Data Streaming for Autonomic Computing in the FGFF framework

Xiangliang Zhang, Cyril Furtlehner, Michèle Sebag

TAO – INRIA CNRS Université de Paris-Sud, F-91405 Orsay Cedex, France

Contents

- Motivation
 - Motivation: Autonomic Computing
 - Introduction of Affinity Propagation (AP)
- 2 Hierarchical AP (HI-AP): Clustering Large-scale Data
 - HI-AP Algorithm
 - HI-AP Application on EGEE Grid logs
- 3 STRAP : Clustering Streaming Data
 - Challenges and Related Work
 - STRAP Algorithm
 - STRAP Application on Intrusion Detection (KDD99 data)
 - A STRAP-based Real-time Online Grid Monitoring System
- 4 Conclusion and Perspectives

Contents

- Motivation
 - Motivation: Autonomic Computing
 - Introduction of Affinity Propagation (AP)
- 2 Hierarchical AP (HI-AP): Clustering Large-scale Data
 - HI-AP Algorithm
 - HI-AP Application on EGEE Grid logs
- 3 STRAP : Clustering Streaming Data
 - Challenges and Related Work
 - STRAP Algorithm
 - STRAP Application on Intrusion Detection (KDD99 data)
 - A STRAP-based Real-time Online Grid Monitoring System
- 4 Conclusion and Perspectives

Motivations of Autonomic Computing

Source: IDC

Goals of Autonomic Computing

AUTONOMIC VISION & MANIFESTO

http://www.research.ibm.com/autonomic/manifesto/

Self-managing system with the ability of

- Self-healing: detect, diagnose and repair problems
- Self-configuring: automatically incorporate and configure components
- Self-optimizing: ensure the optimal functioning wrt defined requirements
- Self-protecting: anticipate and defend against security breaches

Data Mining for Autonomic Computing

Autonomic Grid Computing System

EGEE: Enabling Grids for E-sciencE, http://www.eu-egee.org

EGEE User Forum: annual event since 2007

Job stream monitoring by clustering

Goal: summarizing the large scale and fast arriving data.

- provide compact description
- help to find out interesting patterns
- classify the incoming data

Challenges:

- Large size
 - save all the data and process them as a whole?
 require huge disk, CPU, and memory (impossible for data in size of GB, TB, even PB, ..)
 - process the data part by part?
 how to guarantee the global optimization.
- Changing distribution:

for the time-ordered data, how to make the clusters **keep tracking the evolving data**?

What is Clustering?

- unsupervised learning method
- group similar points together in the same group (cluster)
- widely used on various problems:
 Interesting groups discovery, Data structure presentation, Data classification, Data compression, Dimensionality reduction or feature selection
- many clustering methods are available, e.g., Hierarchical clustering methods, Density-based methods(Dbscan), Partitioning methods(k-means)

Our requirements of clustering method

- No need to set the number K of clusters double-edged sword
- global optimization of clustering result:
 - not locally optimized by greedy approach
- stable clustering result:

- not affected by the initialization
- real data points as representative exemplars (cluster center):
 suit the application field when averaged centers are meaningless,
 e.g. molecule, jobs described by categorical attributes

Our requirements of clustering method

- No need to set the number K of clusters double-edged sword
- global optimization of clustering result:
 not locally optimized by greedy approach
- stable clustering result:

not affected by the initialization

- real data points as representative exemplars (cluster center): suit the application field when averaged centers are meaningless, e.g. molecule, jobs described by categorical attributes
- Affinity Propagation (AP) (Frey & Dueck, Science2007)

Introduction of AP

input:

Data: $x_1, x_2, ..., x_N$ Distance: $d(x_i, x_j)$

find:

 $\sigma: x_i \to \sigma(x_i)$, exemplar representing x_i , such that

$$\max \sum_{i=1}^{N} S(x_i, \sigma(x_i))$$

where,

$$S(x_i, x_j) = -d^2(x_i, x_j)$$
 if $i \neq j$
 $S(x_i, x_j) = -s^*$ s*: user-defined parameter (penalty)

- $s^* = \infty$, only one an exemplar (one cluster)
- $s^* = 0$, every point is an exemplar (N clusters)

