
BDA 98Methods and ViewsJan Van den BusscheLimburgs Universitair CentrumDepartment WNIB-3590 DiepenbeekBelgiumvdbuss@luc.ac.be Emmanuel WallerUniversit�e de Paris-SudLRI, bât. 490F-91405 Orsay CedexFrancewaller@lri.frAbstractMany papers have been written on the structural aspect of view mechanisms forobject-oriented databases. A clean model that focuses speci�cally on the interplaybetween methods and views, however, is still lacking. This paper addresses thisproblem. First, an abstract model of behavioral views is introduced, from which itbecomes clear that the main issue is to allow transfer of control of a computationbetween the root database and the view. Hence, good primitives for specifying suchtransfers are needed. A speci�cation formalism for this purpose is presented in thepaper and implemented on top of the formalism of method schemas. Correctnessissues that arise in this context are explored, and a general result on the possibilityof automated veri�cation of behavioral views is proven.Keywords: views, methods, object databases, formal views mechanisms, practicalviews speci�cation languages, static correctness checking, inheritance, overloading,late binding R�esum�eDe nombreux papiers ont �et�e �ecrits sur l'aspect structurel des m�ecanismes devues pour bases de donn�ees orient�ees-objets. Un mod�ele simple mettant sp�eci�que-ment l'accent sur les interf�erences entre les m�ethodes et la vue manque toutefoisencore. Ce papier traite de ce probl�eme. Tout d'abord, un mod�ele abstrait de vuescomportementales est introduit, �a partir duquel il s'av�ere clairement que le probl�emeprincipal est d'autoriser le transfert de contrôle lors d'un calcul entre la base de don-n�ees racine et la vue. Il y a donc besoin de bonnes primitives pour sp�eci�er de telstransferts. Un formalisme de sp�eci�cation �a cette �n est pr�esent�e dans le papieret implant�e au-dessus du formalisme des sch�emas de m�ethodes. Les probl�emes decorrection qui apparaissent dans ce contexte sont explor�es, et un r�esultat g�en�eral surla possibilit�e de la v�eri�cation automatique des vues comportementales est prouv�e.Mots-clef: vues, m�ethodes, bases de donn�es �a objets, m�ecanismes formel de vues,langages pratiques de sp�eci�cation de vues, v�eri�cation statique de correction, h�eri-tage, surcharge, liaison dynamique

1 IntroductionThe importance of views in database applications is generally recognized. As Abite-boul and Bonner argued most eloquently [1], this applies no less to object-orienteddatabase systems. The literature on OO views is considerable; for a survey, see [13].The motivation for the present paper stems from the observation that most of thework on OO views has focused primarily on the structural aspects. The purpose ofthis paper is to contribute towards a formalization of the behavioral aspect. Put veryroughly, we want to capture and formalize the mechanisms for deriving new methodsfrom old methods that are useful in view speci�cation. Designers and developers ofOO view systems currently lack a guiding model in this important direction.To make clear exactly what we have in mind with behavioral views, we �rstintroduce an abstract model, in which a view is de�ned in general as a mapping.The possible inputs and possible outputs of a view mapping are carefully calibratedso as to model as faithfully as possible what happens in practice.Towards a concrete realization of our abstract model, we propose two basic prim-itives: import of values, used to call a method in the root database and import theresulting object to the view; and import of code, used to import the code of a methodde�ned in the root database and execute it in the view. Using these two primitives,combined with writing new methods in the view that can call imported methods,one can model arbitrarily complicated computations in which control can be trans-ferred back and forth between the root database and the view. Our conviction thatthe primitives of value import and code import are \necessary and su�cient" is sup-ported by extensive programming experience with one of the few industrial-strengthOO view systems currently available, namely O2Views [18].1From the outset, our view speci�cation mechanism is independent of any partic-ular programming model. Yet, in order to be able to concretely assess the rami�ca-tions of our mechanism, we have implemented it on top of the formalism of methodschemas. Method schemas ([6, 5]; see also [2, 11, 21]) provide a formalization ofobject-oriented database programming using methods, in much the same way thatthe classical formalism of program schemes [8] does for classical programming.In this concrete context, we then explore the various correctness issues that arisein connection with behavioral views.The import of code is a very powerful mechanism which can unavoidably leadto run-time errors during execution of view methods. However, we show that whenthe code of the methods de�ned in the root database is known, consistency checkingof a view over a method schema (i.e., checking whether view code never leads to arun-time error) is no more di�cult than consistency checking of an ordinary methodschema. The latter problem was studied in depth by Abiteboul et al.; in generalit is undecidable, but useful special cases (the monadic case, and the recursion-freecase) have been identi�ed where it becomes decidable. By our result, decidability1Another such system is MultiView [15]. 1

