
Pruning Nested XQuery Queries

Bilel Gueni, Talel Abdessalem, Bogdan Cautis
ENST Paris, UMR CNRS 5141

first.last@enst.fr

Emmanuel Waller
LRI - Université de Paris-Sud

first.last@lri.fr

Abstract
We present in this paper an approach for XQuery
optimization that exploits minimization opportunities
raised in composition-style nesting of queries. More
precisely, we consider the simplification of XQuery
queries in which the intermediate result constructed by
a subexpression is queried by another subexpression.
Based on a large subset of XQuery, we describe a rule-
based algorithm that recursively prunes query expres-
sions, eliminating useless intermediate results. Our al-
gorithm takes as input an XQuery expression that may
have navigation within its subexpressions and outputs
a simplified, equivalent XQuery expression, and is thus
readily usable as an optimization module in any exist-
ing XQuery processor. We demonstrate by experiments
the impact of our rewriting approach on query evalua-
tion costs, and prove formally its correctness.

Keywords: XQuery language, query rewriting,
performance analysis, semi-structured, XML.

1 Introduction
XML is by now the de facto standard format for
data exchange on the Web. It is also used as a data
model for native XML databases and as a com-
mon language in systems that integrate data com-
ing from heterogenous sources. It is thus essen-
tial to have effective and efficient tools for query-
ing and manipulating XML data. Consequently,
query languages such as XPath and XQuery have
been receiving a great deal of attention from the
research community lately. And, unsurprisingly,

query optimization, one of the most important
(and most studied) topics in relational databases,
has seen a revival in the semi-structured context.

The XQuery language plays a key role in XML
data management and has many powerful features
such as nesting and composition of for-let-where-
return (FLWR) query blocks, the construction of
hierarchical XML results and the navigation in
documents by means of XPath expressions. Un-
fortunately, its expressive power and operational
semantics make the reasoning about query opti-
mization quite difficult and have been the main
obstacles in establishing a comprehensive frame-
work for query optimization, although significant
progress has been made in this direction.

We study in this paper a novel aspect of
XQuery optimization that exploits minimization
opportunities raised in a composition-style nest-
ing of XQuery queries. More precisely, we con-
sider the simplification of XQuery expressions in
which the intermediate result constructed by a
subexpression is queried by another subexpres-
sion. In other words, given an XQuery expres-
sion with navigation over some documents, we
consider a setting in which some of these docu-
ments may in fact be intentional, defined as the
result of other XQuery subexpressions. Our ap-
proach is similar in spirit to the one of Simeon
et al. [15], of projecting XML documents w.r.t.
a given XQuery query. Instead of XML docu-
ments, we project XQuery subexpressions w.r.t.
other subexpressions querying them.

This kind of composition is common in many
scenarios of data exchange, mediation or integra-
tion, or in view-based security. Before discussing

1

in more detail these scenarios, and several oth-
ers, let us first illustrate the problem we study
and the main challenges by a data integration ex-
ample. The example deals with the reformula-
tion of queries over heterogenous, interconnected
sources.

Example 1.1 Our example is based on the
XMark benchmark data [19]. Let us consider
three interconnected XML sources S1, S2 and
S3. Assuming that S1 is somehow complemented
by the other two sources, mappings between
the schema of S1 and the ones of S2 and S3

are defined, by means of some transformation
XQuery queries Q2 and Q3, as follows1:

Q2 :
<site>
{for $i in (docA@S2/site)
where $i/people/person/@id = “X”
return ($i/open_auctions/open_auction,

$i/closed_auctions/closed_auction,
$i/people/person)

}
</site>

Q3 :
<site>
{let $l := for $i in docB@S3/site/closed_auctions/closed_auction

where ($i/itemref/@item = “car” or
$i/buyer/@id = “X”) and
$i/seller/@id = “Y ”

return $i
return $l
}
</site>

The query Q2 returns all
open_auction, closed_auction and person
data from the sites containing a person identified
by “X”. The query Q3 computes the sequence
of the closed_auction elements having either a
buyer identified by “X” or an item car, and a
seller identified by “Y ”. In the two queries, the
result is wrapped in a site element.

In this data integration scenario, the role of Q2

and Q3 is to define the relationship between S1,
on one hand, and S2 and S3, on the other hand.
Note that this transfer is only virtual, and the
data remains at the sources S2 and S3. Moreover,
the source S1 may have its own data, which is

1We use doc@Si as short notation for a document URL
at Si.

complemented by the one produced by Q2 and
Q3. Intuitively, S1 could be defined by a virtual
document “source1 := docC@S1 ∪ Q2 ∪ Q3”
having an extensional component (for S1’s own
data) and two intentional ones (for S2’s and
S3’s data) . Let us consider now the following
query Q1, specified over source1, which returns
the open_auction elements that have some
person data in common with another document,
docD@S1:
Q1 :
for $j in source1

return
for $k in docD@S1/site
where $j/person = $k/people/person
return
<common-auction>{$j/open_auction}</common-auction>

S1’s wrapper module would have no difficulty
in executing Q1 over the extensional part of
source1. For the intentional ones, there are two
possible approaches: (a) Q2 and Q3 are executed
at S2 and S3, their results are transferred to S1

and then Q1 is evaluated over them, or (b) Q1 is
“pushed” to both S2 and S3, which evaluate it lo-
cally over their respective transformation query
and send back to S1 the result. Unsurprisingly,
the latter approach can have significant advan-
tages, especially when Q1 uses only a small por-
tion from the output of the transformation queries.

Now, by the second approach, S2’s wrapper
module has to execute Q1 over Q2. This could
be done by first evaluating Q2, then evaluating
Q1 over the intermediate result. But since
XQuery is compositional, it is more preferable to
interpret this step as a single XQuery expression
Q1.2 = Q1 ◦Q2, by simply substituting the virtual
variable by its XQuery definition. Importantly,
this would allow the query optimizer module to
chose the best execution strategy. For instance,
Q1.2 could be the following XQuery expression:
Q1.2 :
for $j in (the definition of Q2)
return
for $k in docD@S1/site
where $j/person = $k/people/person
return
<common-auction>{$j/open_auction}</common-auction>

At this point, instead of the straightforward
execution plan, an efficient query optimizer

2

module should detect that Q2 is only partially
useful in Q1.2, since only open_auction and
person elements are queried. Hence the follow-
ing equivalent yet less expensive query can be
executed instead of Q1.2.
Q′

1.2 :
for $j in (<site>

{for $i in (doc2@S2/site)
where $i/people/person/@id = “X”
return
($i/open_auctions/open_auction, $i/people/person)
}</site>)

return
for $k in doc1@S1/site
where $j/person = $k/people/person
return
<common-auction>{$j/open_auction}</common-auction>

In the case of S3, the efficient optimizer would
have even greater impact, since the equivalent
yet simplified query should in fact replace the
content of the Q3’s site element by the empty
sequence, because only closed_auction elements
are outputted in the Q3’s site element :
Q′

1.3 :
for $j in <site>{()}</site>
return
for $k in doc1@S1/site
where $j/person = $k/people/person
return
<common-auction>{$j/open_auction}</common-auction>

Our contribution. We study in this paper the
simplification of queries that have a composition-
style nesting as the one illustrated in Example 1.1.
We adopt a static-analysis approach, based on
detecting and projecting out the useless parts in
subexpressions, keeping only what is needed in
order to compute the end result. This task is
made difficult by complex relationships between
the query blocks. We describe a set of rewrite
rules that apply such pruning steps recursively
over the blocks of an XQuery query, not only at
the uppermost level but at any nesting level in the
query. Each rule application will output a strictly
simpler (i.e., with less navigation steps) yet equiv-
alent XQuery expression. Our rule-based algo-
rithm applies to a large subset of XQuery and we
formally prove its correctness. Importantly, the
algorithm takes as input an XQuery that may have
navigation within subexpressions and outputs a
simplified, equivalent XQuery expression. It can

be thus easily plugged as an optimization mod-
ule in any existing XQuery processor. We demon-
strate by experiments the impact of our rewriting
approach on evaluation costs in the Galax engine.

In the remaining of this section we further mo-
tivate our work and we discuss related research.
Queries with this composition-style of nesting are
very useful in practice. Transformation XQuery
queries for mapping between heterogenous XML
sources in integration and mediation scenarios are
quite common [11, 21, 1]. The Clio project [11]
provides a graphical editor for defining schema
mapping definition, generating complex XSLT or
XQuery transformations. In peer-to-peer settings,
such as the Piazza PDMS [21], a peer can refer to
data hold by another peer by means of an XQuery
mapping. In this setting, it is crucial to minimize
the amount of actual data that is transferred be-
tween peers. The Active XML system [1] intro-
duces a flexible framework for peer-to-peer XML
integration, by combining in one active document
materialized (extensional) XML parts with inten-
tional parts defined by calls to Web services. Im-
portantly these services can be defined by XQuery
expressions and evaluating a query over an active
document amounts precisely to query pushing and
composition.

Another important use is in queries posed on
security views. In many applications that rely on
sensitive data, like medical or juridic applications,
access to XML documents may be granted only
by querying views over these documents. The
views define what data the user can access, and
the system may accept only queries formulated
over these views. It can either evaluate the global
query (i.e., the composition of user query and the
views) or can first materialize the views and then
evaluate the user query. Obviously, in the case of
a large number of views, materializing and main-
taining these views can be too costly.