AP: a message passing algorithm

Sending responsibilities

Sending availabilities

Message passed

$$r(i,k) = S(x_i, x_k) - \max_{k', k' \neq k} \{a(i, k') + S(x_i, x_k')\}$$

$$r(k, k) = S(x_k, x_k) - \max_{k', k' \neq k} \{S(x_k, x_k')\}$$

$$a(i, k) = \min\{0, r(k, k) + \sum_{i', i' \neq i, k} \max\{0, r(i', k)\}\}$$

$$a(k, k) = \sum_{i', i' \neq k} \max\{0, r(i', k)\}$$

The index of exemplar $\sigma(x_i)$ associated to x_i is finally defined as:

$$\sigma(x_i) = \operatorname{argmax} \left\{ r(i, k) + a(i, k), k = 1 \dots N \right\}$$

Summary of AP

Affinity Propagation (AP)

- A clustering method
- Converge by Iterations of Message passing
- No need of K (the number of clusters)
- Real point as exemplar
- an application of belief propagation (simplified graph + message passing)

cons

Computational complexity problems

- Similarity computation: $\mathcal{O}(N^2)$
- Message passing: $\mathcal{O}(N^2 \log N)$

Contents

- Motivation
 - Motivation: Autonomic Computing
 - Introduction of Affinity Propagation (AP)
- 2 Hierarchical AP (HI-AP): Clustering Large-scale Data
 - HI-AP Algorithm
 - HI-AP Application on EGEE Grid logs
- 3 STRAP : Clustering Streaming Data
 - Challenges and Related Work
 - STRAP Algorithm
 - STRAP Application on Intrusion Detection (KDD99 data)
 - A STRAP-based Real-time Online Grid Monitoring System
- 4 Conclusion and Perspectives

Hierarchical AP

Divide-and-conquer (inspired by Guha et al, TKDE2003)

Hierarchical AP

Divide-and-conquer (inspired by Guha et al, TKDE2003)

Weighted AP

AP WAP
$$x_i$$
 x_i, n_i $S(x_i, x_j)$ \longrightarrow $n_i \times S(x_i, x_j)$

price for x_i to select x_i as an exemplar

$$S(x_i, x_i) \longrightarrow S(x_i, x_i) + (n_i - 1) \times \epsilon$$
 price to select x_i as exemplar ϵ is variance of n_i points

Proposition

 $WAP \equiv AP$ with duplications (aggregations)

Hierarchical AP

- Complexity of HI-AP is $\mathcal{O}(N^{3/2})$
 - (X. Zhang et al, ECML/PKDD 2008)
- NB: can be iteratively reduced to $\mathcal{O}(N^{1+\gamma})$
 - (X. Zhang et al, SIGKDD 2009)

Validation of HI-AP on EGEE jobs

- EGEE
 (Enabling Grids for E-sciencE)
- Grid Observatory http://www.gridobservatory.org/

description of jobs (237,087)

- 4 numeric features: duration of execution
- 1 symbolic feature: name of queue

Validation of HI-AP on EGEE jobs

Evaluation: Distortion

$$D([\sigma]) = \sum_{i=1}^{N} d^2(x_i, \sigma(x_i))$$

- 237,087 jobs
 - 10 mins on Intel
 2.66GHz
 Dual-Core PC with 2 GB memory

HI-AP has the lowest distortion compared to baseline method

Contents

- Motivation
 - Motivation: Autonomic Computing
 - Introduction of Affinity Propagation (AP)
- 2 Hierarchical AP (HI-AP): Clustering Large-scale Data
 - HI-AP Algorithm
 - HI-AP Application on EGEE Grid logs
- 3 STRAP : Clustering Streaming Data
 - Challenges and Related Work
 - STRAP Algorithm
 - STRAP Application on Intrusion Detection (KDD99 data)
 - A STRAP-based Real-time Online Grid Monitoring System
- 4 Conclusion and Perspectives

Challenges of Stream Clustering

Data stream:

a **real-time**, **continuous**, **ordered** sequence of items arriving at a very **high speed** (Golab & Özsu,SigMod2003) e.g., network traffic data, sensor network monitoring data

Data streams clustering

- Provide compact description of data flow
- Incremental model updating
- No specified number of clusters
- Process in real-time
- Available results at any time

Related works

Divide-and-conquer strategy (Guha et al, TKDE 2003) fixed segmentation window —— > not feasible to handle the changing distribution

Related works

A two-level scheme

(Aggarwal et al, VLDB 2003)

- **online level** to summarize the evolving data stream
- offline level to generate the clusters using the summary.
- clustering method is used to get initial micro-clusters and final clusters. e.g., Density-based clustering methods DBSCAN (Cao et al, SDM 2006)

Problem: the online clustering models is not provided or only available when it is required by users.