for these decidable cases (and others that would be discovered) carries over to thecontext of views.As already indicated, our approach is characterized by an almost exclusive focuson the behavioral aspect of OO views. Consequently, our core model is independentof the particular query language used to de�ne the population of the classes in theview. All our formalism assumes about populations is that some class correspon-dence is given, which speci�es for each view class from which root classes it can bepopulated.We �nally mention here that our model is independent also of the particularway the class hierarchy in the view is determined. Various approaches to automatedinference of the view class hierarchy have been described in the literature (e.g.,[1, 16, 17]).The further organization of this paper is as follows. Section 2 recalls the basicnotions concerning method schemas. Section 3 presents an abstract model of be-havioral views. Section 4 de�nes our extension to method schemas to realize thisabstract model. Section 5 deals with consistency checking. Section 6 concludes bydiscussing possible extensions to our core formalism.2 Preliminaries on method schemasIn this section we informally recall the vocabulary and basic notions concerningmethod schemas.2 While this extended abstract is largely self-contained, we providethe formal de�nitions concerning method schemas in Appendix A.Syntax. We distinguish between two kinds of methods: base methods and codedmethods.Base methods are extensionally stored functions which can be thought of as built-in, or as stored attributes with arguments. Base methods are declared with an outputtype, which is a union of class names. For example, transport@Person;Destination :Car [Plane is the declaration of a base method transport which when applied to aPerson and a Destination, yields either a Car or a Plane as result (which could alsobe an object belonging to a subclass of Car or Plane).The most basic part of an OODB schema, namely, the class hierarchy (modeledhere as a partial order on class names) and the base method declarations, is called apre-schema. In a pre-schema, a base method name may appear in several di�erentdeclarations. So, using OO terminology, we can have overriding of base methods.An example of a pre-schema is the following: (this example does not use overridingof base methods)2Our presentation di�ers slightly from the original one [5]. We also make an inessential extensionto the original formalism, namely union types in base method declarations, which will turn out tobe useful in Section 5. 2

Class names: Int , Base part , Part , and Part list .Hierarchy: Base part < PartBase method declarations: sum@Int ; Int : Int ;head@Part list : Part ;tail@Part list : Part [Part list ;price@Base part : Int ;subparts@Part : Part list ;assembly cost@Part : Int .We next turn to coded methods. We use a simple functional programmingparadigm, where all we can do in a method body is to call other methods. Soa method body is nothing but a term built up from variables using method calls.A coded method de�nition thus consists of a declaration m@c1; : : : ; cn with methodname and input classes, and a body �x1; : : : ; xn:t. A collection of coded methodde�nitions over some pre-schema is naturally called a behavior for that pre-schema.An example of a behavior for our example pre-schema is the following:cost@Part = �x:sum(assembly cost(x); cost(subparts(x)));cost@Base part = �x:price(x);cost@Part list = �x:sum(cost(head(x)); cost(tail(x))):Note the use of overriding and recursion. Of course in general a behavior will containde�nitions for many di�erent method names, not just one as in this example.A method schema now consists of a pre-schema together with some behavior.We require that the set of names of base methods is disjoint from the set of namesof coded methods.Semantics. Intuitively, each class is a set of objects. Each object belongs to aunique class,3 although of course all methods de�ned in the superclass and has novisible structure; all information about the object has to be obtained via its methods.As already mentioned, base methods are stored functions. If a class d is speci�edin the output type of a base method declaration, this means that the result of themethod can be an object of class d or one of its subclasses. The mapping of classnames to sets of objects, and of method names to functions is naturally called aninstance.The inheritance mechanism, which applies to base methods as well as to codedmethods, is the standard one based on late binding. If there is no, or no unique,resolution, the method call fails ; otherwise we say it is well de�ned.The semantics of coded methods is de�ned in a simple operational manner, usingrewriting of instantiated terms. For example, continuing our earlier example, if o3In particular, this implies that the extension of a subclass is disjoint from, rather than a subsetof, the extension of a superclass. This point of view corresponds to the situation in real OOprogramming, follows the formalisation of OO data modeling as given for the O2 data model [12],and allows the cleanest treatment of inheritance and overriding.3

is a Part that is not a Base part, with assembly cost 42, and the �rst subpart of ois o0, which is a Base part, with price 15, then the computation sequence of cost(o)starts with the following rewritings: (` is the list of subparts of o)cost(o) ! sum(assembly cost(o); cost(subparts(o))) ! sum(42; cost(subparts(o)))! sum(42; cost(`)) ! sum(42; sum(cost(head(`)); cost(tail(`))))! sum(42; sum(cost(o0); cost(tail(`)))) ! sum(42; sum(price(o0); cost(tail(`))))! sum(42; sum(15; cost(tail(`)))) ! � � �Note that in every rewriting step we always replace the leftmost occurrence ofwhat is called the �rst redex. A redex is an instantiated term of the simple formm(o1; : : : ; on), with o1; : : : ; on objects; the �rst redex is the leftmost occurring redex.Should at some point a method call fail, the whole instantiated term is replaced bythe error symbol ? and the rewriting stops.To conclude this quick review of the basic model of method schemas, we em-phasize that this model is meant to serve as an abstraction of everyday databaseprogramming with inheritance, late binding, and overloading. The \functional ap-pearance" of the way methods are treated in the model is merely a byproduct ofthis abstraction process, and does not imply that we are limiting ourselves to thefunctional programming paradigm. In particular, because of our independence ofspeci�c programming paradigms, we cannot (and do not) use a higher-order typesystem with function types such as the systems proposed in the functional program-ming language literature.3 An abstract model of behavioral viewsIn general one might call a view behavioral if it contains not only classes and at-tributes (base methods), but also behavior (coded methods). However, just as or-dinary views are only interesting if the view classes and attributes depend in someway on the classes and attributes from the root database over which the view isde�ned, behavioral views are only interesting if the behavior in the view depends insome way on the behavior in the root database.Example 3.1 Consider a database of an insurance company with a class Client .Each Client has attributes city , risk , and age (and possibly others). There is acoded method fee which computes the insurance fee of a Client by some complicatedformula depending on the age and risk of the Client.Now suppose the company considers doubling the risk of every Client living inParis. This can be easily simulated using a behavioral view. The view has a classParisien containing all Clients living in Paris. We de�ne a view attribute old riskof Parisiens which equals simply the value of the attribute risk in the root database.We then de�ne a new coded method in the view:risk@Parisien = �x:double(old risk(x)):4

