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Abstract
    The increasing complexity of todays software systems makes 

modeling an important phase during the software development 
process, both, on the level of requirement analysis and the 
system design. The ISO-standardized specification language Z 
can be used for a formal underpinning of these activities. In 
particular, the Z Method allows for relating Requirements and 
System Designs via formal refinement notions. In this tutorial 
we present the interactive theorem prover environment HOL-Z 
(built as plug-in of Isabelle/HOL) that supports formal reasoning 
over Z specifications and formal proof on refinements. The 
system achieved meanwhile a reasonable degree of auto–
mation such that several substantial case studies (CVS Server, 
DARMA funded by Hitachi) had been realized, involving both 
refinement as well as temporal reasoning.



  

My Credo's and My Background 
    ● Thesis: THERE IS NO SINGLE FORMAL METHOD 

● Thesis: FORMAL METHODS MUST BE INTEGRATED
    INTO A (COMPANY-SPECIFIC) SE – WORKFLOW

● Thesis: TOOL-CHAINS MUST FOLLOW METHOD
    AND WORKFLOW/PRAGMATICS, I.E.
    THE METHODOLOGY.



  

My Credo's and My Background 
    ● I am a Formal Methods Engineer.

I designed Tool-Chains for:
● process-oriented refinement(“top-down”, => HOL-CSP)
● data-oriented refinement     (“top-down”, => HOL-Z)
● object-oriented refinement  (“top-down, MDE”, =>HOL-OCL)
● test-oriented                        (“reverse-engineering”, 

 => HOL-TestGen
● code-verification       (“bottom-up”, =>HOL-Boogie/C)

according the needs of my “clients” 



  

Outline of HOL-Z Tutorial
● Motivation and Introduction

● Foundations: Z, HOL and Z-Semantics in HOL 

● The HOL-Z System

● Advanced Modelling Scenarios

● Theorem Proving in HOL-Z

● Case Studies

● Conclusion



  

Motivation and Introduction



  

Motivation and Introduction
Why Z ?



  

Motivation and Introduction
Why Z ? 

●  Z is:
–  a fairly old, but a mathematically well-defined FM
–  ISO standardized (ISO/IEC 13568:2002, Intern. Standard.)

– inofficial publication standard for FM papers
– has nice text books (Spivey's “Z Referece Manual”, 

Woodcocks & Davies “Using Z”, ...)
– ... but few proof-environments

(CadiZ (experimental), Z/EVES (outdated),
 ProofPower (HOL4 - based),
 HOL-Z (Isabelle/HOL - based))



  

Motivation and Introduction
Why Z ? 

●    what can you do with Z:
– top-down refinement development method

(forward-simulation, backward-simulation)

– generate code, animators (ZAP, ...)

– it can be used for test-case generation, too.



  

Motivation and Introduction
Why Z in HOL?

● Z Semantics via Embedding in 
Higher-Order Logic (HOL)

– Advantage I :  Greatly Simplifies Semantics!

– Advantage II: Gives Basis for TOOL-SUPPORT
   within HOL provers
   (Isabelle, HOL4, ...) 



  

Motivation and Introduction
Why Z in HOL?

● Z Semantics via Embedding 
Object Language and a Meta-Language.

Z

ZF

HOL[Wolff&al, 96]

[Gordon,Melham, 93]

[ISO Standard, 03]



  

Foundations: Z, HOL and Z in HOL 
● The Language Z: 

– Z & Types
– a Guided Tour through the Syntax

● HOL & Embeddings
– Semantics for Z expressions & 

predicates in HOL
– Semantics for Z schema expressions



  

Foundations: Z, HOL and Z in HOL
Syntax

●    Z is:
– an implicitly simply typed language

E :: τ 

where the types were given by:

τ := Z 
     | τ x · · · x τ
     | : tag

1
k τ , . . . , tag 

n
kτÚ

     | P(τ)



  

Foundations: Z, HOL and Z in HOL 
Semantics

●  HOL is:
– a simply typed language based on l-terms:

E := C | V | lx. E | E E

E :: τ 

where  τ :=  α | τ f τ | χ(τ τ )



  

Foundations: Z, HOL and Z in HOL 
Semantics

●  HOL has:
– declaration principles:

arities   χ :: “kind-declaration”

int, bool, α set  α  list,...
consts  c :: “τ“

True, False :: “bool”
_ = _ : “α f α f bool“
_v_,_¶_ : “bool f bool f bool”
0 :: “nat”, 
insert :: “α f α set f set“, ...



