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Motivations of Autonomic Computing

Worldwide IT Spending on Servers, Power, and Cooling and
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Goals of Autonomic Computing

AUTONOMIC VISION & MANIFESTO
http://www.research.ibm.com /autonomic/manifesto/

Self-managing system with the ability of

@ Self-healing: detect, diagnose and repair problems

@ Self-configuring: automatically incorporate and configure
components

@ Self-optimizing: ensure the optimal functioning wrt defined
requirements

o Self-protecting: anticipate and defend against security
breaches

Data Mining for Autonomic Computing



tonomic Grid Computing System

Flow of jobs
330K / day
System

EGEE grid Administrator
150K process cores Summarized
260 sites Outputs =
28PT storage _ G-StrAP: . ==
14K users Multi-scale Job Stream monitoring |::>

EGEE: Enabling Grids for E-sciencE, http://www.eu-egee.org
EGEE User Forum: annual event since 2007
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Job stream monitoring by clustering

Goal: summarizing the large scale and fast arriving data.
@ provide compact description
@ help to find out interesting patterns
o classify the incoming data

Challenges:

o Large size
o save all the data and process them as a whole ?

require huge disk, CPU, and memory (impossible for data in
size of GB, TB, even PB, ..)

@ process the data part by part ?
how to guarantee the global optimization.
@ Changing distribution:
for the time-ordered data, how to make the clusters keep tracking
the evolving data?
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What is Clustering ?

@ unsupervised learning method

@ group similar points together in the same group (cluster)

@ widely used on various problems:
Interesting groups discovery, Data structure presentation, Data
classification, Data compression, Dimensionality reduction or feature
selection

@ many clustering methods are available, e.g., Hierarchical
clustering methods, Density-based methods(Dbscan), Partitioning
methods(k-means)
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Our requirements of clustering method

@ No need to set the number K of clusters double-edged sword

@ global optimization of clustering result:
not locally optimized by greedy approach
@ stable clustering result:
not affected by the initialization
@ real data points as representative exemplars (cluster center):
suit the application field when averaged centers are meaningless,
e.g. molecule, jobs described by categorical attributes
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Our requirements of clustering method

@ No need to set the number K of clusters double-edged sword

@ global optimization of clustering result:
not locally optimized by greedy approach

@ stable clustering result:
not affected by the initialization

@ real data points as representative exemplars (cluster center):
suit the application field when averaged centers are meaningless,
e.g. molecule, jobs described by categorical attributes

o Affinity Propagation (AP)  (Frey & Dueck, Science2007)
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Iterations of Message passing in AP
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Iterations of Message passing in AP
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Iterations of Message passing in AP
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Iterations of Message passing in AP
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Iterations of Message passing in AP
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Iterations of Message passing in AP
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Iterations of Message passing in AP
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Iterations of Message passing in AP
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Introduction of AP

Data: x1, X2, ..., Xy Distance: d(x;, ;)

o: x; — o(x;), exemplar representing x;, such that

max 3N 1 S(xi, o(x;))
where,
S(xi,xj)) = —d?(xi,x;)) ifi#]
S(xi,xj) = —s* s*: user-defined parameter (penalty)

@ s* = 0o, only one an exemplar ( one cluster)

@ s* =0, every point is an exemplar (N clusters)
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AP: a message passing algorithm

Sending responsibilities

Sending availabilities
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Message passed

Sending responsibilties Sending availabilities
Candidate Competing Candidate
exemplar & candidate exemplar k
Q exemplar k' @ i’ k)
. Supporting
i k) ali k) data point i
. ® afliky
e o)
Data point { Data point i

The index of exemplar o(x;) associated to x; is finally defined as:
o(x;) = argmax {r(i,k) + a(i,k),k =1...N}
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Summary of AP

Affinity Propagation (AP)
@ A clustering method
o Converge by Iterations of Message passing
@ No need of K (the number of clusters)
@ Real point as exemplar

@ an application of belief propagation (simplified graph +
message passing)

o'
Computational complexity problems
@ Similarity computation: O(N?)

