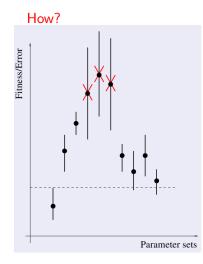


Example: Iteration 1

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, . . .
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

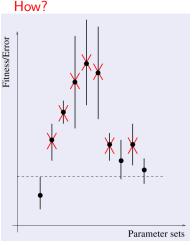


Example: Iteration N

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

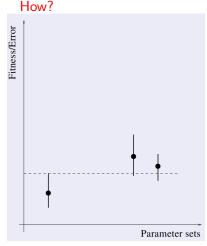


Example: Iteration N

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*



Example: Best parametere sets

► *R* = 0

- ▶ while R < R_{max} and more than 1 set
 - Compute empirical value of performance for all sets doing r additional runs

- Compute X% confidence intervals Hoeffding bounds, Friedman tests, ...
- Remove sets whose best possible value is worse than worse possible value of the best empirical set.
- ► *R*+ = *r*

Racing algorithms: Discussion

Results

Published results claim saving between 50 and 90% of the runs

Useful for

- Multiple algorithms on single problem for efficiency
- Single algorithm on multiple problems

- to assess problem difficulties
- Multiple algorithms on multiple problems for robustness

Issues

- Nevertheless costly
- Can only find the best one in initial sample

Sequential Parameter Optimization

Bartz-Beielstein & al. 05-07

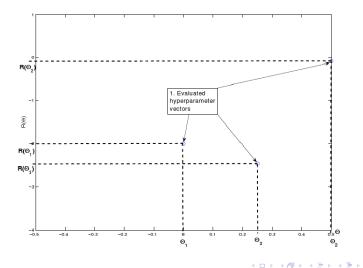
Rationale

- Start with some very coarse sampling DOE
- Evaluate performance using few runs per set
- Build a model of the performance landscape using Gaussian Processes
 aka Kriging
- Select best points based on *Expected Improvement* according to current model
 Monte-Carlo sampling
- Compute actual performance of best estimates using same number of runs as current best
- Increase # runs of best if unchanged

Gaussian Processes in one slide

An optimization algorithm for expensive functions

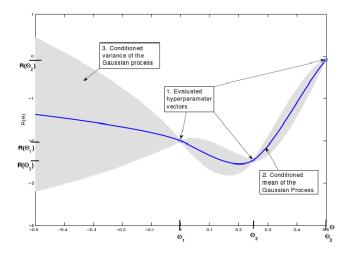
D.R. Jones, Schonlau, & Welch, 98



Gaussian Processes in one slide

An optimization algorithm for expensive functions

D.R. Jones, Schonlau, & Welch, 98

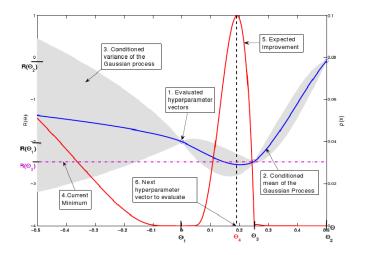


▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Gaussian Processes in one slide

An optimization algorithm for expensive functions

D.R. Jones, Schonlau, & Welch, 98



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

SPO: Discussion

Pros

- Similar ideas as racing,
- but allows to refine initial sampling algorithm
- Compatible with a *fixed budget* scenario
- Authors also report gains up to 90%

a true optimization

racing is not

Cons

Works best with ... some tuning

Take home messages

What is the performance criterion

- Cost function
- Account for class imbalance
- Account for data correlations

Assessing a result

- Compute confidence intervals
- Consider baselines
- Use a validation set

If the result looks too good, beware