  

Foundations: Z, HOL and Z in HOL 
Semantics

●  HOL has:
– axioms (for a core of 9 axioms only):

axiom <name> : “E”

axiom refl : “x = x”
       sym : “s = t ⟹ t = s”

mp : “P ⟹ PfQ ⟹ Q”

subst: ““s=t; P s‘⟹P t”  
... 

where  ⟹ is the meta-implication. We write 
“A1;...; An‘⟹B   for    A1⟹...⟹ An⟹B.



  

Foundations: Z, HOL and Z in HOL 
Semantics

●  HOL has:
– conservative extension schemes

like “constant definition”:

defs <name> : “c ≠ E”

where E closed and constant c “fresh”

defs All_def : “A ≠ lP.  (P = lx.True)”
       
(we write A x. P x for  A(lx. P x)...)



  

Foundations: Z, HOL and Z in HOL 
Semantics

●  HOL has:
– conservative extension schemes

like “type definition”:

typedef  α χ = “{x::τ | E}”

where E closed and χ “fresh”. 



  

Foundations: Z, HOL and Z in HOL 
Semantics

●  HOL has:
– conservative extension schemes

like “type definition”:

It abbreviates:
arities α χ “”
consts Abs_χ :: τ set f α χ

Rep_χ :: α χ f τ set
axioms Abs_χ_inverse : “Abs_χ (Rep_χ x) = x”

Rep_χ_inverse : “E x   
Rep_χ (Abs_χ x) = x”



  

Foundations: Z, HOL and Z in HOL 
Semantics

●  HOL vs.  Z : a first summary 
– Z: a rich language with a particular

system modeling methodology (as we will see!)

– HOL : minimalistic (small language, few powerful
priciples), emphasis on clean foundations.

HOL is the MACH of the Logics !!!



  

From Foundations to Pragmatics
Semantics

●  HOL is based on conservative extension 
schemes. This
– guarantees consistency provided

that “core HOL” is consistent
– is still expressive enough:

entire HOL-library comprising 
theories on sets, orderings, numbers,
cartesian products, type sums,
recursion, data-types is derived from
conservative definitions and the core axioms !!!



  

Foundations: Z, HOL and Z in HOL 
Syntax

●    (typed) Expressions E in Z are:
– arithmetic: 1,2,3, a + b, a / b, ...

 

– pairs:(a
1
,..., a

n
), pattern-abstractions: l(a

1
, ..., a

n
).E

– records: :tag
1 
k Ε , . . . , tag

n 
k ΕÚ



  

Foundations: Z, HOL and Z in HOL 
Semantics

●    (typed) Expressions E in Z are:
– arithmetic: 1,2,3, a + b, a / b, ... 

semantics:  Library Theory Arith with type 
     type int = Z

– pairs:(a
1
,...,a

n
), pattern-abstractions: l(a

1
, ..., a

n
).E

semantics: Library Theory Pair with type _x_ 

– records: :tag
1 
k τ , . . . , tag

n 
k τÚ

semantics: Library Theory Pair with type 
    plus some own pre-computation/
    reordering in HOL-Z



  

Foundations: Z, HOL and Z in HOL 
Syntax

●    (typed) Expressions E in Z are:
– set constants : N,Z ( :: P(Z) !!! )

– set constructors : a e B,  {a e B | P(a)   f(a)}, 



  

Foundations: Z, HOL and Z in HOL 
Semantics

●    (typed) Expressions E in Z are:
– set constants : N,Z ( :: P(Z) !!! )

constdefs  N ≠ {a :: int | 0  a}, ...
 Z  ≠ {a :: int | True}, ...   