@ Message passing: O(N?log N)
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Hierarchical AP

Divide-and-conquer (inspired by Guha et al, TKDE2003)

Data

ik Randomly divided into T subsets
S P T

@ Clustering by AP

le!] [e?) le}} - lel] exemplars
aggregation
lel,ef,....el)
@ Clustering by AP ??
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Hierarchical AP

Divide-and-conquer (inspired by Guha et al, TKDE2003)

Data

ik Randomly divided into T subsets
S P T

@ @ Clustering by AP

! 2 3 C. )
le:} le;] le7} le]) exemplars
aggregation
1 2 T
le;,e,....e; |
[ 1 2 T )
s T oo T Clustering by AP 2?
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Weighted AP

AP WAP
Xi X, Nj
S(xi, %) — nj % 5(xi, )

price for x; to select x; as an exemplar

S(X,',X,') — S(X,',X,') + (n,- — ].) X €
price to select x; as exemplar € is variance of n; points

Proposition

WAP = AP with duplications (aggregations)
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Hierarchical AP

Data

ik Randomly divided into
N T

@ Clustering by AP

le}} (e} e} - eV} exemplars

n?,..on'N) Clustering by WAP

o Complexity of HI-AP is O(N3/2)
(X. Zhang et al, ECML/PKDD 2008)

@ NB: can be iteratively reduced to O(N1+7)
(X. Zhang et al, SIGKDD 2009)
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Validation of HI-AP on EGEE jobs

o EGEE
(Enabling Grids for
E-sciencE)

@ Grid Observatory
http://www.grid-
observatory.org/

description of jobs (237,087)

@ 4 numeric features: duration of execution

@ 1 symbolic feature: name of queue
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Validation of HI-AP on EGEE jobs

Evaluation: Distortion

D([o]) = >-1L; *(xi, o (x)

221 i i —+— Distortion of hierarchical K-centers
T oeenionatiae @ 237,087 jobs
Hor ] @ 10 mins

éizi ] on Intel

2 . ] 2.66GHz
o8 1 Dual-Core PC
Zj with 2 GB
02l i memory

I I I
50 100 50 200 250 300
N. of clusters: K

Hi1-AP has the lowest distortion compared to baseline method
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STRAP : Clustering Streaming Data STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

Challenges of Stream Clustering

Data stream:

a real-time, continuous, ordered sequence of items arriving at a
very high speed (Golab & Ozsu,SigMod2003)
e.g., network traffic data, sensor network monitoring data

>
Data streams clustering

Provide compact description of data flow

(]

Incremental model updating

°
@ No specified number of clusters
@ Process in real-time

°

Available results at any time

Xiangliang Zhang, Cyril Furtlehner, Michéle Sebag Data Streaming for Autonomic Computing in the EGEE frame



Challenges and Related Work
STRAP Algorithm

: Clustering Streaming Data STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

Related works

Divide-and-conquer strategy (Guha et al, TKDE 2003)
fixed segmentation window —— > not feasible to handle the
changing distribution

data stream
level-0 ! : S
\ 1
level-1 :m” -

k 2k 2% 2%
-m —m -
level-2 :u:%
2k 2k
m
level-i = ..
2k
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Challenges and Related Work
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STRAP : Clustering Streaming Data ) P Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

Related works

A two-level scheme (Aggarwal et al, VLDB 2003)

@ online level to summarize the evolving data stream

@ offline level to generate the clusters using the summary.

@ clustering method is used to get initial micro-clusters and final
clusters. e.g., Density-based clustering methods DBSCAN  (Cao et
al, SDM 2006)

Problem: the online clustering models is not provided or only
available when it is required by users.
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Stream clustering

000000000000

Model (0O Reservoir
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STRAP Algorithm

STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

: Clustering Streaming Data

Stream clustering

cooOO OO o000

Model i 0Q Reservoir

Does x; fit the current model ?7

@ if yes, update the model

@ otherwise, go to reservoir
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: Clustering Streaming Data

Stream clustering

00000 00O 0000 00

Model 0O Reservoir

Does x; fit the current model ?7

@ if yes, update the model

@ otherwise, go to reservoir
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: Clustering Streaming Data

Stream clustering

00000000 0000 00N

Model i 0Q Reservoir | /\

Does x; fit the current model ?7

@ if yes, update the model

@ otherwise, go to reservoir
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Stream clustering

00000 000 0000 00LNO O
Model (0O Reservoir | /N /N /\

Has the distribution changed 77

CHANGE TEST
o if yes, rebuild the model

@ otherwise, continue
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Stream clustering

00000000 0000 00L0O O

Model (0O AN Reservoir

Has the distribution changed 77

CHANGE TEST
o if yes, rebuild the model

@ otherwise, continue
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: Clustering Streaming Data AP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

STRAP Method

data data streaming
— 'l process system

Does x; fit the current model 77

o if yes, update the model update the weight with
(decay window A)

~models  { e, nj,X;, t; }

@ otherwise, go to reservoir

-

Has the distribution changed 77

@ if yes, rebuilt the model based on current model and
reservoir by WAP

@ otherwise, continue

Xiangliang Zhang, Cyril Furtlehner, Michéle Sebag Data Streaming for Autonomic Computing in the EGEE frame



Rebuild the model??