Finally we import the code of the method fee from the root database into the view.This view has several advantages. It has all the advantages of ordinary views:for example, if a Client moves to Paris he will automatically show up in the viewwith the right value for old risk . But it has also the additional advantage that theformula used to compute fees is exactly the same in the view as in the root database.If this formula is changed, the view will adapt automatically. Hence this view cantruly be called \behavioral".In the method schema model as de�ned in the previous section, an instance of amethod schema actually depends only on the underlying pre-schema of that methodschema. In other words, the contents of the classes and the interpretations of thebase methods can change, but the behavior is �xed. However, we have just arguedthat �xed behavior is too restrictive for modeling behavioral views.This motivates the following new de�nitions:De�nition 3.2 A root schema R is like a method schema, except that the bod-ies of coded methods have been omitted. So, from each coded method de�nitionm@c1; : : : ; cn = �x1; : : : ; xn:t we simply retain the declaration m@c1; : : : ; cn.De�nition 3.3 Let R be a root schema. A root instance of R consists of an in-stance of the underlying pre-schema S, together with a behavior over S supplyinga body to each coded method declaration in R. So, each coded method declara-tion m@c1; : : : ; cn in R is completed into a de�nition of the form m@c1; : : : ; cn =�x1; : : : ; xn:t.Now that we have de�ned the input to a view (root schema and instance), what isthe output of a view? We take the position that the output of a view should appear tothe user of the view simply as an ordinary instance. Moreover, every method de�nedby the view output should appear to him as a base method, although internally itsbehavior may be arbitrarily complicated. The user can then use the view by addinghis own coded methods on top of these \base methods". So, on the most abstractlevel, we de�ne:De�nition 3.4 Let R be a root schema, and let V be a pre-schema, called the viewschema. A view from R to V is a mapping from the root instances of R to theinstances of V .Observe that the view schema is entirely independent of the root schema, or, putdi�erently, there are no restrictions on how the view schema can look like. This isactually quite normal; in principle any \virtual" view of the root database shouldbe able to serve as a view. Yet, another approach, which is often encountered in theliterature, is to try to force the view schema within the root schema. We believesuch an approach is mistaken in that it mixes up syntax and semantics; why should5

Employee studentStudent Subsidized personPerson������������*HHHHHHHHHHHHjFigure 1: Illustration to Example 3.5.the mere act of de�ning a view over a database have an e�ect on the schema of thatdatabase? Actually, as shown in the following example, there are natural situationswhere the view hierarchy is even the exact opposite of the root hierarchy,Example 3.5 Consider a root database with a class Student and a subclass Employeestudent . Employee students are people who have an income and study in their sparetime; proper Students are full-time students without income. In the view of the so-cial security administration, there is a class Subsidized person that is a subclass ofPerson. All Employee students become proper Persons in the view, and all Studentsbecome Subsidized persons in the view. The situation can be depicted in Figure 1.The arrows denote the view population. The �gure clearly shows that the viewhierarchy in fact turns the root hierarchy upside down.Note that a view mapping can be split into two independent parts: one deter-mining the interpretations of the methods in the view, called the view behavior, andone determining the contents of the classes in the view, called the view population.A view population is nothing but a family of queries; for each class name c in Vwe specify a query qc such that for each root instance I , qc(I) is the content of classc in the view applied to I . These queries may depend on the behavior part of I ina limited manner: for example, in a standard OO query language such as OQL, onecan call methods in queries.As already motivated by Example 3.1, the view behavior will need more depen-dence on the root behavior than simply calling methods and getting results back.How these dependencies can be speci�ed is the subject of the next section.4 Specifying view behaviorIn this section we show how by adding two new primitives we can turn methodschemas into a view behavior speci�cation language. The two new primitives alsomake sense for programming formalisms di�erent from method schemas.6

Value import. Our �rst primitive is called value import. Recall Example 3.1,where we de�ned a property old risk of Parisiens as being equal to the value of theirproperty risk in the root database. This is an example of view method de�nition byvalue import. We will denote it syntactically as follows:old risk@Parisien = import value risk :In this example, risk is a base method in the root database, but value importcan equally well be applied to coded methods in the root database. In that case theresult of the coded method applied to the view objects is computed entirely in theroot database, before it is imported into the view.Code import. Our second primitive is called code import. Consider again Ex-ample 3.1, where we import the code of root method fee into the view, with theintention of executing it in the view. Since risk is rede�ned in the view, this exe-cution will yield a di�erent result than when we would have simply performed animport value on fee.Syntactically, we can specify this example as follows:4new fee@Parisien = import code fee with (age : import value):What is the purpose of thewith-clause? It is what we call a code import speci�cation.The names of the root methods called in an imported code might also be names ofview methods (indeed, otherwise import code would make no sense). Hence, wemust specify for these method calls how they are to be interpreted: simply in theview, or as an import value, or in turn as an import code. In this example, theroot methods in question are age and risk : the code import speci�cation speci�esthat the call to age in the code of fee is to be interpreted as an import value. Thename risk is not mentioned in the speci�cation, meaning that it is to be interpretedin the view (this is the default).General syntax of view behaviors. Of course in general, we do not know ex-actly which root methods are called in an imported code. (Indeed, if we knew whatwas in the root code, we would not have to import it; we could just copy it verbatiminto the view!) So in general we de�ne a code import speci�cation on all methodnames in the root schema. Moreover, if some code import speci�cation speci�essome root method call as import code as well, we need a speci�cation for thatcode import in turn. However, since methods can be recursive, this speci�cationprocess can go on in�nitely. To solve this problem, we de�ne one global collectionof code import speci�cations, with cross-references between them, as follows:4We could also have reused the name fee in the view instead of inventing a new name new fee.7