 (HOL comprehension!)

– set constructors : a e B,  {a e B | P(a)   f(a)},

constdefs “f ´ S ≠ {a :: int | Ey. a = f y}”
                “{a e B | P(a)   f(a)} ≠ 

f ´ {x | a e B ¶ P(a)}  



  

Foundations: Z, HOL and Z in HOL 
Syntax

●    (typed) Expressions E in Z are:
– set predicates: AzB 

– set operators: AUB, AIB, AxB, RoS,

– set operators:F(A) , P(A)  ( P ::  P(P(A)xPP(A)) !!! )



  

Foundations: Z, HOL and Z in HOL 
Syntax

●    (typed) Expressions E in Z are:
– set predicates: AzB 

constdefs AzB ≠ Aa. a e A f a e B

– set operators: AUB, AIB, AxB, RoS, R±S 
constdefs AUB ≠ {a | a e A v a e B}

– set operators: P(A)  (P ::  P(P(A)xPP(A)) !!! ), F(A) 
constdefs     P(A) ≠ {B | BzA}

F(A) ≠ {B | BzA ¶ finite B}



  

Foundations: Z, HOL and Z in HOL 
Semantics

●    (typed) Expressions E in Z are:
– “function” constructors:

AjB : relation from A to B

AßB : partial function from A to B

       AfB : total function from A to B

A©B : bijective partial function from A to B
A¬B : total finite bijection from A to B
A˚B : partial finite surjection from A to B
 ...



  

Foundations: Z, HOL and Z in HOL 
Syntax

●    (typed) Expressions E in Z are:
– “function” constructors:

AjB ≠ {r | r z A x B}

AßB ≠  {r e AjB | Aaedom r.x,yeB. 
(a,x)er¶(a,y)erfx=y}

       AfB ≠  ...
A©B ≠ ... 
A¬B ≠ ...
A˚B ≠ ...
 ...



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Predicates P in Z are:
– E = E, x e E, E z E, ...

– AxeE   E, ExeE   E, ...

– E ¤ E, E v E, E ¶ E, E f E, !E,...



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Predicates P in Z are:

as in HOL



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Toplevel-Constructs
– abstract types

[book, date, user]
– axiomatic definitions (1)

 _  _ :P (date x date)
 total_ordering (__)

– axiomatic definitions (2)
x ≠ E



  

Foundations: Z, HOL and Z in HOL 
Semantics

● Toplevel-Constructs
– abstract types

arities book :: “...” ...

– axiomatic definitions (1)
consts _ _ :(date x date) set

 axiom order_axdef :
“_  _ e P(date x date) ¶ 

  total_ordering (__)“

– axiomatic definitions (2)
x ≠ E



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Toplevel-Constructs
– schema declarations:

where A is now considered to special lexical class 
called schema names.

      A
d

1
 : T

1

    ...                    --   declaration part
d

n
  : T

n
 

P(d
1
,..,d

n
)            --  predicative part 



  

Foundations: Z, HOL and Z in HOL 
Semantics

● Toplevel-Constructs
– schema declarations:

A   ≠ 

      
d

1
 : T

1

    ...                    --   declaration part
d

n
  : T

n
 

P(d
1
,..,d

n
)            --  predicative part 



  

Foundations: Z, HOL and Z in HOL 
Semantics

● Toplevel-Constructs
– schema declarations:

ISO-STANDARD:

A   ≠    { d
1
 : T

1
;...; d

n
 : T

n
| P(d

1
,..,d

n
)  :d

1
kd

1
,.., d

n
kd

1
Ú}



  

From Foundations to Pragmatics
Semantics

● Toplevel-Constructs
– schema declarations:

EQUIVALENTLY : 
SCHEMAS AS FUNCTIONS:

A ≠  l(a
1
,...,a

n
) • a

1
eT

1 
¶...¶ a

n
eT

n
 

¶ P(a
1 
,..., a

n
)  



  

From Foundations to Pragmatics
Semantics

● Toplevel-Constructs
– schema declarations:

OUR VERSION IN HOL-Z 
(robust against alpha conversion!)