It is also very common to cache and re-use
the definitions of queries but not necessarily their
results. This can for instance guide inexperi-
enced users by allowing them to query XQuery
expressions that are already available and well-
understood. Finally, our simplification technique

3

can be used to optimize queries that are automat-
ically generated by some graphical editor, in the
style of query-by-example.

Related work. Several works on XQuery pro-
cessing and optimization adopt an approach based
on rewrite rules. In [14, 17, 16, 10, 18, 20], the au-
thors discuss various rules for XQuery normaliza-
tion or for transformation tasks such as XML-to-
SQL translation, elimination of unnecessary or-
dering operations or introduction of a tree-pattern
operator in query plans. These approaches are
orthogonal to the query simplification technique
presented here. [3] introduces rewrite rules for
nesting minimization but does not consider the
elimination of useless navigation and result con-
struction. In [5], the authors introduce a logi-
cal framework for optimization in the OptXQuery
subset of XQuery, the Nested XML Tableaux.
They present a set of rewrite rules for normal-
ization and the elimination of repeated naviga-
tion steps by means of a group-by operator. The
XQuery fragment we consider in this study is
strictly more expressive than the one of [5].

More germane to this work is [15], which in-
troduces XML document projection for query op-
timization. They give a set of rewrite rules for the
following task: starting from an XQuery expres-
sion Q over a document D, identify and project
out the parts of D that are not useful for the eval-
uation of Q. This is very effective to reduce in-
memory computations such as node construction.
The technique was later refined and extended to
take into account the schema of the document
in [2]. Although very close in spirit, our approach
subsumes the idea of projecting XML documents
since we consider the projection-based simplifi-
cation of arbitrary XQuery blocks, and not only
plain XML documents.

In [21, 6], the authors consider the minimiza-
tion of queries obtained by following semantic
paths (mappings) in the Piazza system. To this
end, they study the complexity of query contain-
ment for a restricted XQuery flavor, that of con-
junctive XML queries (c-XQueries). The role of
composition in XQuery evaluation was consid-
ered in [12]. For an XQuery fragment strictly

smaller than the one we consider here, a formal
study of the computational complexity of XQuery
without composition is provided. Moreover, [12]
shows that, under restrictions, composition can be
eliminated and describes a set of rewrite rules to
this end.

A problem similar to ours was also studied in
the context of publishing relation data in XML
format, in projects such as XPeranto [4] and
SilkRoute [8]. In Silkroute, the composition
of XQuery expressions represented by so called
view forests over relational sources was consid-
ered, where a view forest is a mix of XML struc-
ture and SQL expressions representing XQuery-
to-SQL translations. These techniques are spe-
cific to the XML-over-relational setting and do
not transfer to XQuery minimization.

The paper is organized as follows. In Section
2 we present preliminary notions. Section 3 de-
tails our rule-based algorithm for XQuery simpli-
fication. Section 4 presents the experiments we
conducted and we conclude in Section 5.

2 Preliminaries
We describe in this section the data model and
XQuery expressions we consider, as well as ad-
ditional assumptions.

Data model. For the sake of simplicity we
present our techniques using a slightly simpli-
fied version of the XQuery data model. We con-
sider an XML document as an unranked rooted
tree t modeled by a set of edges EDGES(t),
a set of nodes NODES(t), a distinguished root
node ROOT(t), a labeling function over nodes
λt assigning to each node a label (or text value)
from an infinite alphabet Σ, and a typing func-
tion τt assigning to each node one of the follow-
ing kinds: {document, element, text}. The doc-
ument type can only be given to the root of the
XML document and text nodes can only appear
as leaves. This simplified model can be extended
in straightforward manner to other components of
the XQuery data model such as attributes.

XQuery fragment. We focus our study on a

4

significant subset of XQuery, described by the fol-
lowing grammar.

exp := ()
| literal
| exp, exp
| exp Op exp
| Path
| $QName
| (forClause | letClause)+
(where exp)? return exp
| (some | every) $QName in exp return exp
| if(exp) then exp else exp
| <QName>{exp}</QName>
| element{QName}{exp}

forClause := for $QName in exp
letClause := let $QName := exp
Path := (doc(uri) | $QName | exp)/Step | doc(uri)
Op := < | > | = | + | − | ∗ | << | >> | “is”
Step := NodeTest(/Step)? | text()
NodeTest := QName | ” ∗ ”

Figure 1: XQuery fragment

This grammar captures the main XQuery con-
structs used in practice, such as literal values,
sequence construction, variables, FLWR blocks,
conditionals, quantifiers, comparisons operators,
logical or arithmetic operations, element con-
structions. For clarity and space reasons, we con-
sider in this paper XPath navigation only along
the child axis (/). Extensions to other navi-
gation axis such as attribute (/@) and descendant
(//) will be presented in an extended version of
this work. We also ignore path qualifiers, which
can always be reformulated away using where
clauses.

XQuery normalization. Before applying our
technique for query simplification, we assume
that some of the standard normalization steps,
usually employed to reduce XQuery expressions
to equivalent expressions in the simpler language
XQuery Core [7], are first applied. This normal-
ization phase will allow us to present our infer-
ence algorithm based on a uniform syntactic for-
mulation. We give in Figure 2 the set of normal-
ization rules we consider, each of them being self-
explanatory. In short, they either facilitate the ex-
traction of XPath expressions referencing a given
variable or reformulate nested expressions in or-
der to have one variable per clause.

Inference rules notation and environment.
We present our algorithm via a set of inference

e/step1/ . . . /stepn ⇒
let $var := e return $var/step1/ . . . /stepn

for $var1 in e1, . . . , $varn in en return e⇒
for $var1 in e1 return for . . . for $varn in en return e

let $var1 := e1, . . . , $varn := en return e⇒
let $var1 := e1 return let . . . let $varn := en return e

some $var1 in e1, . . . , $varn in en satisfies e⇒
some $var1 in e1 satisfies some . . . some $varn in en satisfies e

every $var1 in e1, . . . , $varn in en satisfies e⇒
every $var1 in e1 satisfies every . . . every $varn in en satisfies e

<QName>{e}</QName>⇒ element{QName}{e}

Figure 2: Standard normalization Rules

rules, and we adopt standard programming lan-
guages notation similar to the one used in [15].
Inference rules are based on judgements, which
denote statements of the form:

Env ` f(p1, . . . , pn)⇒ res.

Such a statement reads as follows: the judge-
ment holds iff in the environment Env, by calling
the function f with parameters p1, . . . , pn we ob-
tain the result res.

Inference rules are represented as follows:

premise1 . . . premisen

Env ` f(p1, . . . , pn)⇒ res

where each premise is a judgement. Such a
rule reads as follows: the judgement (Env `
f(p1, . . . , pn) ⇒ res) holds if the premises
premise1 . . . premisen hold. The functions we
consider in our inference rules will be defined in
Section 3.

In XQuery, a variable is always associated (by
either $var in exp or $var := exp) to a subex-
pression, in this way being bound to the interme-
diate XML values returned by the subexpression.

Example 2.1 For instance, in the query Q2 of the
running example, variable $i is bound to elements
produced by the XPath docA@S2/site. Similarly,
in the query Q3, variable $l is bound to some el-
ements produced by variable $i. This is because
the FLWR block to which $l is bound returns some
elements over which $i iterates, those that satisfy
certain conditions. In Q1,2, the variable $j will
be bound to a constructed site element wrapping
some content returned by Q2’s FLWR expression.

5

For a variable $var, by the bound expres-
sion associated with $var (in short, expb($var))
we denote the expression exp appearing in ei-
ther a for $var in exp, let $var := exp or
some $var in exp statement that declares $var.
Also, by the return expression of $var (in short,
expr($var)) we denote the associated where,
return or satisfies part.

In the presentation of our rule-based algorithm,
we will rely on a memory space (denoted envi-
ronment) that records for each variable the kind
of intermediary results to which it is bound. The
environment will contain a set of variable/value
mappings, where each mapping binds a variable
$var to a set of objects. Formally, this is written
$var ⇒ {o1, . . . , om}. We distinguish three pos-
sible kinds of such objects: (i) results of an XPath
expression (represented in the environment by the
XPath expression itself), (ii) element constructors
with some element content (can be any XQuery
subexpression), (iii) text values (denoted simply
#text).

Going back to the example, we can thus
write $i ⇒ {docA@S2/site} for Q2, $i ⇒
{docB@S3/site/closed_auctions/closed_auction}
and $l ⇒ {$i} for Q3, or $j ⇒ {<site>. . .</site>}
for Q1.2.

For the construction of the environment, we de-
termine by a static analysis for each variable the
objects returned as intermediate XML values by
its bound expression. This is done using the func-
tion varRes(), which infers the output kind of
a subexpression by the following exhaustive and
straightforward case analysis:

varRes(for $var in e1 (where e2)? return e3)⇒ varRes(e3)
varRes(let $var := e1 (where e2)? return e3)⇒ varRes(e3)
varRes(if(e1) then e2 else e3)⇒ varRes(e2) ∪ varRes(e3)
varRes(e1, . . . , en)⇒ varRes(e1) ∪ . . . ∪ varRes(en)
varRes(step1/ . . . /step2)⇒ {step1/ . . . /step2}
varRes(element{QName}{e})⇒ {element{QName}{e}}
varRes($var)⇒ {$var}
varRes(literal)⇒ {#text}
varRes(some $var in e1 satisfies e2)⇒ {#text}
varRes(every $var in e1 satisfies e2)⇒ {#text}

Since an XPath expression can be relative to
a named variable (i.e., starting with a variable
name), the environment will also allow us to keep
track of the relationship between variables within

a query (e.g., the fact that $l is bound to $i). For
convenience, for the manipulation of the environ-
ment we also define a function called saturate(),
which refines the bindings by making explicit all
the XPath navigation.