De�nition 4.1 Let R be a root schema, and let M be the set of method names inR. A global code import speci�cation over R is a mapping � on an initial segmentf1; : : : ; ng of the natural numbers, such that for each i 2 f1; : : : ; ng, �i is a partialfunction from M to fivg [(ficg � f1; : : : ; ng).Here, `iv' stands for import value, and `ic' stands for import code. Observe howeach i 2 f1; : : : ; ng serves as an \identi�er" for a concrete code import speci�cationwithin the global speci�cation, to which others can refer. It will be convenient touse the notation i 2 � to denote that i is an identi�er in the global code importspeci�cation �.We are now ready to de�ne view behaviors formally:De�nition 4.2 Let R be a root schema, and let V be a view schema. A viewbehavior for V over R consists of a global code import speci�cation � over R, anda set � of view method de�nitions which can have one of the following three forms:1. m@c1; : : : ; cn = import value m0, where m is a method name in V , c1; : : : ; cnare class names in V , and m0 is a method name in R;2. m@c1; : : : ; cn = import code m0 with i, where i 2 �;3. m@c1; : : : ; cn = �x1; : : : ; xn:t, where t is a term built up from the variablesx1; : : : ; xn using method names in V (this is a coded method de�nition as inordinary method schemes).Corresponding to each view method declaration in V , there must be precisely oneview method de�nition in the view behavior.Let us �x a view behavior (�; �) in the following de�nitions.Formal semantics of view behaviors. The semantics of view behaviors is de-�ned operationally using rewriting, as in ordinary method schemas. However now,the rewrite system is a bit more complicated due to the transfers of control betweenthe root database and the view that can take place during the execution of a viewmethod.Assume given a root instance I = (I0; �0) of the root schema R, where I0 is theunderlying instance and �0 the underlying behavior.Instantiated terms can now be built up from objects in I0 using method namesof R or the view schema V . Additionally, each internal node of an instantiated term(viewed as a tree in the obvious way) may|but does not have to|carry a label :this label can be either iv or of the form (ic; i) with i 2 �.Assume further given a view population � from R to V . We now de�ne thereductions (steps) of the rewrite system: 8

De�nition 4.3 Let t be an instantiated term that is not an object. The reductionof t, denoted by �(t), is de�ned as follows.5 Let r = m(o1; : : : ; on) be the �rst redexof t. Let l be the label, if existing, of the leftmost occurrence of r in t.If l is not there, this means reduction must be carried out in the view itself. Letci be the class to which oi belongs in �(I), for i = 1; : : : ; n.� If for some i, ci does not exist, because oi is actually outside �(I), then �(t) isunde�ned. We denote this by �(t) = >.� If every ci exists, but m is not well-de�ned at c1; : : : ; cn in V , then �(t) is alsounde�ned. We denote this by �(t) = ?.� Ifm is well de�ned at c1; : : : ; cn in V , with resolutionm@c01; : : : ; c0n, letm@c01; : : : ; c0n= s be the associated de�nition in �. We distinguish the following cases, cor-responding to those in De�nition 4.2:{ s is of the form import value m0. Then �(t) is obtained from t byreplacing the leftmost occurrence of r in t by m0(o1; : : : ; on), and labelingit iv.{ s is of the form import code m0 with i. Then �(t) is obtained from t byreplacing the leftmost occurrence of r in t by m0(o1; : : : ; on), and labelingit (ic; i).{ s is of the form �x1; : : : ; xn:t0. Then �(t) is obtained from t by replacingthe leftmost occurrence of r in t by t0(o1; : : : ; on). No additional labelingis performed.If l is iv, �(t) is obtained from t by replacing the leftmost occurrence of r in t byits reduction in I (which could be an object, if m is a base method in I , or a newterm, if m is a coded method), in which all internal nodes are again labeled iv; thisyields a computation in the root database.If l is (ic; i), �(t) is also obtained from t by replacing the leftmost occurrence ofr in t by its reduction in I , in which we now label each internal node as speci�ed by�i. In the last two cases, the reduction in I may not be de�ned; in this case �(t) isalso unde�ned which we denote again by �(t) = ?.If �(t1) = t2 we will denote this by t1 ! t2. The transitive closure of ! is denotedby !+.Example 4.4 In the view described in Example 3.1, suppose o is a Client living inParis, aged 42 and having a risk factor of 11. Suppose the de�nition of fee in theroot behavior is fee@Client = �x :sum(age(x); risk(x)). In this simple example, the5Actually, �(t) depends on I, �, �, and �, so formally we should write �I;�;�;� (t).9