A ≠  SB “a
1
“ka

1
,...,“a

n
“ka

n
 • a

1
eT

1 
¶...¶ a

n
eT

n
 

¶ P(a
1
,...,a

n
)  



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Toplevel-Constructs: schemas with imports:

 

      A
x

1
 : S

1

x
2
 : S

2
 

P(x
1
,x

2
) 

      B
A; A';
x

2
  : T 

Q(x
1
,x

2
,x'

1
,x'

2
)

      C
B;
z  : seq(A) 

R(x
1
,x

2
,x'

1
,x', z) 



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Toplevel-Constructs: schemas with imports:

     A ≠  l(x
1
,x

2
) • 

  x
1
eS

1
¶x

2
eS

2
 

    ¶ P(x
1
,x

2
)

 

      C
B;
z  : seq(A) 

R(x
1
,x

2
,x'

1
,x', z) 

      B
A; A';
x

2
  : T 

Q(x
1
,x

2
,x'

1
,x'

2
)



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Toplevel-Constructs: schemas with imports:

     A ≠  l(x
1
,x

n
) • 

  x
1
eS

1
¶x

2
eS

2
 

    ¶ P(x
1
,x

2
)

 

      C
B;
z  : seq(A) 

R(x
1
,x

2
,x'

1
,x', z) 

B ≠  l(x
1
,x

2
,x'

1
,x'

2
) • 

A(x
1
,x

2
)¶A(x'

1
,x'

2
)¶

x
2
eT¶

Q(x
1
,x

2
,x'

1
,x'

2
)



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Toplevel-Constructs: schemas with imports:

     A ≠  l(x
1
,x

2
) • 

  x
1
eS

1
¶x

2
eS

2
 

    ¶ P(x
1
,x

2
)

B ≠  l(x
1
,x

2
,x'

1
,x'

2
) • 

A(x
1
,x

2
)¶A(x'

1
,x'

2
)¶

x
2
eT¶

Q(x
1
,x

2
,x'

1
,x'

2
)

C ≠  l(x
1
,x

2
,x'

1
x'

2
z) • 

B(x
1
,x

2
,x'

1
,x'

2
)¶

x
2
eseq(asSet A)¶

R(x
1
,x

2
,x'

1
,x'

2
, z)



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Toplevel-Constructs: schemas with imports:

     A ≠  SB “x
1
”kx

1
,”x

2
”kx

2
• 

  x
1
eS

1
¶x

2
eS

2
 

    ¶ P(x
1
,x

2
)

B ≠ SB “x
1
”kx

1
,”x

2
”kx

2

      
“x'

1
”kx'

1
,”x'

2
”kx'

2•
 

A(x
1
,x

2
)¶A(x'

1
,x'

2
)¶

x
2
eT¶

Q(x
1
,x

2
,x'

1
,x'

2
)

C ≠ SB “x
1
”kx

1
,”x

2
”kx

2 
“x'

1
”kx'

1
,”x'

2
”kx'

2
”z”kz• 

B(x
1
,x

2
,x'

1
,x'

2
)¶

x
2
eseq(asSet A)¶

R(x
1
,x

2
,x'

1
,x'

2
, z)



  

Foundations: Z, HOL and Z in HOL 
Syntax

● Toplevel-Constructs: Schema Calculus
– schema decoration: S'   

DS 
XS  

– schema expressions: A ¶ B
 

S ¤ S, S v S,  
S f S, !S,...

– schema quantification AS   S, ES   S, ...



  

Foundations: Z, HOL and Z in HOL 
Semantics

● Toplevel-Constructs: Schema Calculus
– schema decoration: S' renaming signature (as bef.)  

DS ≠ S ¶ S' 
XS ≠ DS ¶ (x

1
=x'

1 
¶...¶ x

n
=x'

n
)

– schema expressions: A ¶ B ≠ l(x
1
...x

n
).A(x

i1
,...,x

im
) 

    ¶ B(x
j1
,...,x

jm
)

S ¤ S, S v S,    ...  
S f S, !S,...     ...