@ when reservoir is full

@ when changes are detected: Page-Hinkley statistic
(Cumulative-Sum-like test)
(Page, Biometrikal954; Hinkley, Biometrikal971)

pt changing distribution

s

- , pt = % > Pe

o me = 325_y (pe — Pe +6)
J A M = max{m;}

1o PH; = M; —

— bt ML w1y b " IR
o AN YA A R

if PHy > A\, changed detected

L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
time t

How to set \ 777



o fixed empirical value (X. Zhang et al, ECML/PKDD 2008)
@ self-adaptive change detection test (X. Zhang et al, SIGKDD 2009)

Self—adapt A = An optimization problem

C
BIC: 75 = 11 215 (5 Seec (6. €f)) + 05 log N+ 10,
x ss + size of model + percentage of outlier

OPTIMIZATION:
@ e-greedy search from a finite set of A\ values
A = argmin{E(F\}),

A1 /\2 /\3 /\4
E(Fy) | E(Fy) | E(Fy) | E(FA)

@ Gaussian Process Regression based on {\;, Fy,}
continuous value of X is generated
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Validation of STRAP on KDD99 data

@ Real world data: KDD99 data

@ intrusion detection benchmark
@ 494,021 network connection records in R3*
o 23 classes: 1 normal + 22 attacks

@ Baseline: DenStream (Cao et al, SDM2006)

-

Performance indicator (supervised setting)

@ Clustering accuracy

@ Clustering purity

\

KDD Cup 1999 data: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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STRAP : Clustering Streaming Data STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

Accuracy and Purity along time

Error Rate along time < 2%

Error rate
¥ Restart point| |

Error Rate (%)

o 05 1 15 2 25 3 35 4 45 5
time steps x10°

Higher clustering purity than DenStream

100

‘ I sTRAP A=15000 [ STRAP A=5000 [l DenStream
T

Cluster Purity (%)

1 ‘2 ) 3 4
time w ndows

ing in the EGEE frame
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STRAP : Clustering Streaming Data STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

Discussion

@ Pros
@ better accuracy
Truth Detection rate: 99.18%
False Alarm rate: 1.39%
Online Error rate < 2%
@ model available at any time
@ Cons

o DenStream: 7 seconds
o STRAP : 7 mins
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Multi-scale Realtime Grid Monitoring System

Grid Monitoring System

Output

Streaming jobs Data :
[ > Pre-processing/ StrAP '\Sl)nh:e
Normalization u Oﬂl or
Super Post-monitor
Clustering > Analysis
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STRAP : Clustering Streaming Data STRAP Application on Intrusion Detection (KDD99 data)
A

AP-based Real-time Online Grid Monitoring System

Multi-scale Realtime Grid Monitoring System

Grid Monitoring System

Output
Streaming jobs
[ Online
jobl: 8 5 7 12 156 193 2 Monitor
job2: 8 5 6 11 0 0 “ u
job3: 8 5 7 9 228 19 L
job4: 10 1 2 14 216 133
job5: 8 2 4 9 253 72
jobe: 8 1 2 5 156 84 >
job7: 9 1 2 12 0 0
jobs: 8 6 6 7 0 0
job9: 8 5 6 12 3095 73
job10: 8 6 6 8 193 84 0
jobt1: 8 5 7 10 0 0 8
job12: 8 5 7 10 157 85 exemplar shown 18
job13: 11 4 5 13 181 133 80 as ajob vector 2
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Multi-scale Realtime Grid Monitoring System

Grid Monitoring System

Output
Streaming jobs
— QU
jobl: 8 5 7 12 156 193 Monitor
jb2 8 5 6 11 0 0 “
bk 8 5 7 9 228 19 L
jobd: 10 1 2 14 216 133 -
jobS: 8 2 4 9 253 72 Post-monitor
job6: 8 1 2 5 156 84 > :
job7: 9 1 2 12 0 0 Analysis
job& 8 6 6 7 0 0
job%: 8 5 6 12 309573
jobto: 8 6 6 & 193 84 o o T I
jobt1: 8 5 7 10 0 0 distribution of jobs in cluster [70000 ( distribution of jobs in cluster [0 0000
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STRAP Algorithm

STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

: Clustering Streaming Data

Experimental Data

@ EGEE logs of 39 RBs during 5 months (2006-01-01 ~
2006-05-31)

@ 5,268,564 jobs
o for each job, its

¢ final status (good or type of errors)
@ 6 features describing the time-cost of services in a job lifecycle
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STRAP : Clustering Streaming Data ST > Application on Intr n Detection (KDD99 data)
AP-based Real-time Online Grid Monitoring System

Experimental Results: Online Monitoring
outputs
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Real-time Monitoring: when change detected

Online summarizing the streaming jobs into clusters:

g100 : ‘ ‘ g .

g 18

2 gof exemplar shown 24 ]
S asajob vector ™y 30

@ 595

g 601 10 139 ; i
a 7 47

o 0 13

= 54

5 40f 0 129 14 1
° 0 0 24

g 0 0 9728

£ 20t 0 19190 g
g Reservoir

g o

1 2Clusters® 4 5
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STRAP : Clustering Streaming Data STRAP Application on Intr n Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

Real-time Monitoring: when change detected

Online summarizing the streaming jobs into clusters:

100

LogMonitor is
gr | getting clogged 0

18
29
60 <2QQQ> B
s 395
4 9 18 6 26
a0k o 0 18 J
0 0 2
0 0
20t 0 5 1
0 0
Reservoir 0
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AP Application on In n Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

STRAP : Clustering Streaming Data

Clustering Accuracy
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10% higher than baseline method(Streaming k-centers)
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Challenges and Related Work

STRAP Algorithm

STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

: Clustering Streaming Data

Discussion

@ Real-time quality (330K jobs/day):
o tested on Intel 2.66GHz Dual-Core PC with 2 GB memory
o 10k jobs per minute coding in Matlab
@ 60k jobs per minute coding in C/C++
@ concise online summary of the streaming jobs, with
o proportion of defects
o performance of the grid services
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Challenges and Related Work
STRAP Algorithm

STRAP : Clustering Streaming Data ST > Application on Intr n Detection (KDD99 data)
AP-based Real-time Online Grid Monitoring System

Experimental Results: Offline Analysis
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Challenges and Related Work
STRAP Algorithm
STRAP Application on Intrusion Detection (KDD99 data)

: Clustering Streaming Data
A STRAP-based Real-time Online Grid Monitoring System

Large-time scale Monitoring: Global view

@ the history behavior of interesting exemplars
@ without prior knowledge about failure patterns
@ summarizing Gbyte data

Flow of jobs

‘ >
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LM hj]ldl On-line exemplars
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AP

Super Clusters
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Challenges and Related Work
STRAP Algorithm
STRAP : Clustering Streaming Data STRAP Application on Intrusion Detection (KDD99 data)
STRAP-based Real-time Online Grid Monitoring System
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Challenges and Related Work

STRAP Algorithm

STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

: Clustering Streaming Data

Discussion and Conclusion

@ real-time monitoring Grid job streams

@ providing multi-scale models to describing the status of Grid

@ proportion of different type of job patterns (realtime-view,
day-view, week-view ....)

@ rupture steps

o offline globally analysis

@ good quality clustering is guaranteed
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Conclusion and Perspectives

Conclusion, Algorithm

Scalability: HI-AP
@ Reduce complexity from O(N?) to O(N3/?)
@ lteratively reduce toward O(N(+7))

Stream clustering: STRAP

@ Framework of processing the streaming data

@ Hybridized with an efficient change detection method, Page-Hinkley
@ Model available at any time
@ BUT: slower than DenStream
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Conclusion and Perspectives

Conclusion, Application

Network Intrusion Detection (KDD99 data)
@ clustering by one-scan of the data
@ using only < 1% data for building model Active Learning

@ high clustering and classification accuracy

Autonomic Grid Computing

@ real-time grid monitoring system

o visualized online output describing grid running status
o offline output for historical performance analysis

@ multi-scale analysis of system behaviors
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Conclusion and Perspectives

Ongoing work

Flexible Clustering Methods

@ Fixed number clusters by messaging passing
@ Arbitrary shape clusters by messaging passing

@ Comprehensive model of streaming data
using several representative exemplars covering the cluster, instead

of one center point
ot

Online Learning

@ Assess the alarm level attached to a given model
criticality of the clusters based on its frequency along time

@ User profiling
the clusters —> new features —> describe the users (viewing a
user as a set of clusters)
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Thank you for your attention.
Xiangliang ZHANG
xlzhang@lIri.fr

http://www.lri.fr/~xlzhang
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