global code import speci�cation � consists of only one identi�er with �1 = fage 7!ivg. (We naturally assume the class Int with all its methods such as sum and doubleto be part of the view.) Then in the view we have the following rewriting sequence:new fee(o) ! fee(ic;1)(o) ! sum(ageiv(o); risk(o)) ! sum(42; risk(o))! sum(42; double(old risk(o))) ! sum(42; double(risk iv(o)))! sum(42; double(11)) ! sum(42; 22)! 64.Some expressiveness considerations. The power of the code import mecha-nism is unleashed only in combination with the writing of new code in the view.Otherwise, code import degenerates to value import, as shown next:Proposition 4.5 A view behavior in which the global code import speci�cation spec-i�es everything either as iv or ic, is equivalent to the same view behavior in whichevery code import has been replaced by a value import.The proof is based on two observations: (i) root coded methods eventually call rootbase methods; and (ii) code import of a root base method is equivalent to valueimport of that method.Observation (ii) actually implies also that value import can be simulated usingcode import:Proposition 4.6 Every view behavior is equivalent to one that does not use valueimport.Indeed, we can add to � the \constant" code import speci�cation i0 with �i0(m) =(ic; i0) for each root method m. We can then replace every import value by animport code with i0, and every iv by (ic; i0).The above proposition indicates that we could have omitted value import alto-gether from our formalism. Of course, we have not done this because we feel thatvalue import and code import must be highlighted as two distinct ways of dependingon a root behavior. That the former can be simulated using the latter is then merelyan added bonus.To conclude this section, we emphasize once more that our notion of view behav-ior is the exact analogue (for methods) of the classical notion of view in relationaldatabases; in both cases we have a certain base of information (methods in our case,relations in the classical case) on which we want to de�ne an alternative view (inthe form of new methods in our case, in the form of new relations in the classicalcase).5 Verifying view speci�cationsA speci�cation of a view from a root schema R to a view schema V consists of a viewpopulation and a view behavior. Various properties have to be satis�ed in order for10

this to correctly de�ne a view in the abstract sense of De�nition 3.4. In this sectionwe discuss these properties and their possible automated veri�cation.Here is the correctness criterion for behavioral views: For every viewmethod m, for any view classes c1; : : : ; cn at which m is well de�ned in V , for everyroot instance I, and for any objects o1; : : : ; on such that oi 2 �(I)(ci) for i = 1; : : : ; n,we want the existence of an object o such that m(o1; : : : ; on)!+ o and o 2 �(I)(d),for some view class d appearing in the output type of the resolution of m@c1; : : : ; cnin V .This correctness criterion has many di�erent aspects:Closure: View methods must always return objects themselves in the view. Moreprecisely, for anym and o1; : : : ; on as above, we never wantm(o1; : : : ; on)!+ >(cf. De�nition 4.3), and neither m(o1; : : : ; on)!+ o for an object o not in �(I).Consistency: We never want m(o1; : : : ; on)!+ ?.Termination: We never want the rewriting sequence starting from m(o1; : : : ; on)to be in�nite.Typing: Even if m(o1; : : : ; on) rewrites to an object in the view in a �nite numberof steps, that object should belong to one of the output classes given in theappropriate declaration of m.Closure and typing That closure may be violated is a consequence of our ap-proach in which view population and view behavior can be speci�ed independently.Other approaches found in the literature couple these two, using some kind of de-fault semantics which guarantees closure. Unlimited exibility is what we get forthe price (possible closure violation) we pay. In fact, this price is not so high. Afterall the builder of the view should know exactly what he wants to be seen in theview, so that ensuring closure should not pose a problem in practice. Example 5.1below gives an illustration of the closure \problem".Similar remarks apply to the typing aspect of view correctness.Example 5.1 Consider a root schema with classes Person and Car and base meth-ods age@Person : Int , drives@Person : Car , and age@Car : Int . Consider a viewschema with classes Young person and Old car , which we populate with all Personsyounger than 20 and all Cars older than 10, respectively. The view schema also hasa method declaration drives@Young person : Old car :We de�ne this method in the view simply as import value drives . Since a rootinstance may well contain Persons younger than 20 driving Cars younger than 10,closure may be violated. 11