Contents

- Motivation
 - Motivation: Autonomic Computing
 - Introduction of Affinity Propagation (AP)
- 2 Hierarchical AP (HI-AP): Clustering Large-scale Data
 - HI-AP Algorithm
 - HI-AP Application on EGEE Grid logs
- 3 STRAP : Clustering Streaming Data
 - Challenges and Related Work
 - STRAP Algorithm
 - STRAP Application on Intrusion Detection (KDD99 data)
 - A STRAP-based Real-time Online Grid Monitoring System
- 4 Conclusion and Perspectives

Challenges and Related Work
STRAP Algorithm
STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

Stream clustering

000000000000	\bigcirc	
Model OO	Reservoir	

Challenges and Related Work
STRAP Algorithm
STRAP Application on Intrusion Detection (KDD99 data)
A STRAP-based Real-time Online Grid Monitoring System

Stream clustering

Does x_t fit the current model ??

- if yes, update the model
- otherwise, go to reservoir

Stream clustering

Does x_t fit the current model ??

- if yes, update the model
- otherwise, go to reservoir

Stream clustering

Does x_t fit the current model ??

- if yes, update the model
- otherwise, go to reservoir

Stream clustering

Has the distribution changed ??

CHANGE TEST

- if yes, rebuild the model
- otherwise, continue

Stream clustering

Has the distribution changed ??

CHANGE TEST

- if yes, rebuild the model
- otherwise, continue

STRAP Method

Does x_t fit the current model ??

- if yes, update the model update the weight with time decay (decay window Δ)
- otherwise, go to reservoir

Has the distribution changed ??

- if yes, rebuilt the model based on current model and reservoir by WAP
- otherwise, continue

Rebuild the model??

- when reservoir is full
- when changes are detected: Page-Hinkley statistic (Cumulative-Sum-like test)

(Page, Biometrika1954; Hinkley, Biometrika1971)

 p_t changing distribution

$$egin{aligned} ar{p}_t &= rac{1}{t} \sum_{\ell=1}^t p_\ell \ m_t &= \sum_{\ell=1}^t \left(p_\ell - ar{p}_\ell + \delta
ight) \end{aligned}$$

$$M_t = max\{m_\ell\}$$

$$PH_t = M_t - m_t$$

if $PH_t > \lambda$, changed detected

How to set λ ???

Setting of λ

- fixed empirical value (X. Zhang et al, ECML/PKDD 2008)
- self-adaptive change detection test (X. Zhang et al, SIGKDD 2009)

Self-adapt $\lambda \equiv An$ optimization problem

OPTIMIZATION:

ullet ϵ -greedy search from a finite set of λ values

$$\lambda = argmin\{\mathbf{E}(F_{\lambda}\}),$$

λ_1	λ_2	λ_3	λ_{4}	
$\mathbf{E}(F_{\lambda_1})$	$\mathbf{E}(F_{\lambda_2})$	$\mathbf{E}(F_{\lambda_3})$	$\mathbf{E}(F_{\lambda_4})$	

• Gaussian Process Regression based on $\{\lambda_i, F_{\lambda_i}\}$ continuous value of λ is generated

Contents

- Motivation
 - Motivation: Autonomic Computing
 - Introduction of Affinity Propagation (AP)
- 2 Hierarchical AP (HI-AP): Clustering Large-scale Data
 - HI-AP Algorithm
 - HI-AP Application on EGEE Grid logs
- 3 STRAP : Clustering Streaming Data
 - Challenges and Related Work
 - STRAP Algorithm
 - STRAP Application on Intrusion Detection (KDD99 data)
 - A STRAP-based Real-time Online Grid Monitoring System
- 4 Conclusion and Perspectives

Validation of STRAP on KDD99 data

Data used

- Real world data: KDD99 data
 - intrusion detection benchmark
 - 494,021 network connection records in \mathbb{R}^{34}
 - 23 classes: 1 normal + 22 attacks
- Baseline: DenStream (Cao et al, SDM2006)

Performance indicator (supervised setting)