Example 2.2 Since we obtain us-
ing varRes that $l ⇒ $i and
$i ⇒ {docB@S3/site/closed_auctions/

closed_auction}, we refine the in-
formation on variable $l, using the
saturate function, as $l ⇒ {$i,

docB@S3/site/closed_auctions/closed_auction}.

Finally, for a variable $var and its bound ex-
pression expb($var), the addition of $var to the
environment is achieved by the following state-
ment:

Env = +($var ⇒ (Env.saturate(varRes(expb($var)))).

The following additional functions will be used
in the algorithm to access the pre-computed envi-
ronment:

• getBind($var): retrieves from the envi-
ronment the set of objects associated to the
input variable $var.

• getXPathBind($var): among the objects
to which the variable $var is bound, it re-
trieves those corresponding to XPath expres-
sions, if any exist.

3 The rewriting algorithm
Algorithm overview. We give first an overview
of our rule-based algorithm, which takes as input
an XQuery expression Q and outputs an equiva-
lent simplified XQuery expression Q′.

As the various bound expressions in Q pro-
duce intermediate results that may only be par-
tially useful to Q’s end result, our algorithm iden-
tifies the useful parts in bound expressions and
simplifies each of them accordingly. The out-
put is an equivalent query Q′ obtained from Q by

6

substituting each subexpression expb($var) by a
subexpression exp′b($var) that has the advantage
of producing only the needed intermediate results.

For a given variable $var, the algorithm re-
trieves from expr($var) all the XPath expressions
that access the result of expb($var). This task
is performed by the extractPaths function. These
paths are then used to obtain and project out the
irrelevant parts in expb($var). This is the role of
the ProjectPaths function. A simpler subexpres-
sion exp′b($var), producing only the needed in-
termediate results, is obtained in this way.

This process is applied recursively, in bottom-
up manner, by the Prune function over Q. More
precisely, for a given variable $var, the pruning is
first applied recursively within its bound and re-
turn expressions, then it is applied on $var itself,
as described above.

We continue the presentation of the algorithm,
starting with the rule-based functions for path
analysis (extractPaths) and query projection (Pro-
jectPaths). We wrap-up the presentation with the
Prune function, that applies in bottom-up manner
the steps for path extraction and projection.

3.1 Path analysis
In this section we present the inference rules that
extract for each variable $var and its return ex-
pression expr($var) the set of paths that navigate
through the variable $var. These paths are de-
noted the projection paths of $var. Due to the
normalization step, these will be the paths that
start with $var (either explicitly, or via other de-
clared variables).

Similar to [15], in our analysis we will distin-
guish between two kinds of projection paths: (i)
used paths and (ii) returned paths. The former
kind denotes paths for which the descendants of
the returned nodes are not necessarily relevant for
the end result and no navigation in the subtrees
of these nodes is required. Informally, these are
paths that bind a variable, following either the in
keyword in a for , every or some clauses or the
:= keyword in a let clause.

The latter kind denotes paths for which descen-

dants of the nodes reached by the path must be
kept in the end result. Paths are by default consid-
ered of the returned kind, unless some conditions
for the binding kind are verified.

We now present the inference rules for the
path extraction function extractPaths. The
result of a rule application will be two sets of
paths, P and P#, for the used and returned paths
respectively. The extractPaths function takes as
input a variable $var and the XQuery expression
expr($var) that is analyzed, and outputs these
two sets of paths.

Literal, empty sequence. Literal expressions and
empty sequences do not contain any XPath ex-
pressions, so the extractPaths function will re-
turn empty sets.

Env ` extractPaths($var, literral)⇒ ∅, ∅ (ep1)

Env ` extractPaths($var, ())⇒ ∅, ∅ (ep2)

Sequence, conditional, comparison, element
construction. Computing extractPaths for a se-
quence of two expressions amounts to computing
the union of theP ,P#’s of the subexpressions ap-
pearing in the sequence. We extract the paths for
a given variable in the same fashion from condi-
tional, arithmetic, logic, comparison and element
construction expressions.

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, (e1, e2))⇒ P1 ∪ P2,P#
1 ∪ P

#
2

(ep3)

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, e3)⇒ P3,P#
3

Env ` extractPaths($var, if(e1) then e2 else e3)⇒ (ep4)

P1 ∪ P2 ∪ P3,P#
1 ∪ P

#
2 ∪ P

#
3

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, (e1 (Op) e2))⇒ (ep5)

P1 ∪ P2,P#
1 ∪ P

#
2

Env ` extractPaths($var, exp)⇒ P,P#

Env ` extractPaths($var, element{QName}{exp})⇒ P,P#
(ep6)

Variable reference. The first case is self-
explanatory. For the second case, when the vari-
able reference ($v) is different from $var, we ob-
tain from the pre-computed environment the paths

7

starting by $var among the items that are asso-
ciated to $v. These paths will form the set P#

of returned paths for $var. The set P of used
paths will be empty. Intuitively, this choice is mo-
tivated by the fact that these paths must appear in
the scope of the variable (i.e. some where, return,
or satisfies clause of the query).

Env ` extractPaths($var, $var)⇒ ∅, {$var} (ep7)

$v 6= $var, Env.getXPathBind($v)⇒ B
B′ = {p ∈ B, p = $var/ . . .}

Env ` extractPaths($var, $v)⇒ ∅, B′ (ep8)

XPath expression. The first case is self-
explanatory. In the second case, when the first
step is a variable different from $var, we retrieve
from the pre-computed environment the set of the
paths associated to $v that start with $var (if any).
These will be used to create the set of returned
paths by substituting the step $v by each element
of the set.

Env ` extractPaths($var, $var/ . . . /sn)⇒ (ep9)

∅, {$var/ . . . /sn}

Env.getXPathBind($v)⇒ B
B′ = {p′ = p/s1/ . . . /sn, p ∈ B ∧ p = $var/ . . .}

(ep10)

Env ` extractPaths($var, $v/s1/ . . . /sn)⇒ ∅, B′

FLWR expression, quantifier. The rule will first
extract used and returned paths referencing $var
from e1, e2 and e3. The basic approach is quite
straightforward: the set of used paths (resp. re-
turned paths) of the entire FLWR block will be
obtained as the union of the used (resp. returned)
paths of e1, e2 and e3. We use the same logic in
order to extract paths from a let or a quantifier ex-
pression. After this basic approach, an additional
optimization for this step will be also described.

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, e3)⇒ P3,P#
3

Env ` extractPaths($var, for $v in e1 where e2 return
(ep11)

e3)⇒ P1 ∪ P2 ∪ P3,P#
1 ∪ P

#
2 ∪ P

#
3

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, e3)⇒ P3,P#
3

Env ` extractPaths($var, let $v := e1 where e2 return
(ep12)

e3)⇒ P1 ∪ P2 ∪ P3,P#
1 ∪ P

#
2 ∪ P

#
3

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, some $v in e1 satisfies e2)
(ep13)

⇒ P1 ∪ P2,P#
1 ∪ P

#
2

An additional optimization that can be applied
at this point consists in transforming some of the
returned paths coming from e1 into used paths in
the final P set for $var. This may allow us to
simplify even more the query.

This is possible for returned paths pk for which
the variable $v is bound directly to the result of
pk. When this happens, we can safely conclude
that only the nodes selected by pk will be useful
at the higher nesting levels in the query, instead
of the entire subtrees rooted at those nodes in the
XML document.

Example 3.1 Consider for instance a query of
the form

for $var in . . .

return for $v in (<a>p1, p2)
return . . .

with p1 and p2 both of the form $var/ . . .
The variable $v will be bound directly to ele-

ments produced by the path p2. Although the path
is initially a returned one, this suggests that it can
be safely considered a used one, thus allowing for
more drastic simplifications in the later stages.

While $v is also bound to constructed a ele-
ments, we cannot make the link between $v and
$p1 , so we adopt the conservative approach of
keeping this path as a returned one.

We obtain the returned paths whose results are
directly linked to $v by using the getXPathBind
function and selecting the ones that reference
$var. These paths are then removed from P#

1 ,
and the remaining ones are denoted by Pbis. We
rely on the following rule:

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env.getXPathBind($v)⇒ P
P ′ = {pk ∈ P, pk = $var/ . . .},

P#
1 − P ′ ⇒ P#

bis

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, e3)⇒ P3,P#
3

Env ` extractPaths($var, for $v in e1 where e2 return
(ep14)

e3)⇒ P1 ∪ P2 ∪ P3 ∪ P ′,P#
bis ∪ P

#
2 ∪ P

#
3

8

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env.getXPathBind($v)⇒ P
P ′ = {pk ∈ P, pk = $var/ . . .},

P#
1 − P ′ ⇒ P#

bis

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, e3)⇒ P3,P#
3

Env ` extractPaths($var, let $v := e1 where e2 return
(ep15)

e3)⇒ P1 ∪ P2 ∪ P3 ∪ P ′,P#
bis ∪ P

#
2 ∪ P

#
3

Env ` extractPaths($var, e1)⇒ P1,P#
1

Env.getXPathBind($v)⇒ P
P ′ = {pk ∈ P, pk = $var/ . . .},

P#
1 − P ′ ⇒ P#

bis

Env ` extractPaths($var, e2)⇒ P2,P#
2

Env ` extractPaths($var, some $v in e1 satisfies e2)
(ep16)

⇒ P1 ∪ P2 ∪ P ′,P#
bis ∪ P

#
2

Example 3.2 We give below the outcome of the
extractPaths function on the variable $j and its
return expression in Q1.2. The prefix indicates the
rules that were applied.