We do not expect a responsible view designer to design such views; this wouldcorrespond to an attitude of \let's import some methods more or less by chance,and see whether it works". A moment's reection reveals that there are in fact twodi�erent possible interpretations of this example, which both almost automaticallysatisfy closure:1. We really want in the view only young persons driving old cars. So we correctthe population of Young person accordingly and we are done.2. We want all young persons in the view, as well as the cars they drive. In thiscase we add a superclass Car of Old car in the view, and declare the methoddrives more properly as drives@Young person : Car . We populate Car in theview with all Cars younger than 10. We can now safely do an import valueof drives without violating closure.Consistency and termination The aspects of consistency and termination,however, are of a di�erent nature. Inconsistencies or non-terminations are essen-tially bugs which must be captured. They can show up in the root instance as wellas in the view behavior. Although a bug-free view on a buggy root instance is inprinciple possible (if the bugs in the root are not reachable from the view), in generalit is helpful and not unreasonable to assume the following:Assumption 1 We only consider root instances which, considered in isolation, arefree of inconsistencies and non-terminations.Automated veri�cation of ordinary method schemas was investigated in somedepth by Abiteboul et al. [5]. The general problems are undecidable, but for speci�ccases, namely monadic schemas, or recursion-free schemas, useful techniques weredeveloped which can be directly applied to help support the above assumption.In what follows we will focus on the consistency problem, but techniques forconsistency checking can typically be applied as well to termination analysis.View consistency is not quite similar to ordinary method schema consistency. Inordinary method schemas one quanti�es over all possible instances. If however wedo the analogous for views, we never get consistency (except in trivial cases suchas views having only one class or always-empty populations). Indeed, by Proposi-tion 4.5, any non-trivial use of code import must involve a call to some view methodm from within code imported from the root instance. We can then easily constructa root instance in which that code is concocted in such a way that the call tom willgo wrong.So, consistency in general is hopeless for behavioral views. As a consequence, forthe purpose of consistency checking only, we must turn to the following situation:Assumption 2 The root behavior is �xed and known.12

Having set up the necessary assumptions, our goal is to substantiate the follow-ing:Theorem 5.2 Consistency checking of behavioral views can be reduced to consis-tency checking of ordinary method schemas.We �rst have to agree in what form the view speci�cation is presented to theconsistency checker. For the view behavior this is clear from De�nition 4.2. Forthe view population, this is less clear: all we know about a view population is thatit is a family of queries. The approach we take here is not to tie ourselves to oneparticular query language, but rather to depart from a more abstract description ofthe view population, which merely indicates how the view classes relate to the rootclasses. Thereto we de�ne:De�nition 5.3 A class correspondence between root schema R and a view schemaV is a binary relation from the set CR of class names in R to the set CV of classnames in V (i.e., a subset of CR � CV).A population � satis�es a class correspondence if for each root instance I withunderlying instance I0, and for each c 2 CV , we have �(I)(c)� SfI0(c0) j (c0; c) 2 g.In other words, a population satis�es if each object belonging to a view class cbelongs to some root class c0 such that (c0; c) 2 .Note that, if the population queries are expressed in recursion-free Datalog, itis e�ectively decidable whether a given population satis�es a given class correspon-dence, using query containment tests [19, 3]. Alternatively, one may express popu-lation queries using a many-sorted logic (with the root class names as the sorts), inwhich the required containments can be syntactically enforced.We can now present:Algorithm Consistency checking.Input: A class correspondence and a view behavior (�; �).Output: An ordinary method schema that is consistent if and only if the viewbehavior is consistent for all populations satisfying .Description: We begin by \attening" V and �. This means that we explicitlyadd the resolutions of all view method de�nitions at all classes where they arewell de�ned. The class hierarchy in V is now no longer needed. We similarlyatten R and the root behavior.We now de�ne the desired method schema S. The set of class names equals. The intuition behind a class (c0; c) 2 is that it stands for the objects inview class c coming from root class c0.13

Every coded view method de�nition of � at some class6 c, is incorporated inS at all classes of the form (c0; c) 2 .For every method name m0 in R, every class (c0; c) 2 such that m0 is wellde�ned at c0, and every i 2 �, we do the following:1. Determine the set P 0 of possible output classes in the root behavior ofa method call m(x) with x in class c0. Let P := fd 2 CV j 9c0 2 P 0 :(c0; d) 2 g. Then add the base method declaration m0iv@(c0; c) : Sd2P dto S.2. (We do this only if m0 is coded.) Let the de�nition of m0@c0 be �x:t0,and let t0(i) be t0 in which every occurring method name ` on which �i isde�ned, is replaced by `�i(`). Then we add the coded method de�nitionm0(ic;i)@(c0; c) = �x:t0(i) to S.Now every view method de�nition in � of the form m@c = import value m0is incorporated in S by adding the calls m@(c0; c) = �x:m0iv(x) at each class(c0; c) 2 . So in e�ect we have changed a value import into a call to a virtualbase method.Similarly, every view method de�nition in � of the form m@c = import codem0 with i is incorporated in S by adding the calls m@(c0; c) = �x:m0(ic;i)(x)at each class (c0; c) 2 .A detailed proof of correctness of this algorithm has been omitted from thisextended abstract; however, we make the following remarks:1. The only non-constructive step in the algorithm is the determination of theoutput type P 0 of a given method call in the root behavior. The root behaviorforms, together with the root schema, an ordinary method schema. The crucialobservation now is that the known techniques for method schema consistencychecking [5] can be adapted for output type inference. (Actually, conversely,one can even prove in general that consistency checking and termination anal-ysis of method schemas can be reduced to output type inference.)2. A second crucial observation is that the algorithm does not change the \nature"of the codes used in the view or root behavior. More speci�cally, if the methodsin the input to the algorithm are monadic, or recursion-free (the two concretecases where consistency checking is decidable [5]), then so are the methods inthe output.We can thus conclude that we indeed have established a reduction from view con-sistency to ordinary consistency, at least for those cases where the latter problem isknown to be decidable.7 Hence, Theorem 5.2, under this interpretation, is proven.6For the sake of notational simplicity, we consider only methods having only one argument.7Technically speaking, the reduction is a Turing reduction rather than a many-one reduction.14

