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Harnessing Big Data

Watson (IBM) defeats human champions at the quiz game Jeopardy (Feb. 11)

i 1 2 3 4 5 6 7 8
1000i kilo mega giga tera peta exa zetta yotta bytes

I Google: 24 petabytes/day
I Facebook: 10 terabytes/day; Twitter: 7 terabytes/day
I Large Hadron Collider: 40 terabytes/seconds



Machine Learning and Optimization

Machine Learning

World → instance xi →
Oracle
↓
yi

Optimization

ML and Optimization

I ML is an optimization problem: find the best model

I Smart optimization requires learning about the optimization
landscape



Types of Machine Learning problems

WORLD − DATA − USER

Observations

Understand
Code

Unsupervised
LEARNING

+ Target

Predict
Classification/Regression

Supervised
LEARNING

+ Rewards

Decide
Action Policy/Strategy

Reinforcement
LEARNING



The module

1. Introduction. Decision trees. Validation.

2. Support Vector Machines

3. Learning from sequences

4. Unsupervised learning

5. Representation changes

6. Bayesian learning

7. Optimisation



Pointers

I Slides of this module:
http://tao.lri.fr/tiki-index.php?page=Courses
http://www.limsi.fr/Individu/allauzen/wiki/index.php/

I Andrew Ng courses
http://ai.stanford.edu/∼ang/courses.html

I PASCAL videos
http://videolectures.net/pascal/

I Tutorials NIPS Neuro Information Processing Systems
http://nips.cc/Conferences/2006/Media/

I About ML/DM
http://hunch.net/



Today

1. Part 1. Generalities

2. Part 2. Decision trees

3. Part 3. Validation



Examples

I Vision

I Control

I Netflix

I Spam

I Playing Go

I Google

http://ai.stanford.edu/∼ang/courses.html



Reading cheques

LeCun et al. 1990



MNIST: The drosophila of ML

Classification



Detecting faces



The 2005-2012 Visual Object Challenges

A. Zisserman, C. Williams, M. Everingham, L. v.d. Gool



The supervised learning setting

Input: set of (x, y)

I An instance x e.g. set of pixels, x ∈ IRD

I A label y in {1,−1} or {1, . . . ,K} or IR

Pattern recognition

I Classification Does the image contain the target
concept ?

h : { Images} 7→ {1,−1}

I Detection Does the pixel belong to the img of target
concept?

h : { Pixels in an image} 7→ {1,−1}

I Segmentation
Find contours of all instances of target concept in image
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The 2005 Darpa Challenge

Thrun, Burgard and Fox 2005

Autonomous vehicle Stanley − Terrains



The Darpa challenge and the AI agenda

What remains to be done Thrun 2005

I Reasoning 10%

I Dialogue 60%

I Perception 90%



Robots

Ng, Russell, Veloso, Abbeel, Peters, Schaal, ...

Reinforcement learning Classification



Robots, 2

Toussaint et al. 2010

(a) Factor graph modelling the variable interactions

(b) Behaviour of the 39-DOF Humanoid:
Reaching goal under Balance and Collision constraints

Bayesian Inference for Motion Control and Planning



Go as AI Challenge

Gelly Wang 07; Teytaud et al. 2008-2011

Reinforcement Learning, Monte-Carlo Tree Search



Energy policy

Claim
Many problems can be phrased as optimization in front of the
uncertainty.

Adversarial setting 2 two-player game
uniform setting a single player game

Management of energy stocks under uncertainty



States and Decisions

States

I Amount of stock (60 nuclear, 20 hydro.)

I Varying: price, weather alea or archive

I Decision: release water from one reservoir to another

I Assessment: meet the demand, otherwise buy energy

Reservoir 1

Reservoir2

Reservoir  3

Reservoir 4

Lost water

PLANT

NUCLEAR PLANT

DEMAND

PRICE



Netflix Challenge 2007-2008

Collaborative Filtering



Collaborative filtering

Input

I A set of users nu, ca 500,000

I A set of movies nm, ca 18,000

I A nm × nu matrix: person, movie, rating
Very sparse matrix: less than 1% filled...

Output

I Filling the matrix !

Criterion

I (relative) mean square error

I ranking error
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Spam − Phishing − Scam

Classification, Outlier detection



The power of big data

I Now-casting outbreak of flu

I Public relations >> Advertizing



Mc Luhan and Google

We shape our tools and afterwards our tools shape us
Marshall McLuhan, 1964

First time ever a tool is observed to modify human cognition that
fast.

Sparrow et al., Science 2011



Types of application

Domain But : Modelling

Physical phenomenons analysis & control
manufacturing, experimental sciences, numerical engineering

Vision, speech, robotics..

Social phenomenons + privacy
Health, Insurance, Banks ...