(ep9) Env ` extractPaths($j, docD@S1/site)⇒
∅, ∅

(ep4, ep9, ep9) Env ` extractPaths($j, $j/person = $k . . .)

⇒ ∅, {$j/person}
(ep9, ep5) Env ` extractPaths($j, <common-auction>

{$j/open_auction}</common-
auction>)⇒ ∅, {$j/open_auction}

(ep10) Env ` extractPaths($j, for $k . . .)⇒
∅, {$j/open_auction, $j/person}

3.2 Path projection
In this section we present the inference rules
that, for each variable $var, will project out the
useless parts of expb($var) (the bound expres-
sion for $var) based on the paths obtained from
expr($var) (the return expression for $var).

This operation takes as input a set of XPath ex-
pressions and an XQuery expression, and returns
a new XQuery expression. Intuitively, the new
expression is obtained by projecting out any inter-
mediary results that are not in the scope of these
paths. For a given path p and an expression exp,
the function projectPaths checks the matching
between the result of exp and p. Each matched
step will indicate a result part that is necessary
and must be kept in the query.

We next detail the inference rules that define
the projection function projectPaths. The
function will take the two sets of paths produced
by the path analysis step (i.e., a set of used paths
and a set of returned paths).

Literal, comparison, quantifier. When match-
ing a literal expression with a path p the only case
that returns a non empty result is when p is equal
either to text() or to $var (which returns any ex-
pression on which it is matched). In any other
case, we can conclude that the result of p on the
literal is empty.

We deal in similar manner with quantifier, logi-
cal and comparison expressions, or arithmetic ex-
pressions, as they return numeric or boolean liter-
als.

∃p ∈ (P ∪ P#), p = ($var | text())

Env ` projectPaths(P,P#, literal)⇒ literal
(pp1)

∀p ∈ (P ∪ P#), p 6= ($var | text())

Env ` projectPaths(P,P#, literal)⇒ ()
(pp2)

∃p ∈ (P ∪ P#), p = ($var | text())

Env ` projectPaths(P,P#, e1 Op2 e2)⇒ e1 Op e2
(pp3)

∀p ∈ (P ∪ P#), p 6= ($var | text())

Env ` projectPaths(P,P#, e1 Op e2)⇒ ()
(pp4)

∃p ∈ (P ∪ P#), p = ($var | text())

Env ` projectPaths(P,P#, some $var in e1 satisfies e2)
(pp5)

⇒ some $var in e1 satisfies e2

∀p ∈ (P ∪ P#), p 6= ($var | text())

Env ` projectPaths(P,P#, some $var in e1 satisfies e2)
(pp6)

⇒ ()

Sequence. For a sequence of two expressions
e1, e2, the result of the projectPaths function
will simply be the sequence obtained by applying
projectsPaths on each e1 and e2 individually.

Env ` projectPaths(P,P#, e1)⇒ e′
1

Env ` projectPaths(P,P#, e2)⇒ e′
2

Env ` projectPaths(P,P#, (e1, e2))⇒ e′
1, e′

2

(pp7)

9

Variable reference. Evaluating a path on a vari-
able amounts to evaluating this path on the el-
ements that are bound to the variable. The re-
sult of the projection can be the variable itself,
if it is bound to at least one object (in the pre-
computed environment) for which the matching
does not lead to an empty result. The variable is
projected out if none of the objects to which it is
bound can be matched by some path of P or P#.

(Env.getBind($var)⇒ {o1, . . . , on})
∃i, 1 ≤ i ≤ n, projectPaths(P,P#, oi)⇒ o′

i s.t. o′
i 6= ()

(pp8)

Env ` projectPaths(P,P#, $var)⇒ $var

(Env.getBind($var)⇒ {o1, . . . , on})
∀i, 1 ≤ i ≤ n, projectPaths(P,P#, oi)⇒ ()

(pp9)

Env ` projectPaths(P,P#, $var)⇒ ()

XPath expression. Note that the elements re-
turned by an XPath expression s1/ . . . /sn are de-
fined by the last step of the path sn. If sn =
text(), this means that the path will return a lit-
eral, so the only way to retrieve this literal is to
have in P ∪ P# at least one path p which corre-
sponds to the text-test text() or to a variable ref-
erence $var.

If sn 6= text(), hence the nodes returned by
s1/ . . . /sn are element nodes, it is sufficient to
have one path in P ∪ P# that starts with $var ,
∗ (which corresponds to any element test) or sn

(i.e. the first step of p corresponds to the element
returned by s1/ . . . /sn). We compare only with
the first step in this case, because we do not have
at this level enough information about the descen-
dants of sn.

If sn = ∗, this means that the path returns any
element node, so we can retrieve those elements
with any path except those of the kind p = text().

In the remaining cases, the application of the
paths will always return the empty sequence (),
and in this case we replace the path s1/ . . . /sn by
().

∃p ∈ (P ∪ P#), (head 3(p) = (∗|sn|$var) ∧ sn 6= text())∨
(sn = ” ∗ ” ∧ p 6= text()) ∨ (p = text()|$var ∧ sn = text())

(pp10)

Env ` projectPaths(P,P#, s1/ . . . /sn)⇒ s1/ . . . /sn

3head(p) is a function that retrieves from a path p its
first step.

otherwise (pp11)

Env ` projectPaths(P,P#, s1/ . . . /sn)⇒ ()

FLWR expression. Following the XQuery se-
mantics, the result of a for expression is com-
puted by the subexpression following the return
keyword. Hence applying a path on a for expres-
sion amounts to applying it on the return subex-
pression, even if this for expression contains a
where clause4. The result of this step will be the
for expression with a new return block. This
logic is clear in the first rule. Moreover, when the
projection on the return expression generates an
empty sequence, the entire for expression can be
a projected out (rule pp13). Similar transforma-
tions are performed on let expressions.

Env ` projectPaths(P,P#, e3)⇒ e′
3

Env ` projectPaths(P,P#, for $var in e1 where e2 return
(pp12)

e3)⇒ for $var in e1 where e2 return e′
3

Env ` projectPaths(P,P#, e3)⇒ ()

Env ` projectPaths(P,P#, for $var in e1 where e2 return
(pp13)

e3)⇒ ()

Env ` projectPaths(P,P#, e3)⇒ e′
3

Env ` projectPaths(P,P#, let $var := e1 where e2 return
(pp14)

e3)⇒ let $var := e1 where e2 return e′
3

Env ` projectPaths(P,P#, e3)⇒ ()

Env ` projectPaths(P,P#, let $var := e1 where e2 return
(pp15)

e3)⇒ ()

Conditional. When applying a set of paths on a
conditional expression, we have the choice to ap-
ply them on either the true branch or the false
branch. Since both branches may be followed at
runtime, we apply the paths on both. The result is
a new conditional expression with the same con-
dition expression e1, having potentially simplified
expressions in the true and false branches.

Env ` projectPaths(P,P#, e2)⇒ e′
2

Env ` projectPaths(P,P#, e3)⇒ e′
3

Env ` projectPaths(P,P#, if (e1) then e2 else e3)⇒
(pp16)

if (e1) then e′
2 else e′

3

4Note that the role of a where clause in a FLWR ex-
pression is merely to limit the size of the result according to
some condition.

10

Element construction. The projection of ele-
ment construction expressions has several cases.
In order to simplify the presentation, we assume
that the application of the rules is attempted ac-
cording to the order in which they are presented
below :

Rule pp17: if P# contains a path p that is ei-
ther the variable reference $var or a one-step path
whose label is identic to that of the constructed el-
ement, then projectPaths returns that element.

Rule pp18: if there is no path in both used and
returned sets that matches with the constructed el-
ement, then projectPaths returns the empty se-
quence.

Rule pp19: if a)P does not contain the paths $var
or QName, and b) P ∪ P# do not contain any
path that can follow the content of the constructed
element, even if there are paths whose first step
can match with the element name QName, then
projectPaths returns the empty sequence.

Rule pp20: if there exists a used path in P that
matches with the element (i.e., it is either $var
or QName), and no other path starts by $var or
QName, then projectPaths returns the element
QName with an empty content.

Rule pp21: in the remaining case, when there
exists some paths p (of either kind) starting with
$var or QName. In this case, projectPaths will
match this step and continue with the remaining
steps (other used and returned paths) over the
content of the constructed element. It creates new
used and returned path sets, P ′ and P ′# from P
and P# respectively, by keeping only the paths
whose first step matches with the name of the
constructed element. The sets P ′ and P ′# are
applied on the content of the element. Note that
the element will be returned in this case, even if
the result of applying the paths over e2 returns the
empty sequence.