– schema quantification AS   S, ES   S, ...



  

Foundations: Z, HOL and Z in HOL 
Syntax and Semantics

● Summary:
– HOL is a good (simple) Meta-Language for Z,

even for the Schema-Calculus
– schemas are “formulas with a signature” (binding)
– schema join:

● union of signatures
● conjunction of prediates

– HOL-Z: schemas were represented as 
characteristic functions – the structure
is preserved (no unfolding, flattening, etc, ...)



  

The HOL-Z System
● Based on an advanced, interactive proof-

environment: Isabelle/HOL
● Conceived as Plugin into the Isabelle/ISAR

architecture
● Provides Parser, conservative semantic

theories, own proof procedures
● A refinement package to support 

top-down development



  

The HOL-Z System
● The HOL-Z System Architecture
● The Workflow

Underlying Assumption:
Designer and Proof-Engineer not
necessarily the same person !



  

The HOL-Z System
Component View

SML - System

Isabelle/HOL

HOL-Z

Proof-General/Emacs

JAVA 1.4

Zeta
Typechecker

   HOL-Z
     Adaptor



  

The HOL-Z System
Workflow View

.tex

.holz

Emacs/ 
Zeta

.thy

Proof
General/ 
HOL-Z



  

The HOL-Z System
ProofGeneral

checked area
(non-editible)

unchecked area
(editible)

system reaction
(current proof state,
 current theory state,
 errors ... )



  

The HOL-Z System
Zeta

● Zeta is conceived as a type-checker on 
Z documents

● Z documents were written by LaTeX Markups

● Proof documents were written:
– by e-mail format for Z (in future obsolete)
– by LaTeX Markups
– and ISAR commands (for proof tactics)



  

The HOL-Z System
Zeta

● Zeta is conceived as a type-checker on 
Z documents

● Z documents were written by LaTeX Markups

● Proof documents were written:
– by e-mail format for Z (in future obsolete)
– by LaTeX Markups
– and ISAR commands (for proof tactics)



  

The HOL-Z System
Z LaTeX : Logic

● Math HOL-Z ZETA
! ~, not, \<lnot> \lnot unary
pre PRE \pre unary
¶ &,\<land>, /\ \land left
v |, \<lor>, \/ \lor left
f -->, \<implies> \implies right
¤ = \iff left
A !, \<forall> \forall
E ?,\<exists> \exists
¡ project \project left
\ hide \hide left
; not supported \semi left
>> not supported \pipe left
if if \IF
then then \THEN
else else \ELSE
let let \LET



  

The HOL-Z System
Z LaTeX : Sets

● Math HOL-Z ZETA
P Pow, \<power> \power pregen
F Fin, \<finset> \finset pregen
0  {} \emptyset word
# card \# word
I Int, \<cap> \cap inop 4
U Un, \<cup> \cup inop 4 
- - \setminus inop 3
z <=, \<subseteq> \subseteq inrel
 < \subset inrel
= = = = inrel
 ~= \neq inrel
 :, \<in> \in inrel
 ~: \<notin> \notin inrel



  

The HOL-Z System
Z LaTeX : Relations and Functions
● Math HOL-Z ZETA

å |->,\<mapsto> \mapsto inop 1
x * \cross inop 1 
dom dom \dom word
ran ran \ran word
o o \circ inop 4
; \<semi> \comp inop 5
± (+),\<oplus> \oplus inop 5
~ not supported \inv postop
r <|, \<dres> \dres inop 6
t |>, \<rres> \rres inop 6
y <-|, \<ndres> \ndres inop 6
u |->, \<nrres> \nrres inop 6
+ not supported \plus postop
* not supported \star postop



  

The HOL-Z System
Z LaTeX : Relations and Functions

● Math HOL-Z ZETA
f(.x.) f%^x,f\<rappll>x\<rapplr>  f(x) (* relational application *)
* \<star> \star postop
j <->,\<rel> \rel ingen 
ß -|->, \<pfun> \pfun ingen
f --->, \<fun> \fun ingen
© >-|->,\<pinj> \pinj ingen
ƒ >-->, \<inj> \inj ingen
˚ -|->>, \<psurf> \psurj ingen
∆ -->>,\<surj> \surj ingen
¬ >-->,\<bij> \bij ingen
⤁ -||->\<ffun> \ffun ingen
˙ >-||-> ,\<finj> \finj ingen
id id \id word
· \<limg> \limg -
‚ \<rimg> \rimg -