Individual phenomenons + dynamics
Consumer Relationship Management, User Modelling

Social networks, games...

PASCAL : http://pascallin2.ecs.soton.ac.uk/



Banks, Telecom, CRN

Ex: KDD 2009 − Orange

1. Churn

2. Appetency

3. Up-selling

Objectives

1. Ads. efficiency

2. Less fraud



Health, bio-informatics

Ex: Risk factors

1. Cardio-vascular diseases

2. Carcinogenic Molecules

3. Obesity genes ...

Objectives

1. Diagnostic

2. Personalized care

3. Identification



Scientific Social Network

Questions

1. Who does what ?
2. Good conferences ?
3. Hot/emerging topics ?
4. Is Mr Q. Lee same as Mr Quoc N. Lee ?

[tr. Jiawei Han, 2010]



e-Science, Design

Numerical Engineering

I Codes

I Computationally heavy

I Expertise demanding

Fusion based on inertial confinement, ICF



e-Science, Design (2)

Objectives

I Approximate answer

I .. in tenth of seconds

I Speed up the design cycle

I Optimal design More is Different



Autonomous robotics

Complexe, monde fermé simple, random
Design

[tr. Hod Lipson, 2010]



Autonomous robotics, 2

Reality Gap

I Design in silico (simulator)

I Run the controller on the robot (in vivo)

I Does not work !

Closing the reality Gap

1. Simulator-based design

2. On-board trials safe environnement

3. Log the data, update the simulator

4. Goto 1

Active learning Co-evolution
[tr. Hod Lipson, 2010]
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Overview



Types of Machine Learning problems

WORLD − DATA − USER

Observations

Understand
Code

Unsupervised
LEARNING

+ Target

Predict
Classification/Regression

Supervised
LEARNING

+ Rewards

Decide
Policy

Reinforcement
LEARNING



Data

Example

I row : example/ case

I column : feature/
variable/ attribute

I attribute : class/
label

Instance space X
I Propositionnal :
X ≡ IRd

I Structured :
sequential,
spatio-temporal,
relational.

aminoacid



Data / Applications

I Propositionnal data 80% des applis.

I Spatio-temporal data alarms, mines, accidents

I Relationnal data chemistry, biology

I Semi-structured data text, Web

I Multi-media images, music, movies,..



Difficulty factors

Quality of data / of representation

− Noise; missing data

+ Relevant attributes Feature extraction

− Structured data: spatio-temporal, relational, text, videos,..

Data distribution

+ Independants, identically distributed examples

− Other: robotics; data streams; heterogeneous data

Prior knowledge

+ Goals, interestingness criteria

+ Constraints on target hypotheses



Difficulty factors, 2

Learning criterion

+ Convex optimization problem

↘ Complexity : n, nlogn, n2 Scalability

− Combinatorial optimization

H. Simon, 1958:
In complex real-world situations, optimization becomes
approximate optimization since the description of the real-world is
radically simplified until reduced to a degree of complication that
the decision maker can handle.
Satisficing seeks simplification in a somewhat different direction,
retaining more of the detail of the real-world situation, but settling
for a satisfactory, rather than approximate-best, decision.



Learning criteria, 2

The user’s criteria

I Relevance, causality,

I INTELLIGIBILITY

I Simplicity

I Stability

I Interactive processing, visualisation

I ... Preference learning



Difficulty factors, 3

Crossing the chasm

I No killer algorithm

I Little expertise about algorithm selection

How to assess an algorithm

I Consistency

When number n of examples goes to infinity
and target concept h∗ is in H

h∗ is found:

limn→∞hn = h∗

I Speed of convergence

||h∗ − hn|| = O(1/n),O(1/
√

n),O(1/ ln n)



Context

Disciplines et critères

I Data bases, Data Mining
Scalability

I Statistics, data analysis
Predefined models

I Machine learning
Prior knowledge; complex data/hypotheses

I Optimisation
well / ill posed problems

I Computer Human Interaction
No final solution: a process

I High performance computing
Distributed processing; safety



Supervised Learning, notations
Context

World → Instance xi →
Oracle
↓
yi

INPUT ∼ P(x, y)

E = {(xi , yi ), xi ∈ X , yi ∈ Y, i = 1 . . . n}
HYPOTHESIS SPACE

H h : X 7→ Y
LOSS FUNCTION

` : Y × Y 7→ IR

OUTPUT
h∗ = arg max{score(h), h ∈ H}



Classification and criteria
Supervised learning

I Y = True/False classification
I Y = {1, . . . k} multi-class discrimination
I Y = IR regression

Generalization Error

Err(h) = E [`(y , h(x))] =

∫
`(y , h(x))dP(x , y)

Empirical Error

Erre(h) =
1

n

n∑
i=1

`(yi , h(xi ))

Bound structural risk

Err(h) < Erre(h) + F(n, d(H))

d(H) = Vapnik Cervonenkis dimension of H, see later



The Bias-Variance Trade-off

Biais Bias (H): error of the best hypothesis h∗ de H

Variance Variance of hn as a function of E

h*

h

h

Variance

h

H

Bias

target concept

Function Space

Overfitting

Test error

Training error

Complexity of H
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Key notions

I The main issue regarding supervised learning is overfitting.