- Clustering accuracy
- Clustering purity

KDD Cup 1999 data: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

Accuracy and Purity along time

Error Rate along time < 2%

Higher clustering purity than DenStream

Discussion

STRAP vs DenStream

- Pros
 - better accuracy

Truth Detection rate: 99.18% False Alarm rate: 1.39% Online Error rate < 2%

- model available at any time
- Cons
 - DenStream: 7 seconds
 - STRAP: 7 mins

Contents

- Motivation
 - Motivation: Autonomic Computing
 - Introduction of Affinity Propagation (AP)
- 2 Hierarchical AP (HI-AP): Clustering Large-scale Data
 - HI-AP Algorithm
 - HI-AP Application on EGEE Grid logs
- 3 STRAP : Clustering Streaming Data
 - Challenges and Related Work
 - STRAP Algorithm
 - STRAP Application on Intrusion Detection (KDD99 data)
 - A STRAP-based Real-time Online Grid Monitoring System
- 4 Conclusion and Perspectives

Multi-scale Realtime Grid Monitoring System

Multi-scale Realtime Grid Monitoring System

Multi-scale Realtime Grid Monitoring System

Experimental Data

- \bullet EGEE logs of 39 RBs during 5 months (2006-01-01 \sim 2006-05-31)
- 5,268,564 jobs
- for each job, its
 - final status (good or type of errors)
 - 6 features describing the time-cost of services in a job lifecycle

Experimental Results: Online Monitoring outputs

Real-time Monitoring: when change detected

Online summarizing the streaming jobs into clusters:

Real-time Monitoring: when change detected

Online summarizing the streaming jobs into clusters:

Clustering Accuracy

10% higher than baseline method(Streaming k-centers)

Discussion

- Real-time quality (330K jobs/day):
 - tested on Intel 2.66GHz Dual-Core PC with 2 GB memory
 - 10k jobs per minute coding in Matlab
 - 60k jobs per minute coding in C/C++
- concise online summary of the streaming jobs, with
 - proportion of defects
 - performance of the grid services

Experimental Results: Offline Analysis

Large-time scale Monitoring: Global view

- the history behavior of interesting exemplars
- without prior knowledge about failure patterns
- summarizing Gbyte data

Bad Super Exemplars: day view

"early stopped error", Who and When?

Date	Jan 7~13	Jan 30 \sim Feb 3	Mar 16~21	May 17∼19
UserID	A1	A1	B1	D1 and A1

Discussion and Conclusion

- real-time monitoring Grid job streams
- providing multi-scale models to describing the status of Grid
 - proportion of different type of job patterns (realtime-view, day-view, week-view)
 - rupture steps
 - offline globally analysis
- good quality clustering is guaranteed

Contents

- Motivation
 - Motivation: Autonomic Computing
 - Introduction of Affinity Propagation (AP)
- 2 Hierarchical AP (HI-AP): Clustering Large-scale Data
 - HI-AP Algorithm
 - HI-AP Application on EGEE Grid logs
- 3 STRAP : Clustering Streaming Data
 - Challenges and Related Work
 - STRAP Algorithm
 - STRAP Application on Intrusion Detection (KDD99 data)
 - A STRAP-based Real-time Online Grid Monitoring System
- 4 Conclusion and Perspectives

Conclusion, Algorithm

Scalability: HI-AP

- Reduce complexity from $\mathcal{O}(N^2)$ to $\mathcal{O}(N^{3/2})$
- Iteratively reduce toward $\mathcal{O}(N^{(1+\gamma)})$

Stream clustering: STRAP

- Framework of processing the streaming data
- Hybridized with an efficient change detection method, Page-Hinkley
- Model available at any time
- BUT: slower than DenStream

Conclusion, Application

Network Intrusion Detection (KDD99 data)

- clustering by one-scan of the data
- ullet using only <1% data for building model llot Active Learning
- high clustering and classification accuracy

Autonomic Grid Computing

- real-time grid monitoring system
- visualized online output describing grid running status
- offline output for historical performance analysis
- multi-scale analysis of system behaviors

Ongoing work

Flexible Clustering Methods

- Fixed number clusters by messaging passing
- Arbitrary shape clusters by messaging passing
- Comprehensive model of streaming data using several representative exemplars covering the cluster, instead of one center point

Online Learning

- Assess the alarm level attached to a given model criticality of the clusters based on its frequency along time
- User profiling
 the clusters —> new features —> describe the users (viewing a
 user as a set of clusters)

Thank you for your attention.

Xiangliang ZHANG

xlzhang@lri.fr

http://www.lri.fr/~xlzhang