  

The HOL-Z System
Z LaTeX : Integers

● Math HOL-Z ZETA
Z %Z,\<num> \num word
N %N,\<nat> \nat word
.. .., \<upto> \upto inop 2
+ + + inop 3
- - - inop 3
* * * inop 4
div div \div inop 4
mod modl \mod inop 4
< < < inrel
 <=,\<le> \leq inrel
> >, > inrel

  >=,\<geq> \geq inrel



  

The HOL-Z System
Z LaTeX : Integers

● Math HOL-Z ZETA
  \langle -
 \rangle -
seq seq \seq pregen
iseq iseq \iseq pregen
in seqin \inseq inrel
^ seqconcat \cat inop 3
prefix prefix \prefix inrel
suffix suffix \suffix inrel
¡ |` \filter word
?? ´| \extract word



  

The HOL-Z System
Z LaTeX : Toplevel

●    Math     HOL-Z    ZETA
– Modules

.thy - structure \zsection[name ... name]{name}

– Type Definitions
[type] arities type ... \begin{zed}

[type]
\end{zed}

– Axiomatic Definitions
\begin{axdef}

axiom <name> : ... f : E   \where pred(f)
\end{axdef}

f : E
P(f)



  

The HOL-Z System
Z LaTeX : Toplevel

●    Math     HOL-Z    ZETA
– Schema Definitions

constdef <name>: ... \begin[A]{schema}
x_1 : S1;
x_2 : S2

\where  
P(x_1,x_2)

\end{axdef}

      A
x

1
 : S

1

x
2
 : S

2
 

P(x
1
,x

2
) 



  

   

DEMO 



  

Theorem Proving in HOL-Z
● Introduction Theorem Proving in 

Isabelle/HOL
● HOL-Z library
● HOL-Z specific proof methods



  

Theorem Proving in HOL-Z 
Intro: Isabelle/HOL

● Hierachical Proof Documents

theory X
imports Y Z
begin

...
end



  

Theorem Proving in HOL-Z 
Intro: Isabelle/HOL

● Elements in theories are:
– arities (seen before)
– consts (seen before)
– constdefs (seen before)
– axioms (seen before)
– toplevel commands

declare thm [simp]
declare thm [intro!]
thm name  ...



  

Theorem Proving in HOL-Z 
Intro: Isabelle/HOL

● Elements in theories are:
– proofs

lemma name[modifier]:
“ E “
apply(method )

...
proof (method)
done



  

Theorem Proving in HOL-Z 
Intro: Isabelle/HOL

● Elements in theories are:
– proofs

lemma name[modifier]:
“ E “
have A : “sublemma” ...

...
have Z : “sublemma” ...
show ?thesis:

apply(...) ... done
qed



  

Theorem Proving in HOL-Z 
Intro: Isabelle/HOL

● Proof Methods:
– unfolding unfold ...

– inserting a theorem insert 
into assumptions

– one-step-rewriting subst

– resolution rule, drule, erule, frule

– simplification simp

– tableau reasoner auto



  

Theorem Proving in HOL-Z 
Intro: Isabelle/HOL

● More can be found in the “Isabelle Book”:

LNCS 2283: 
T. Nipkow, L. C. Paulson, M. Wenzel:
Isabelle/HOL A Proof Assistant for
Higher-Order Logic,

● ... or the excellent system documentation!

http://isabelle.in.tum.de/



  

Theorem Proving in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific commands:
– import of ZeTa-Models:

use_holz “<holz>”
– new modifier:

<thm> [zstrip]
<thm> [zdecl[no]]
<thm> [pred[no]]

– new attributes:   declare <thm>[tc]



  

Theorem Proving in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific commands:
– new methods 

(stripping Z representation before use)
tc (infers typing predicates

 from declaration parts ...)
zunfold <thm>  
zfullunfold <thm> 
zrule <thm>, zdrule <thm>, zerule<thm>
zsubst <thm>



  

Theorem Proving in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific commands:
– new methods supporting schema calculus:

zturnstyleI   zturnstyleE

H  S    R

H  S¶x .  S(x)

   [S(?x)]

     ：

      R



  

Theorem Proving in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific commands:
– new methods supporting schema calculus:

zschallI   zschallE

A S   T    R

¶x. 