∃p ∈ P#, p = (QName | $var)

Env ` projectPaths(P,P#, element{QName}{e})⇒
(pp17)

element{QName}{e}

∀p ∈ P ∪ P#, head(p) 6= (QName | $var)

Env ` projectPaths(P,P#, element{QName}{e})⇒ ()
(pp18)

6 ∃p ∈ P, p = (QName | $var)
P ′ = {p′, [QName | $var]/p′ ∈ P}
P ′# = {p′, [QName | $var]/p′ ∈ P#}
Env ` projectPaths(P ′,P ′#, e)⇒ ()

Env ` projectPaths(P,P#, element{QName}{e})⇒ ()
(pp19)

(∃p ∈ P, p = (QName | $var))∧
(∀p ∈ (P ∪ P#)− {p}, head(p) 6= (QName | $var))

Env ` projectPaths(P,P#, element{QName}{e})⇒
(pp20)

element{QName}{}

∃p ∈ P ∪ P#, head(p) = (QName | $var)
P ′ = {p′, [QName | $var]/p′ ∈ P}
P ′# = {p′, [QName | $var]/p′ ∈ P#}
Env ` projectPaths(P ′,P ′#, e)⇒ e′

Env ` projectPaths(P,P#, element{QName}{e})⇒
(pp21)

element{QName}{e′}

Empty sequence. When the input expression
is an empty sequence, projectPaths returns the
empty sequence whatever P ,P# contain.

Env ` projectPaths(P,P#, ())⇒ ()
(pp22)

3.3 Pruning process
The pruning process is applied recursively, in a
bottom-up manner, by the Prune function over
Q. For each variable $var in Q, the pruning is
applied recursively within its bound and return
expressions, before it is applied to $var itself, as
shown in the following inference rules.

Literal, variable reference, XPath expression
and empty sequence. When the input expression
Q is a literal, variable reference, XPath expression
or just an empty sequence expression, no variable
declarations can be found. In this case, the output
expression is the same as the input.

Env ` Prune(literal)⇒ Literal
(p1)

Env ` Prune($var)⇒ $var
(p2)

Env ` Prune(s1/ . . . /sn)⇒ s1/ . . . /sn
(p3)

Env ` Prune(())⇒ ()
(p4)

11

Sequence, comparison, element construction.
The pruning of a sequence of subexpressions re-
turns as a result the sequence of the pruned subex-
pressions. We use the same logic to prune arith-
metic, logic comparison and constructor expres-
sions.

Env ` Prune(e1)⇒ e′
1 Env ` Prune(e2)⇒ e′

2 (p5)

Env ` Prune(e1, e2)⇒ e′
1, e′

2

Env ` Prune(e1)⇒ e′
1 Env ` Prune(e2)⇒ e′

2 (p6)

Env ` Prune(e1 Op e2)⇒ e′
1 Op e′

2

Env ` Prune(e)⇒ e′

Env ` Prune(element{QName}{e})⇒ (p7)

element{QName}{e′}

Conditional. In this case, the pruning opera-
tion is propagated to the if subexpression and to
the then and else returned subexpressions. The
output expression is obtained by substituting the
subexpressions by their pruning result.

Env ` Prune(e1)⇒ e′
1

Env ` Prune(e2)⇒ e′
2 Env ` Prune(e3)⇒ e′

3 (p8)

Env ` Prune(if(e1) then e2 else e3)⇒
if(e′

1) then e′
2 else e′

3

FLWR expressions, quantifier. When the input
Q is a FLWR expression, the pruning operation is
first applied to the bound expression of the vari-
able $var declared in the for clause. Then, the
variable $var is added to the environment Env
with its bound objects computed by varRes. The
saturate function is applied to refine the bindings
stored in the environment (see Section 2).

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ e′
2

Env ` extractPaths($var, e′
2)⇒ P,P#

Env ` projectPaths(P ∪ {$var},P#, e′
1)⇒ e′′

1 (p9)

Env ` Prune(for $var in e1 return e2)⇒
for $var in e′′

1 return e′
2

Next, the pruning operation is applied to the
return subexpression e2, and the extractPaths
function is called to extract the paths referenc-
ing $var from the obtained result e′2. The
projectPaths function is used to apply the ex-
tracted paths (P ∪ {$var}, P#) on the pruned

bound expression e′1 in order to remove its use-
less parts. The obtained results e′′1 and e′2 will re-
place the subexpressions e1 and e2 respectively in
the output result. Here we add the binding path
$var to ensure that the number of for iterations
remains the same.

The pruning of for expression can lead to the
following interesting special cases:

Case 1:
Env ` Prune(e1)⇒ ()

Env ` Prune(for $var in e1 return e2)⇒ ()
(p10)

In this case the pruning of the bound expression
generates an empty sequence, which means that
the number of the iterations of the for is equal
to 0, so the whole for expression generates an
empty sequence. For this reason the pruning
generates an empty sequence.

Case 2:
Env ` Prune(e1)⇒ e′

1
RootPath(e′

1)⇒ PathB1

Env = Env + ($var ⇒ PathB1) Env = Env.saturate($var)
Env ` Prune(e2)⇒ ()

Env ` Prune(for $var in e1 return e2)⇒ ()
(p11)

This case correspond to the situation in which the
pruning of the return expression e2 leads to the
empty sequence (). This means that whatever
is the number of the for iterations, the result is
empty, which is equivalent to counting over an
empty sequence. This is why, in a such cases
the pruning of the whole for expression gives the
empty sequence ().

We note that there is a variant of the for
pruning rules and its special cases with a where
clause. We do the same thing by considering the
where clause as a return expression: we prune its
condition expression, and we extract from it the
paths referencing $var. These path are added to
those of the return expression, before being used
to prune $var’s bound expression.

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ e′
2

Env ` Prune(e3)⇒ e′
3

Env ` extractPaths($var, e′
2)⇒ P2,P#

2

Env ` extractPaths($var, e′
3)⇒ P3,P#

3

12

Env ` projectPaths(P2 ∪ P3 ∪ {$var},P#
2 ∪ P

#
3 , e′

1)⇒ e′′
1 (12)

Env ` Prune(for $var in e1 where e2 return e3)⇒
for $var in e′′

1 where e′
2 return e′

3

Env ` Prune(e1)⇒ ()

Env ` Prune(for $var in e1 where e2 return e3)⇒ ()
(p13)

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ e′
2

Env ` Prune(e3)⇒ ()

Env ` Prune(for $var in e1 where e2 return e3)⇒ ()
(p14)

When pruning a for expression with where
clause an additional special case arise. It happens
when the pruning of the where clause leads to
empty sequence, then the whole for expression
is reduced to the empty sequence as a condition
with empty sequence in XQuery is considered the
false value.

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ ()

Env ` Prune(for $var in e1 where e2 return e3)⇒ ()
(p15)

For let expressions we apply similar transfor-
mations. The only difference is that we do not add
the path $var because the return of a let is exe-
cuted exactly one time whatever the expression e1
is.

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ e′
2

Env ` extractPaths($var, e′
2)⇒ P,P#

Env ` projectPaths(P,P#, e′
1)⇒ e′′

1 (p16)

Env ` Prune(let $var := e1 return e2)⇒
let $var := e′′

1 return e′
2

Env ` Prune(e1)⇒ ()

Env ` Prune(let $var := e1 return e2)⇒ ()
(p17)

Env ` Prune(e1)⇒ e′
1

RootPath(e′
1)⇒ PathB1

Env = Env + ($var ⇒ PathB1) Env = Env.saturate($var)
Env ` Prune(e2)⇒ ()

Env ` Prune(let $var := e1 return e2)⇒ ()
(p18)

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ e′
2

Env ` Prune(e3)⇒ e′
3

Env ` extractPaths($var, e′
2)⇒ P2,P#

2

Env ` extractPaths($var, e′
3)⇒ P3,P#

3

Env ` projectPaths(P2 ∪ P3,P#
2 ∪ P

#
3 , e′

1)⇒ e′′
1 (19)

Env ` Prune(let $var := e1 where e2 return e3)⇒
let $var := e′′

1 where e′
2 return e′

3

Env ` Prune(e1)⇒ ()

Env ` Prune(let $var := e1 where e2 return e3)⇒ ()
(p20)

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ e′
2

Env ` Prune(e3)⇒ ()

Env ` Prune(let $var := e1 where e2 return e3)⇒ ()
(p21)

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ ()

Env ` Prune(let $var := e1 where e2 return e3)⇒ ()
(p22)

For the quantifier, we use the same logic, but
for the special cases, instead of returning empty
sequence, we return the boolean value as a quan-
tifier returns a logic value. If the pruning of the
binding expression e1 leads to an empty sequence,
the result of the quantifier is obviously false(). If
the pruning of the condition leads to an empty se-
quence, there is no element that satisfies it, so the
quantifier will return false() as well.