6 Concluding remarksWe hope the formalization we have presented will be useful to designers and de-velopers of OO view systems, who were lacking a guiding model of especially thebehavioral aspects of such systems.One can easily imagine useful variations of our two core primitives import valueand import code. One such variation is what could be called overloaded valueimport : try �rst to resolve a given method call in the view, and if this fails, trysecond to import its value from the root.One can also imagine extensions to the basic programming model provided bymethod schemas that are useful in view programming. One such extension is a casestatement, by which we can discriminate the actions to be performed on some viewobject on the basis of the root class it comes from. Note that extensions like this onedo not necessarily increase the expressive power of the formalism; for example, suchcase statements can alternatively be implemented using auxiliary methods that areadded to the root database before construction of the actual view.Our core model can be also extended to capture OO view features suggested byAbiteboul and Bonner [1], which space limitations prevented us from discussing inthis extended abstract. For example:Hiding: It is straightforward to allow for certain parts of the view schema to behidden to the user of the view. This is desirable, e.g., for auxiliary methodsused in the construction of the view. (A good example is the method old riskin Example 3.1.)Object creation: This is well understood from the theory of OO query languages(e.g., [4, 20]); one creates a new object as a function of a tuple of exist-ing objects. For example, consider Family objects created as a function of(father;mother) pairs. We can easily model such an example by augment-ing the root database, before actual view construction, with an intermediatelayer holding the class Family and base method declarations father@Family :Person and mother@Family : Person. Now view construction proceeds asusual. The system of course has to keep track of what is in the real rootdatabase and what is in the intermediate layer of newly created objects (tab-ulation techniques for this purpose were described by Abiteboul and Bonner,who referred to newly created objects as \imaginary").AcknowledgmentsWe are indebted to Cassio Souza dos Santos for his contributions to the early stagesof this research. We also thank Claude Delobel for a number of inspiring discussions.15

References[1] S. Abiteboul and A. Bonner. Objects and views. In J. Cli�ord and R. King,editors, Proceedings of the 1991 ACM SIGMOD International Conference onManagement of Data, volume 20:2 of SIGMOD Record, pages 238{247. ACMPress, 1991.[2] S. Abiteboul and G. Hillebrand. Space usage in functional query languages. InG. Gottlob and M.Y. Vardi, editors, Database Theory|ICDT'95, volume 893of Lecture Notes in Computer Science, pages 439{454. Springer-Verlag, 1995.[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.[4] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive.In J. Cli�ord, B. Lindsay, and D. Maier, editors, Proceedings of the 1989 ACMSIGMOD International Conference on the Management of Data, volume 18:2of SIGMOD Record, pages 159{173. ACM Press, 1989.[5] S. Abiteboul, P.C. Kanellakis, S. Ramaswamy, and E. Waller. Method schemas.Journal of Computer and System Sciences, 51(3):433{455, December 1995.[6] S. Abiteboul, P.C. Kanellakis, and E. Waller. Method schemas. In Proceedings9th ACM Symposium on Principles of Database Systems, pages 16{27. ACMPress, 1990.[7] G. Castagna. Object-Oriented Programming: A Uni�ed Foundation. Birk�auser,1997.[8] B. Courcelle. Recursive applicative program schemes. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, volume B, chapter 9. Elsevier, 1990.[9] C. Delobel, M. Kifer, and Y. Masunaga, editors. Deductive and Object-OrientedDatabases, volume 566 of Lecture Notes in Computer Science. Springer-Verlag,1991.[10] G. Guerrini, E. Bertino et al. A formal model of views for object orienteddatabase systems. Theory and Practice of Object Systems, 3(3), 1997.[11] G.G. Hillebrand, P.C. Kanellakis, and S. Ramaswamy. Functional program-ming formalisms for OODBMS methods. In A. Dogac et al., editors, Advancesin Object-Oriented Database Systems, volume 130 of NATO ASI Series F: Com-puting and Systems Sciences, pages 73{99. Springer, 1994.[12] P. Kanellakis, C. L�ecluse, and P. Richard. The O2 data model. In F. Bancilhon,C. Delobel, and P. Kanellakis, editors, Building an object-oriented databasesystem: The story of O2, chapter 3. Morgan Kaufmann, 1992.16

[13] W. Kim and W. Kelley. On view support in object-oriented database systems. InW. Kim, editor, Modern Database Systems: The Object Model, Interoperability,and Beyond, pages 108{129. ACM Press, 1995.[14] R. Motschnig-Pitrik Requirements and comparison of view mechanisms forobject-oriented databases. Information Systems, 21(3):229-252, 1996.[15] H.A. Kuno and E.A. Rundensteiner. The MultiView OODB view system: De-sign and implementation. Theory and Practice of Object Systems, 2(3):202{225,1996.[16] E.A. Rundensteiner. A classi�cation algorithm for supporting object-orientedviews. In Proceedings 3rd International Conference on Information and Knowl-edge Management, pages 18{25. ACM Press, 1994.[17] M.H. Scholl, C. Laasch, and M. Tresch. Updatable views in object-orienteddatabases. In Delobel et al. [9], pages 189{207.[18] C. Souza dos Santos. Design and implementation of object-oriented views. InN. Revell and A. Min Tjoa, editors, Database and Expert Systems Applications,Lecture Notes in Computer Science, pages 91{102. Springer, 1995.[19] J. Ullman. Principles of Database and Knowledge-Base Systems, volume II.Computer Science Press, 1989.[20] J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens. On thecompleteness of object-creating database transformation languages. Journal ofthe ACM, 44(2):272{319, 1997.[21] E. Waller. Schema updates and consistency. In Delobel et al. [9], pages 167{188.A Formal de�nitions concerning method schemasSyntax. We use the following kinds of syntactical symbols: class names ; methodnames ; and variables. Each method name has an associated arity, a natural number.A declaration is an expression of the formm@c1; : : : ; cnwhere m is a method name of arity n, and c1, . . . , cn are class names.A base method declaration is an expression of the formm@c1; : : : ; cn : d1 [� � � [d`where m@c1; : : : ; cn is a method declaration and d1, . . . , d` are class names.17