   [S(x)]

       ：

   T(xy)

   [S(?x),T(?xy) ]

              ：

               RA S   T
(*) (*)



  

Theorem Proving in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific commands:
– new methods supporting schema calculus:

 
    zpreI            zpreE

pre S    R

   

   S(y,?x', ?x!)

       [S(y,x',x!) ]

¶x'x!.         Rpre S 
(*) (*)



  

Theorem Proving in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific commands:
– new methods supporting schema calculus:

zschexI   zschexE

E S   T    R

E S   T

   

   S(?x)    T(?xy)

     [S(x); T(xy) ]

¶x.         R



  

Theorem Proving in HOL-Z
● Notation/Provisos 

of the previous schema rule schemes:
– x,x',x!,?x   denote vectors of variables (primed

variables, successor state variables, output variables,
meta variables) x1,...,xn

– xy denotes the concatenation of these vectors

– x denotes a permutation of a vector

– (*) stands for the proviso: y   is a vector of free variables
(not occuring in the hypothesis) corresponding to the 
schema signature of the conclusion (in the introduction 
rules or the first premise (in the elimination rules).



  

Advanced Modelling Scenarios

● Analysis (consistency, implementability)
● Refinement
● Modeling Temporal Properties



  

Advanced Modelling Scenarios
Refinement

● Concept (Top Down Development): 
Refine each operation opabs of a transition 
system sysabs = (σabs, initabs, opabs) to a  more 
concrete system sysconc = (σconc, initconc, opconc).

Chain the refinements:

sys1 k sys2 k ... k sysn 

to a version sysn amenable to a code generator. 



  

Advanced Modelling Scenarios
Refinement

● Concept: A (Transition-)System:
● States were encoded by a 

schema, where the predicative 
part contains the system invariant

● Operations were encoded by a schema
importing the state D via and X operator.

      op
Dσ;
x?  : S 
y!  : T
 . . .

      op
Xσ;
x?  : S 
y!  : T
 . . .

      σ
x1:T1; ... ; xn :Tn

Inv



  

Advanced Modelling Scenarios
Analysis (consistency,...)

● A Transitionsystem is consistent if:
● the set of initial states is non-empty:

Eσ  Init  
● a state invariant is satisfiable:

Eσ  Inv

● all operations op are implementable:

 Aσ   i?. PRE(σ   i?)  f Eσ'   (o!. σ   i?, σ'   o!)   op

where PRE(σ   i?) is the syntactic precondition of op. 



  

Advanced Modelling Scenarios
Analysis (consistency,...)

● Transitionsystem consistency is checks
in HOL-Z by a number of “analytical 
statements”, top-level commands that 
generate proof-obligations wrt. the system.

● Init-state non-emptyness: gen_state_cc “σ”

● Invariant non-emptyness: gen_state_cc “σ”

● Operation implementable: gen_op_cc “op”

● Proof-obligations can be referenced by the po com-
mand and discharged by conventional Isabelle proofs.