Env ` Prune(e1)⇒ e′
1

Env = +($var ⇒ (Env.saturate(varRes(e′
1)))

Env ` Prune(e2)⇒ e′
2

Env ` extractPaths($var, e′
2)⇒ P,P#

Env ` projectPaths(P ∪ {$var},P#, e′
1)⇒ e′′

1 (p23)

Env ` Prune(some $var in e1 satisfies e2)⇒
some $var in e′′

1 satisfies e′
2

Env ` Prune(e1)⇒ ()

Env ` Prune(some $var in e1 satisfies e2)⇒ false()
(p24)

Env ` Prune(e1)⇒ e′
1

RootPath(e′
1)⇒ PathB1

Env = Env + ($var ⇒ PathB1) Env = Env.saturate($var)
Env ` Prune(e2)⇒ ()

Env ` Prune(some $var in e1 satisfies e2)⇒ false()
(p25)

3.4 Correctness
We prove in this section that our rule-based algo-
rithm is correct, i.e., its input and output queries
are equivalent (the evaluation of the output query
yields the same result as the evaluation of the
initial query). The algorithm described in Sec-
tion 3.3 verifies the following theorem.

13

Theorem 3.1 [Equivalence] Let q be an XQuery
expression, let I = {d1, . . . , dk} be the set
of XML documents used in q, let Env be the
evaluation environment, and let q′ be the XQuery
expression obtained from the pruning of q (i.e.,
Env ` Prune(q) ⇒ q′). Then, the results of q
and q′ over I are equal: q[Env](I) = q′[Env](I),
where "=" denotes the deep equality defined for
XML values in [13].

A proof for this theorem can be constructed by
induction on the inference rule for each expres-
sion.

Proof details

As it is shown in Section 3.3, when the input
query q is a literal value, a variable name, an
XPath expression or an empty sequence (rules
p1 to p4), the pruning process will produce an
output query q′ identical to its input q. So,
∀I,∀Env, q[Env](I) = q′[Env](I)�.

When the input query q is a conditional ex-
pression, a non empty sequence, a comparison
expression, an arithmetic or a logical expression
(pruning rules p5 to p8 in Section 3.3), then the
pruning process is simply applied recursively to
the subexpressions of q before substituting them
by the obtained pruned expressions. Assume that
the pruned subexpressions are equivalent to the
initial ones, then according to the semantics of
XQuery[7] the output query q′ is equivalent to q
(i.e., ∀I,∀Env, q[Env](I) = q′[Env](I)).�

For instance, consider a conditional expres-
sion q = if(e1) then e2 else e3, the pruning
process produces q′ = if(e′1) then e′2 else e

′
3,

where Env ` Prune(e1) ⇒ e′1, Env `
Prune(e2) ⇒ e′2, and Env ` Prune(e3) ⇒
e′3. Assume that e1 is equivalent to e′1, e2 is
equivalent to e′2 and e3 is equivalent to e′3 (i.e.,
∀ I, ∀ Env, e1[Env](I) = e′1[Env](I), e2[Env](I) =

e′2[Env](I) and e3[Env](I) = e′3[Env](I)). Then,
the expressions if(e1) then e2 else e3 and
if(e′1) then e′2 else e′3 are equivalent, i.e.,
∀ I, ∀ Env q[Env](I) = q′[Env](I)

FLWR expressions. When the input query
q is a FLWR expression (pruning rules p9 to
p22 in Section 3.3), the pruning process can
be summarized in three main steps : (1) the
pruning is applied recursively to the subex-
pressions of q before substituting them by the
obtained pruned expressions (e′1, e′2 and e′3), (2)
extractPaths() is called to extract from the
return and where subexpressions (e′2 and e′3)
the used and return paths (P and P#), and (3)
projectPaths() is called to apply the extracted
paths on the bound subexpression (e′1) in order to
minimize it. The first step preserves the equiv-
alence: Assume that e1 is equivalent to e′1, e2 is
equivalent to e′2 and e3 is equivalent to e′3, then
for $var in e1 [where e2] return e3 is equiva-
lent to for $var in e′1 [where e′2] return e′3
and it is the same for let expressions
let $var := e1 [where e2] return e3 and
let $var := e′1 [where e′2] return e′3. Then,
to prove the equivalence between the input q
and the output query q′ we need the following
result: the projected subexpression e′′1, obtained
by applying the used and return paths on the
bound subexpression e′1, generates all the nodes
that are part of the evaluation of e′2 and e′3 (this
is similar to the Return Paths lemma of Simeon
et al. [15]). More precisely, we need to prove the
following two properties.

Lemma 3.1 [Paths Extraction] Let e be an
XQuery expression and $var be a variable name.
Then, the sets of paths P and P# extracted from
e (Env ` extractPaths($var, e)⇒ P ,P#) sat-
isfy the following properties:

• P and P# contain all the paths in e that ref-
erence $var, and nothing else.

• only used paths are contained in P .

Lemma 3.2 [Paths Projection] Let e1 be an
XQuery expression, let P be a set of used
paths and P# a set of return paths. Then,
the XQuery expression e2, obtained by the ap-
plication of P and P# paths on e1 (Env `
ProjectPaths(P ,P#, e1) ⇒ e2), satisfies the
following properties:

14

• ∀p ∈ P : root(eval(p, e2)) = root(eval(p, e1))

• ∀p ∈ P# : eval(p, e2) = eval(p, e1)

where root function retrieves the root nodes of its
input XML data, and function eval is defined as
follows:

Definition 3.1 (eval) Let q be an XQuery expres-
sion, and p an XPath expression. Then, eval(p, q)
denotes the following XQuery expression:
• q/p1, if p = $v/p1 (i.e., p starts with a variable reference);

• q/self :: p, otherwise.

The following properties of function eval are use-
ful in the rest of this section.

1. eval(p, (e1, e2)) = eval(p, e1), eval(p, e2)

2. eval([QName|$var]/p,<QName>{exp}</QName>=
eval(p, exp).

The two lemmas presented above can be proven
by induction over each expression. The proof of
lemma 3.1 is straightforward, since the distinc-
tion between used paths and return paths is clear
(see, Section 3.1). For space reason, we where not
able to include it in this paper. We chose to detail
the proof of Paths Projection lemma 3.2, which is
central in our algorithm.

Proof of lemma 3.2

First, for the inference rules who state that the out-
put of projectPaths is equal to its input (rules
pp1, pp3, pp5, pp8, pp10, pp17 and pp22 in Sec-
tion 3.2), the proof is evident (e2 = e1 in this
case). For the rules where the output expression
of projectPaths is different from its input, the
proof details are given in the following.

Now we give the proof for the cases where the
output is different from the input.

For literal values, quantifiers, arithmetic ex-
pressions, logical and comparison expressions
(rules pp2, pp4 and pp6), when the output expres-
sion is different from the input one, it is an empty
sequence (Env ` projectPaths(P ,P#, e) ⇒
(), where e = litteral, e = e1 Op e2 or e =
some $var in e1 satisfies e2). To prove the
lemma in this case, we have to prove the follow-
ing properties:

• ∀p ∈ P#, eval(p, ()) = eval(p, e)

• ∀p ∈ P, root(eval(p, ())) = root(eval(p, e))

where e = litteral, e = some $var in e1 satisfies e2 or
e = e1 Op e2.

For the considered rules, the judgement holds
when the input paths are all different from a
simple variable name $var or a text-test kind
text()(see the premise of the rules). In this case,
and according to the semantics of XQuery[7],
eval(p, e) will return an empty sequence. Since
eval(p, e) = () and eval(p, ()) = (), the proper-
ties are satisfied.
Variable reference (rule pp9). Here, we have to
prove the following properties:

• ∀p ∈ P#, eval(p, ()) = eval(p, $var)

• ∀p ∈ P, root(eval(p, ())) = root(eval(p, $var))

For the considered rule, the judgement holds
when the nodes generated by the subexpres-
sion bound to $var are not part of the evalu-
ation of the input paths. In other words (see
the premise), the judgement holds when $var
is bound to a sequence of objects {o1, . . . , on}
in the considered environment, and when the
application of the input paths on these objects
returns an empty sequence (∀i, 1 ≤ i ≤
n, projectPaths(P ,P#, oi)⇒ ()).

According to the XQuery semantics, the eval-
uation of a path on a variable $v yields to the
union of the evaluations of this path on each ob-
ject bound to $v. In our case, all the evaluations
lead to an empty sequence. So their union is an
empty sequence too. Since eval(p, $var) = ()
and eval(p, ()) = (), the properties are satisfied.
XPath expression (rule pp11). Here, we have to
prove the following properties:

• ∀p ∈ P#, eval(p, ()) = eval(p, s1/ . . . /sn)

• ∀p ∈ P, root(eval(p, ())) = root(eval(p, s1/ . . . /sn))

According to the semantics of XQuery, the last
step sn of a path s = s1/ . . . /sn determines the
nodes result of s. In the case of paths com-
position, between p = p1/ . . . /pm and s =
s1/ . . . /sm (s/p in short), the result is an empty

15

sequence if no matching is possible between the
first step of path p and the last step of path s. For
instance, a matching is possible between a/b and
b/c/d or between a/b and ∗/c/d and it is not pos-
sible between a/b and c/d or between a/tex() and
b/c/d. The cases where a matching is possible are
given in the premise of rule pp10, otherwise (rule
pp11) no matching is possible. Since no matching
is possible, eval(p, s1/ . . . /sn) returns an empty
sequence and the properties are satisfied.
Sequence (rule pp7). we have to prove the fol-
lowing properties:

• ∀p ∈ P#, eval(p, (e′
1, e′

2)) = eval(p, (e1, e2))

• ∀p ∈ P, root(eval(p, (e′
1, e′

2))) = root(eval(p, (e1, e2)))

In the premise of the considered rule, we as-
sume that:

• ∀p ∈ P# :
eval(p, e′

1) = eval(p, e1) and
eval(p, e′

2) = eval(p, e2)

• ∀p ∈ P :
root(eval(p, e′

1)) = root(eval(p, e1)) and
root(eval(p, e′

2)) = root(eval(p, e2))

Then, we can infer from the following that the
properties are satisfied:

• ∀p ∈ P#

eval(p, (e′
1, e′

2))
= (eval(p, e′

1), eval(p, e′
2)) - - Property 1 of eval

= (eval(p, e1), eval(p, e2)) - - Inference Hypothesis (I. H.)
= eval(p, (e1, e2)) - - Prop. 1 eval

• ∀p ∈ P
root(eval(p, (e′

1, e′
2)))

= root(eval(p, e′
1), eval(p, e′

2)) - - Prop. 1 eval
= (root(eval(p, e′

1)), root(eval(p, e′
2)) - - Prop. root

= (root(eval(p, e1)), root(eval(p, e2)) - - I. H.
= root(eval(p, e1), eval(p, e2)) - - Prop. root
= root(eval(p, (e1, e2))) - - Prop. 1 eval
�

Conditional (rule pp16). Here, we have to prove
the following properties:

• ∀p ∈ P#, eval(p, (if(e1) then e′
2 else e′

3)) =
eval(p, (if(e1) then e2 else e3))

• ∀p ∈ P, root(eval(p, (if(e1) then e′
2 else e′

3))) =
root(eval(p, (if(e1) then e2 else e3)))

In the premise of the considered rule, we as-
sume that:

• ∀p ∈ P# :
eval(p, e′

2) = eval(p, e2) and
eval(p, e′

3) = eval(p, e3)

• ∀p ∈ P :
root(eval(p, e′

2)) = root(eval(p, e2)) and
root(eval(p, e′

3)) = root(eval(p, e3))

The XQuery semantics defines the evaluation
of a path on a conditional expression as the evalu-
ation of that path on the result of the then or else
subexpression. So, we can infer from the follow-
ing that the properties of the lemma are satisfied:

• ∀p ∈ P#

eval(p, (if(e1) then e′
2 else e′

3))
= if(e1) then eval(p, e′

2) else eval(p, e′
3) - - XQuery

= if(e1) then eval(p, e2) else eval(p, e3) - - I. H.
= eval(p, (if(e1) then e2 else e3)) - - XQuery

• ∀p ∈ P
root(eval(p, (if(e1) then e′

2 else e′
3)))

= root(if(e1) then eval(p, e′
2) else eval(p, e′

3)) - - XQuery
= if(e1) then root(eval(p, e′

2))
else root(eval(p, e′

3)) - - Prop. root
= if(e1) then root(eval(p, e2))

else root(eval(p, e3)) - - I. H.
= root(if(e1) then eval(p, e2)

else eval(p, e3)) - - Prop. root
= root(eval(p, (if(e1) then e2 else e3))) - - XQuery
�

FLWR expressions (rules pp12 to pp15). We give
here the proof details for for expressions (rules
pp12 and pp13). The proof details for let expres-
sions (rules pp14 and pp15) can be easily deduced
using the same reasoning.

Rules pp12 and pp14: we have to prove the fol-
lowing properties:

• ∀p ∈ P#, eval(p, (for $v in e1 where e2 return e′
3)) =

eval(p, (for $v in e1 where e2 return e3))

• ∀p ∈ P, root(eval(p, (for $v in e1 where e2 return e′
3))) =

root(eval(p, (for $v in e1 where e2 return e3)))

In the premise of the considered rule, we as-
sume that:

• ∀p ∈ P# : eval(p, e′
3) = eval(p, e3)

• ∀p ∈ P : root(eval(p, e′
3)) = root(eval(p, e3))

The XQuery semantics defines the evaluation
of a path on a FLWR expression as the evaluation
of that path on the result of its return subexpres-
sion. So, we can infer from the following that the
properties of the lemma are satisfied:

16

• ∀p ∈ P#

eval(p, (for $v in e1 where e2 return e′
3))

= for $v in e1 where e2 return eval(p, e′
3) - - XQuery

= for $v in e1 where e2 return eval(p, e3) - - I. H.
= eval(p, (for $v in e1 where e2 return e3)) - - XQuery

• ∀p ∈ P
root(eval(p, (for $v in e1 where e2 return e′

3)))
= root(for $v in e1 where e2 return eval(p, e′

3))
= for $v in e1 where e2

return root(eval(p, e′
3)) - - Prop. root

= for $v in e1 where e2 return root(eval(p, e3)) - - I. H.
= root(for $v in e1 where e2

return eval(p, e3)) - - Prop. root
= root(eval(p, (for $v in e1 where e2 return e3)))
�

Rules pp13 and pp15: we have to prove the fol-
lowing properties:

• ∀p ∈ P#, eval(p, ()) =
eval(p, (for $v in e1 where e2 return e3))

• ∀p ∈ P, root(eval(p, ())) =
root(eval(p, (for $v in e1 where e2 return e3)))

In the premise, we assume that:

• ∀p ∈ P# : eval(p, ()) = eval(p, e3)

• ∀p ∈ P : root(eval(p, ())) = root(eval(p, e3))

The following shows that the properties of the
lemma are satisfied:

• ∀p ∈ P#

eval(p, ()) = ()
= for $v in e1 where e2 return () - -XQuery
= for $v in e1 where e2 return eval(p, ()) - -XQuery
= for $v in e1 where e2 return eval(p, e3) - - I. H.
= eval(p, (for $v in e1 where e2 return e3)) - -XQuery

• ∀p ∈ P
root(eval(p, ()))
= root(for $v in e1 where e2 return eval(p, ()))
= for $v in e1 where e2

return root(eval(p, ())) - - Prop. root
= for $v in e1 where e2 return root(eval(p, e3)) - - I. H.
= root(for $v in e1 where e2

return eval(p, e3)) - - Pro. root
= root(eval(p, (for $v in e1 where e2 return e3))) XQuery
�

Constructors (rules pp18 to pp20).
Rule pp18.
In this case, we have to prove the following prop-
erties:

• ∀p ∈ P#, eval(p, ()) = eval(p, element {QName}{e})

• ∀p ∈ P, root(eval(p, ())) = root(eval(p, element
{QName}{e}))

In XQuery, the evaluation of a path
p = p1/ . . . /pm on an element
<QName>. . .</QName> (element
{QName}{e}) yields to an empty sequence
when the first step p1 of the path does not match
QName. In the premise of this rule, we assume
that p1 6= QName and p1 is not a variable
name $var. So, according to the definition of
eval function, eval(p, element {QName}{e})
will return an empty sequence in this case.
Since eval(p, element {QName}{e}) = ()
and eval(p, ()) = (), the lemma properties are
satisfied.

Rule pp19.
In this case we have to prove the following prop-
erties:
• ∀p ∈ P#, eval(p, ()) = eval(p, element {QName}{e})

• ∀p ∈ P, root(eval(p, ())) = root(eval(p, element
{QName}{e}))

In the premise of the considered rule, we assume
that:
• ∀p′ ∈ P ′# : eval(p′, ()) = eval(p′, e)

• ∀p′ ∈ P ′ : root(eval(p′, ())) = root(eval(p′, e))

where P ′ = {p′, [QName | $var]/p′ ∈ P} and P ′# =

{p′, [QName | $var]/p′ ∈ P#}.
Then, we infer from the following:

• ∀ ∈ P#

If p = [QName | $var]/p′ then
eval(p, ()) = () = eval(p′, ()) - - XQuery
= eval(p′, e) - - I. H.
= eval(p, (element{QName}{e})) - - Prop. 2 of eval

If p = step1/p′, step1 6= [QName|$var] then
eval(p, ()) = ()
= eval(p, (element{QName}{e})) - - XQuery

If p = [QName | $var] then
No path corresponds to the pattern, pp17 is checked before.

• ∀p ∈ P
If p = [QName | $var]/p′ then

root(eval(p, ())) = root(()) = root(eval(p′, ())) - - XQuery
= root(eval(p′, e)) - - I. H.
= root(eval(p, (element{QName}{e}))) - - Prop. 2 eval

If p = step1/p′, step1 6= [QName|$var] then
root(eval(p, ())) = root(()) - - XQuery
= root(eval(p, (element{QName}{e}))) - - Prop. 2 eval

If p = [QName | $var] then

No path corresponds to the pattern - - I. H.

17

So, we conclude that the lemma properties are sat-
isfied.

Rule pp20.
In this case, we have to prove the following prop-
erties:

• ∀p ∈ P#, eval(p, (element{QName}{})) =
eval(p, (element{QName}{e}))

• ∀p ∈ P, root(eval(p, (element{QName}{}))) =
root(eval(p, (element{QName}{e})))

In the premise of the considered rule, we assume
that there is only one path p = [QName|$var] in
P , and there is no other path in P and P# that
starts with QName or $var.
We conclude, from the following that the lemma
properties are satisfied:

• ∀p ∈ P#

If p = [QName | $var]/p′ then
No path corresponds - - I. H.

If p = step1/p′, step1 6= [QName|$var] then
eval(p, element{QName}{}) = () - - XQuery
= eval(p, (element{QName}{e})) - - XQuery

If p = [QName | $var] then
No path corresponds - - I. H.