I How to tackle overfitting:
I Before learning: use a sound criterion regularization
I After learning: cross-validation Case studies

Summary

I Learning is a search problem

I What is the space ? What are the navigation operators ?



Hypothesis Spaces

Logical Spaces

Concept ←
∨∧

Literal,Condition

I Conditions = [color = blue]; [age < 18]

I Condition f : X 7→ {True,False}
I Find: disjunction of conjunctions of conditions

I Ex: (unions of) rectangles of the 2D-planeX .



Hypothesis Spaces

Numerical Spaces

Concept = (h() > 0)

I h(x) = polynomial, neural network, . . .

I h : X 7→ IR

I Find: (structure and) parameters of h



Hypothesis Space H

Logical Space

I h covers one example x iff h(x) = True.

I H is structured by a partial order relation

h ≺ h′ iff ∀x , h(x)→ h′(x)

Numerical Space H
I h(x) is a real value (more or less far from 0)

I we can define `(h(x), y)

I H is structured by a partial order relation

h ≺ h′ iff E [`(h(x), y)] < E [`(h′(x), y)]



Hypothesis Space H / Navigation

H navigation operators

Version Space Logical spec / gen
Decision Trees Logical specialisation

Neural Networks Numerical gradient
Support Vector Machines Numerical quadratic opt.

Ensemble Methods − adaptation E



Overview



Decision Trees

C4.5 (Quinlan 86)

I Among the most widely
used algorithms

I Easy
I to understand
I to implelement
I to use
I and cheap in CPU time

I J48, Weka, SciKit

NORMAL

>= 55 < 55

Age

Smoker

no yes

Sport

RISK

NORMAL

highlow

RISK

Tension

yesno

Diabete

yes

RISK PATH.

no



Decision Trees



Decision Trees (2)

Procedure DecisionTree(E)

1. Assume E = {(xi , yi )
n
i=1, xi ∈ IRD , yi ∈ {0, 1}}

• If E single-class (i.e., ∀i , j ∈ [1, n]; yi = yj), return
• If n too small (i.e., < threshold), return
• Else, find the most informative attribute att

2. Forall value val of att
• Set Eval = E ∩ [att = val ].
• Call DecisionTree(Eval)

Criterion: information gain

p = Pr(Class = 1|att = val)
I ([att = val ]) = −p log p − (1− p) log (1− p)

I (att) =
∑

i Pr(att = vali ).I ([att = vali ])



Decision Trees (3)

Contingency Table
Quantity of Information (QI)

p

Q
I

0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7 Quantity of Information

Computation
value p(value) p(poor | value) QI (value) p(value) * QI (value)
[0,10[ 0.051 0.999 0.00924 0.000474

[10,20[ 0.25 0.938 0.232 0.0570323
[20,30[ 0.26 0.732 0.581 0.153715



Decision Trees (4)

Limitations

I XOR-like attributes

I Attributes with many values

I Numerical attributes

I Overfitting



Limitations

Numerical Attributes

I Order the values val1 < . . . < valt
I Compute QI([att < vali ])

I QI(att) = maxi QI([att < vali ])

The XOR case
Bias the distribution of the examples



Complexity

Quantity of information of an attribute

n ln n

Adding a node

D × n ln n



Tackling Overfitting

Penalize the selection of an already used variable

I Limits the tree depth.

Do not split subsets below a given minimal size

I Limits the tree depth.

Pruning

I Each leaf, one conjunction;

I Generalization by pruning litterals;

I Greedy optimization, QI criterion.



Decision Trees, Summary

Still around after all these years

I Robust against noise and irrelevant attributes

I Good results, both in quality and complexity

Random Forests Breiman 00



Overview



Validation issues

1. What is the result ?

2. My results look good. Are they ?

3. Does my system outperform yours ?

4. How to set up my system ?



Validation: Three questions

Define a good indicator of quality

I Misclassification cost

I Area under the ROC curve

Computing an estimate thereof

I Validation set

I Cross-Validation

I Leave one out

I Bootstrap

Compare estimates: Tests and confidence levels



Which indicator, which estimate: depends.