  

Advanced Modelling Scenarios
Refinement

● Concept (Refinement Conditions): 
● Give abstraction relation R : P(σabsxσconc) 

relating concrete and abstract states
● Init – Condition:

(σabs,σconc)eR f σabseInitabsf σconceInitcon



  

Advanced Modelling Scenarios
Refinement

● Concept (Refinement Conditions): 
● Give abstraction relation R : P(σabsxσconc) 

relating concrete and abstract states
● Init – Condition
● Preserve Enabledness:

 σabs        σ'abs       

 σconc       

R

opabs





  

Advanced Modelling Scenarios
Refinement

● Concept (Refinement Conditions): 
● Give abstraction relation R : P(σabsxσconc) 

relating concrete and abstract states
● Init – Condition
● Preserve Enabledness:

 σabs        σ'abs       

 σconc       

R

opabs


 σabs        σ'abs       

 σconc       

R

 σ'conc       

opabs

opconc



  

Advanced Modelling Scenarios
Refinement

● Concept (Refinement Conditions): 
● Give abstraction relation R : P(σabsxσconc) 

relating concrete and abstract states
● Init – Condition
● Preserve Enabledness:

Aσabs  dom(opabs), σconcInv. (σabs,σconc)R f σconcdom(opconc)

where dom(S) z Inv



  

Advanced Modelling Scenarios
Refinement

● Concept (Refinement Conditions): 
● Give abstraction relation R : P(σabsxσconc) 

relating concrete and abstract states
● Init – Condition; Preserve Enabledness:
● Refine

 σabs       

 σ'conc        σconc       

R
opconc



  

Advanced Modelling Scenarios
Refinement

● Concept (Refinement Conditions): 
● Give abstraction relation R : P(σabsxσconc) 

relating concrete and abstract states
● Init – Condition; Preserve Enabledness:
● Refine

 σabs       

 σ'conc        σconc       

R
opconc


 σabs        σ'abs       

 σconc       

R

 σ'conc       

R
opconc

opabs



  

Advanced Modelling Scenarios
Refinement

● Concept (Refinement Conditions): 
● Give abstraction relation R : P(σabsxσconc) 

relating concrete and abstract states
● Init – Condition; Preserve Enabledness:
● Refine

Aσabs  dom(opabs); σconc,σ'conc Inv. 
 (σabs,σconc)  R ¶ (σconc, σ'conc)  opconc

       f Eσ'abs  Inv. (σabs, σ'abs)  opabs ¶ (σ'abs,σ'conc)  R

where dom(S) z Inv



  

Refinement Support in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific top-level 
commands.
– declaring the refinement relation

set_abs “R” 
– or

set_abs “R” [functional]

for a functional refinement setting (simpler !)



  

Refinement Support in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific top-level 
commands.
– analytical command for generating the

init-condition (treated as HOL-Z proof-obligation)
refine_init “initabs” “initconc” 

– analytical command for generating the
init-condition (treated as HOL-Z proof-obligation)

refine_op   opabs      opconc



  

Refinement Support in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific commands:
– bookkeeping commands:

show_po
list_po
check_po 
check_po [except “po-class”]



  

Refinement Support in HOL-Z

● The HOL/ISAR command language
is extended by HOL-Z specific commands:
– discharge for proof obligations:

po <po-name>:
apply(method )

...
apply(method )
discharged



  

   

DEMO 



  

● Advanced Modelling Scenarios
Modeling Temporal Properties

●

More to come



  

Case Studies

● HOL-Z has been applied to several case 
studies:
– BirthdayBook 

academic example stemming from Spivey's ZRM 
for a small data base system where a relations
is refined by two arrays and a high-watermark

Contains sample proofs for analysis and refinement.



  

Case Studies

● HOL-Z has been applied to several case 
studies:
– DARMA

Client-Server Architecture for a Dignital 
Signature Specification. Clients may login,
logout, or authenticate a document in various 
sessions.
Design Document provided by industrial partner
(Hitachi).

Contains advanced proofs.



  

Case Studies

● HOL-Z has been applied to several case 
studies:
– CVS-Server

An abstract versioning system (with role-based
access control security model inside) is refined
towards a concrete configutation over a CVS-
managed repository in a POSIX – UNIX filesystem.



  

Conclusion
● Z is very similar to HOL.

● This leads to a cleaner understanding

● and useable, taylored proof-tools like 
HOL-Z !!!
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Sources
● avaibable under:

http://www.brucker.ch/projects/hol-z/

(based on Isabelle 2005)



  

Symbols

● 0ezUI { | }  x o FPNZ
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