• ∀p ∈ P
If p = [QName | $var]/p′ then
No path corresponds - - I. H.

If p = step1/p′, step1 6= [QName|$var] then
root(eval(p, element{QName}{})) = root(()) - - XQuery
= root(eval(p, (element{QName}{e}))) - - XQuery

If p = [QName | $var] then - - one path corresponds, I. H.
root(eval(p, element{QName}{}))
= root(element{QName}{})) - - XQuery
= element{QName}{}) - - Prop. root
= root(element{QName}{e})) - - Prop. root
= root(eval(p, (element{QName}{e}))) - - XQuery

Rule pp21.
In this case, we have to prove the following prop-
erties:

• ∀p ∈ P#, eval(p, (element{QName}{e′})) =
eval(p, (element{QName}{e}))

• ∀p ∈ P, root(eval(p, (element{QName}{e′}))) =
root(eval(p, (element{QName}{e})))

In the premise of the considered rule, we assume
that:

• ∀p′ ∈ P ′# : eval(p′, e′) = eval(p′, e)

• ∀p′ ∈ P ′ : root(eval(p′, e′)) = root(eval(p′, e))

where P ′ = {p′, [QName | $var]/p′ ∈ P} and P ′# =

{p′, [QName | $var]/p′ ∈ P#}.
So, we conclude from the following that the
lemma properties are satisfied:

• ∀p ∈ P#

If p = [QName | $var]/p′ then
eval(p, element{QName}{e′})
= eval(p′, e′) - - XQuery
= eval(p′, e) - - I. H.
= eval(p, (element{QName}{e})) - - Prop. 2 of eval

If p = step1/p′, step1 6= [QName|$var] then
eval(p, element{QName}{e′}) = () - - XQuery
= eval(p, (element{QName}{e})) - - XQuery

If p = [QName | $var] then
No path corresponds, pp17 checked before

• ∀p ∈ P
If p = [QName | $var]/p′ then

root(eval(p, element{QName}{e′}))
= root(eval(p′, e′)) - - XQuery
= root(eval(p′, e)) - - I. H.
= root(eval(p, (element{QName}{e}))) - - Prop. 2 eval

If p = step1/p′, step1 6= [QName|$var] then
root(eval(p, element{QName}{e′}))
= root(()) - - XQuery
= root(eval(p, (element{QName}{e}))) - - Prop. 2 eval

If p = [QName | $var] then
root(eval(p, element{QName}{e′}))
= root(element{QName}{e′}) - - XQuery
= element{QName}{} - - Prop. root
= root(element{QName}{e}) - - Prop. root
= root(eval(p, (element{QName}{e}))) - - XQuery

4 Experiments
In this section, we analyze the impact of our
approach by comparing the difference between
the evaluation time for the input query q and
the one for the output query q′. In this way,
we mesure the gain obtained by eliminating the
computation of irrelevant intermediate results.
In our experiments, we varied the nature and
complexity of the pruned subexpressions. More
precisely, we considered three kinds of subex-
pressions widely used in practice : FLWR blocks,
XPath expressions relative to a given document
or XPath expressions relative to a variable.
For each kind of subexpression, we varied the
amount of intermediate results produced by the
pruned subexpression: 25%, 50%, 75% or 100%

18

of the total intermediate results. We used in
our experiments the following template for test
queries:

let $q := <personInf>
{for $i in doc(”xmark.xml”)/site/people/person
return
(< name > {test_exp} < /name >,
< age > {test_exp} < /age >,
< gender > {test_exp} < /gender >,
< email > {test_exp} < /email >)}

</personInf>
for $j in $q
return($j/names?, $j/age?, $j/gender?, $j/email?)

where the question mark indicates optional
parts that could be missing from one test query
to another.

By the first let clause in the template we cre-
ate a set of intermediate results. The let binds
the variable $q to a personInf element that con-
tains four child elements name, age, gender and
email. The four elements have the same content,
produced by a test_exp expression (to be defined
for each test query).

The number of children of personInf depends
on the size of the sequence to which the $i vari-
able is bound (person elements) and varies with
the size of the document on which the test was
performed. The percentage of useless interme-
diate results is simply tuned by deciding which
XPath expressions appear in the query, among
the four expressions given in the return of the
outer for clause. For example, when testing the
gain for 100% of irrelevant intermediate results,
we can use the path $j/names, because it does
not follow any child of the personInf element.
When testing the gain for 50% of irrelevant inter-
mediate results, we can use two paths, $j/age and
$j/gender.

Finally, the kind of expression that is pruned
along with its wrapping element was also varied
(test_exp).

We show in Figures 3, 4 and 5 the percent-
age of gain in evaluation time when test_exp is
a FLWR block, an XPath expressions relative to
a given document or an XPath expression relative
to a variable.

These measures were obtained on the query
processor Galax[9] (version 0.7.2). Our choice

was motivated by the robustness of this proces-
sor and its conformance with the W3C XQuery
specifications. The measures were conducted on
a Pentium D 3.2 GHz PC machine, with 2Gb of
memory and a Linux Debian operating system.

Results & Discussion. The experiments show
that our approach ensures a gain of time whatever
is the nature of the pruned subexpressions. The
gain varies according to the amount of pruned in-
termediate results and the complexity of the irrel-
evant subexpression.

In Figure 3, where the pruned subexpressions
correspond to FLWR blocks, the saving of time
seams to be linked to the amount of pruned in-
termediate results. This saving increases slightly
when the document size increases. It increases
significantly when the pruned subexpressions cor-
respond to XPath expressions relative to a docu-
ment (Figure 4). We believe that this is mainly
due to the specificity of the XQuery processor we
used. In Figure 5, the pruned subexpressions cor-
respond to XPath expressions relative to a vari-
able. In this case, we measured savings of time
less important than in the two previous cases. It
seems that in this kind of scenarios we save only
the time needed to retrieve the element followed
by the path, which is normally done in main mem-
ory.

Figure 3: Test Results for Queries pruning FLWR Blocks

19

Figure 4: Test Results for Queries pruning Variable XPaths

Figure 5: Test Results for Queries pruning Document XPaths

5 Conclusion
We present in this paper a rewriting algorithm for
XQuery queries. The underlying approach con-
sists in pruning from subexpressions the compu-
tations that are irrelevant for the overall query re-
sult. Our algorithm generates for each input query
q, an output query q′ that is equivalent to q. We
show by extensive experiments the important sav-
ing of evaluation time, and we prove formally the
correctness of our algorithm.

References
[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and

N. Preda. Lazy query evaluation for Active XML. In SIGMOD Conf,
2004.

[2] V. Benzaken, G. Castagna, D. Colazzo, and K. Nguyen. Type-based
xml projection. In VLDB Conf, 2006.

[3] M. Brantner, C-C. Kanne, and G. Moerkotte. Let a Single FLWOR
Bloom (to improve XQuery plan generation). In XSym Workshop,
2007.

[4] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and
S. N. Subramanian. Xperanto: Middleware for publishing object-
relational data as xml documents. In VLDB Conf, 2000.

[5] A. Deutsch, Y. Papakonstantinou, and Y. Xu. The NEXT Logical
Framework for XQuery. In VLDB Conf, 2004.

[6] X. Dong, A. Y. Halevy, and I. Tatarinov. Containment of nested xml
queries. In VLDB Conf, 2004.

[7] D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra, K. Rose,
M. Rys, J. Siméon, and P. Wadler. XQuery 1.0 and XPath 2.0 Formal
Semantics. W3C Recommendation, 2007.

[8] M. F. Fernández, Y. Kadiyska, D. Suciu, A. Morishima, and W. C.
Tan. Silkroute: A framework for publishing relational data in xml.
ACM Trans. Database Syst., 27(4), 2002.

[9] M. F. Fernández and J. Siméon. The Galax System "The XQuery
Implementation for Discriminating Hackers" Version 0.7.2, 2007.

[10] M. Grinev. XQuery Optimizing Based on Rewriting. In ADBIS,
2004.

[11] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio
grows up: from research prototype to industrial tool. In SIGMOD
Conf, 2005.

[12] C. Koch. On the role of Composition in XQuery. In WebDB Work-
shop, 2005.

[13] A. Malhotra, J. Melton, and N. Walsh. XQuery 1.0 and XPath 2.0
Functions and Operators. W3C Recommendation, 2007.

[14] I. Manolescu, D. Florescu, and D. Kossmann. Answering xml
queries on heterogeneous data sources. In VLDB Conf, 2001.

[15] A. Marian and J. Siméon. Projecting XML Documents. In VLDB
Conf, 2003.

[16] P. Michiels. XQuery Optimization. In VLDB PhD Workshop, 2003.

[17] P. Michiels, G. A. Mihaila, and J. Siméon. Put a tree pattern in your
algebra. In ICDE Conf, 2007.

[18] P. Ramanan. Efficient Algorithms for Minimizing Tree Pattern
Queries. In SIGMOD Conf, 2002.

[19] A. Schmidt, F. Waas, M. Kirsten, M. J.Carey, I. Manolescu, and
R. Busse. XMark: A Benchmark for XML Data Management. In
VLDB Conf, 2002.

[20] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and J. Fun-
derburk. Querying XML Views of Relational Data. In VLDB Conf,
2001.

[21] I. Tatarinov and A. Y. Halevy. Efficient Query Reformulation in Peer-
Data Management Systems. In SIGMOD Conf, 2004.

20