Settings

I Large/few data

Data distribution

I Dependent/independent examples

I balanced/imbalanced classes



Overview



Performance indicators

Binary class

I h∗ the truth

I ĥ the learned hypothesis

Confusion matrix

ĥ / h∗ 1 0

1 a b a+b
0 c d c+d

a+c b+d a + b + c + d



Performance indicators, 2

ĥ / h∗ 1 0

1 a b a+b
0 c d c+d

a+c b+d a + b + c + d

I Misclassification rate b+c
a+b+c+d

I Sensitivity (recall), True positive rate (TP) a
a+c

I Specificity, False negative rate (FN) b
b+d

I Precision a
a+b

Note: always compare to random guessing / baseline alg.



Performance indicators, 3

The Area under the ROC curve

I ROC: Receiver Operating Characteristics

I Origin: Signal Processing, Medicine

Principle

h : X 7→ IR h(x) measures the risk of patient x

h leads to order the examples:
+ + +−+−+ + + +−−−+−−−+−−−−−−−−−−−−

Given a threshold θ, h yields a classifier: Yes iff h(x) > θ.
+ + +−+−+ + ++ | − − −+−−−+−−−−−−−−−−−−

Here, TP (θ)= .8; FN (θ) = .1
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ROC



The ROC curve

θ 7→ IR2 : M(θ) = (1− TNR,FPR)

Ideal classifier: (0 False negative,1 True positive)
Diagonal (True Positive = False negative) ≡ nothing learned.



ROC Curve, Properties

Properties
ROC depicts the trade-off True Positive / False Negative.

Standard: misclassification cost (Domingos, KDD 99)

Error = # false positive + c × # false negative

In a multi-objective perspective, ROC = Pareto front.

Best solution: intersection of Pareto front with ∆(−c ,−1)



ROC Curve, Properties, foll’d
Used to compare learners Bradley 97

multi-objective-like
insensitive to imbalanced distributions
shows sensitivity to error cost.



Area Under the ROC Curve

Often used to select a learner
Don’t ever do this ! Hand, 09

Sometimes used as learning criterion Mann Whitney

Wilcoxon

AUC = Pr(h(x) > h(x ′)|y > y ′)

WHY Rosset, 04

I More stable O(n2) vs O(n)

I With a probabilistic interpretation Clemençon et al. 08

HOW

I SVM-Ranking Joachims 05; Usunier et al. 08, 09

I Stochastic optimization



Overview



Validation, principle

Desired: performance on further instances

Further examples

WORLD

h

Quality

Dataset

Assumption: Dataset is to World, like Training set is to Dataset.

Training set

h

Quality

Test examples

DATASET



Validation, 2

Training set

hTest examples Learning parameters

DATASET

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Validation, 2

Training set

hTest examples Learning parameters

DATASET

Validation set

True performance

parameter*, h*, perf (h*)

perf(h)

Unbiased Assessment of Learning Algorithms

T. Scheffer and R. Herbrich, 97
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Confidence intervals
Definition
Given a random variable X on IR, a p%-confidence interval is
I ⊂ IR such that

Pr(X ∈ I ) > p

Binary variable with probability ε
Probability of r events out of n trials:

Pn(r) =
n!

r !(n − r)!
εr (1− ε)n−r

I Mean: nε

I Variance: σ2 = nε(1− ε)
Gaussian approximation

P(x) =
1√

2πσ2
exp−

1
2
x−µ
σ

2



Confidence intervals

Bounds on (true value, empirical value) for n trials, n > 30

Pr(|x̂n − x∗| > 1.96
√

x̂n.(1−x̂n)
n ) < .05

z ε

Table
z .67 1. 1.28 1.64 1.96 2.33 2.58
ε 50 32 20 10 5 2 1



Empirical estimates

When data abound (MNIST)

Training Test Validation

Cross validation
Fold

2 31

Run

N

2

1

N

Error =  Average (error on 

N−fold Cross Validation

of h

learned from )



Empirical estimates, foll’d

Cross validation → Leave one out

2 31

Run 2

1

Fold

n

n

Leave one out

Same as N-fold CV, with N = number of examples.

Properties
Low bias; high variance; underestimate error if data not
independent



Empirical estimates, foll’d

Bootstrap

Dataset

Training set

Test set.

rest of examples

with replacement

uniform sampling

Average indicator over all (Training set, Test set) samplings.



Beware

Multiple hypothesis testing

I If you test many hypotheses on the same dataset

I one of them will appear confidently true...

More

I Tutorial slides:
http://www.lri.fr/ sebag/Slides/Validation Tutorial 11.pdf

I Video and slides (soon): ICML 2012, Videolectures, Tutorial
Japkowicz & Shah
http://www.mohakshah.com/tutorials/icml2012/



Validation, summary

What is the performance criterion

I Cost function

I Account for class imbalance

I Account for data correlations

Assessing a result

I Compute confidence intervals

I Consider baselines

I Use a validation set

If the result looks too good, don’t believe it
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