A pre-schema is a triple (C;�;�0), where C is a set of class names, � is a partialorder on C, and �0 is a set of base method declarations with class names from C,such that there are no two di�erent base method declarations for the same methoddeclaration.Terms are inductively de�ned as follows:1. Each variable is a term;2. If t1; : : : ; tn are terms, and m is a method name of arity n, then m(t1; : : : ; tn)is a term.A coded method de�nition is an expression of the formm@c1; : : : ; cn = �x1; : : : ; xn:twhere m@c1; : : : ; cn is a method declaration, x1, . . . , xn are distinct variables, andt is a term in which only these variables occur.Let S0 = (C;�;�0) be a pre-schema. A behavior for S0 is a set �1 of codedmethod de�nitions with classes from C such that1. the set M0 of method names occurring in �0 is disjoint from the setM1 = fm j there is a method declaration m@ : : : occurring in �1g:2. all method names occurring in �1 are in M0 [M1.3. there are no two di�erent coded method de�nitions for the same method dec-laration.The elements of the set M0 are called base method names, and those of M1 codedmethod names.A method schema S consists of some pre-schema S0 together with some behavior�1 for S0. Let us �x a method schema S in what follows.Let c1, . . . , cn be class names in S, and let m be a method name. Then m issaid to be well de�ned at c1; : : : ; cn in S if there exists a unique method declarationm@c01; : : : ; c0n occurring in S such that ci � c0i for i = 1; : : : ; n. If this is the case,m@c01; : : : ; c0n is called the resolution of m at c1; : : : ; cn in S.8Note that, instead of using only the class of the �rst argument (the \receiver")for determining method resolution, we use all arguments simultaneously (this mech-anism is known as \multi-methods" [7]).98The resolution of m at c1; : : : ; cn is part of either a base method declaration or a coded methodde�nition. It will be convenient to refer to this base declaration or coded de�nition also as theresolution of m at c1; : : : ; cn.9The use of multi-methods instead of the more common receiver-based methods is more a designchoice than a crucial aspect of method schemas.18

Semantics. Formally, we assume given a universe O of objects.An instance I of S is a mapping on the class and base method names of S, suchthat:1. For each class name c, I(c) is a �nite subset of O, such that c 6= c0 impliesI(c)\ I(c0) = ;. The union Sc0�c I(c0) is denoted by I�(c). If o 2 I(c) then wesay that o belongs to class c.2. For each base method name m of arity n, I(m) : On ! O is a partial function.Let o1; : : : ; on 2 O and let ci be the class name to which oi belongs, fori = 1; : : : ; n. Then I(m)(o1; : : : ; on) is de�ned if and only if m is well de�nedat c1; : : : ; cn. In this case, if the resolution of m at c1; : : : ; cn ism@c01; : : : ; c0n : d1 [� � � [d`then I(m)(o1; : : : ; on) must be an element of I�(d1) [� � � [I�(d`).In what follows we �x an instance I .Instantiated terms over I are de�ned inductively just like terms, except that westart from objects in I instead of from variables.A redex is an instantiated term of the form m(o1; : : : ; on), where m is a methodname and o1, . . . , on are objects.Let t be an instantiated term that is not an object. The �rst redex of t isinductively de�ned as follows:1. If t is a redex, it is its own �rst redex.2. If t is not a redex, and of the form m(t1; : : : ; tn), then the �rst redex of t isthe �rst redex of ti, where i 2 f1; : : : ; ng is the smallest such that ti is not anobject.Let t be an instantiated term over I that is not an object. The reduction of t,denoted by �(t), is de�ned as follows. Let r = m(o1; : : : ; on) be the �rst redex of t,and let ci be the class name to which oi belongs, for i = 1; : : : ; n.� If m is not well-de�ned at c1; : : : ; cn, then �(t) is unde�ned. We denote thisby �(t) = ?.� If m is a base method well-de�ned at c1; : : : ; cn, then �(t) is obtained from tby replacing the leftmost occurrence of r in t by the object I(m)(o1; : : : ; on).� If m is a coded method well-de�ned at c1; : : : ; cn, letm@c01; : : : ; c0n = �x1; : : : ; xn:t0be the corresponding resolution. Let t0(o1; : : : ; on) be the ground term obtainedfrom t0 by replacing each occurrence of xi by oi, for i = 1; : : : ; n. Then �(t) isobtained from t by replacing the leftmost occurrence of r in t by t0(o1; : : : ; on).(Note that �(t) depends on the method schema S and the instance I , so formallywe should have written �S;I(t).) 19

