
The Circus Testing Theory Revisited
in Isabelle/HOL

Abderrahmane Feliachi, Marie-Claude Gaudel, Makarius Wenzel
and Burkhart Wolff

Univ. Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405, France
CNRS, Orsay, F-91405, France

{feliachi, gaudel, wenzel, wolff}@lri.fr

Abstract Formal specifications provide strong bases for testing and
bring powerful techniques and technologies. Expressive formal specifica-
tion languages combine large data domain and behavior. Thus, symbolic
methods have raised particular interest for test generation techniques.
Integrating formal testing in proof environments such as Isabelle/HOL
is referred to as “theorem-prover based testing”. Theorem-prover based
testing can be adapted to a specific specification language via a repre-
sentation of its formal semantics, paving the way for specific support of
its constructs. The main challenge of this approach is to reduce the gap
between pen-and-paper semantics and formal mechanized theories.
In this paper we consider testing based on the Circus specification lan-
guage. This language integrates the notions of states and of complex data
in a Z-like fashion with communicating processes inspired from CSP. We
present a machine-checked formalization in Isabelle/HOL of this lan-
guage and its testing theory. Based on this formal representation of the
semantics we revisit the original associated testing theory.
We discovered unforeseen simplifications in both definitions and sym-
bolic computations. The approach lends itself to the construction of a
tool, that directly uses semantic definitions of the language as well as
derived rules of its testing theory, and thus provides some powerful sym-
bolic computation machinery to seamlessly implement them both in a
technical environment.

Keywords:
Formal Testing, Symbolic Computations, Isabelle/HOL, Circus.

1 Introduction

Test generation from formal specifications is an active research area. Several
theoretical frameworks and tools have been proposed for various kinds of formal
testing techniques and their resulting conformance and coverage notions [9].

We develop a formal test generation framework and tool for the Circus specifi-
cation language. This language combines elements for the description of complex
data and behavior specifications, via an integration of Z and CSP with a refine-
ment calculus[18]. Circus has a denotational semantics [14], which is based on
UTP [10], and an operational semantics that can be found in [2]. Here we present
an environment for Circus -based testing in the line of [2].

http://www.lri.fr/~feliachi
http://www.lri.fr/~mcg
http://www.lri.fr/~wenzel
http://www.lri.fr/~wolff
mailto:"Abderrahmane Feliachi" <feliachi@lri.fr>
mailto:"Marie-Claude Gaudel" <gaudel@lri.fr>
mailto:"Makarius Wenzel" <wenzel@lri.fr>
mailto:"Burkhart Wolff" <wolff@lri.fr>

2 A. Feliachi, M-C. Gaudel, M. Wenzel and B. Wolff

Formal environments like Isabelle/HOL [12] are usually applied for formal
proof developments. Integrating formal testing in such environments is referred
to as “theorem-prover based testing”. Theorem-prover based testing can be
adapted to a specific specification language via a representation of its formal
semantics, paving the way for specific support of its constructs. The main chal-
lenge of this approach is to reduce the gap between pen-and-paper semantics
and formal mechanized theories, especially to one amenable to efficient symbolic
computing. We present such a semantic theory for Circus, develop formally its
testing theory in Isabelle/HOL and integrate the result in an own testing envi-
ronment called HOL-TestGen/CirTA. Our environment comes with some basic
test selection criteria, and was applied to an industrial case study extracted from
an operational remote sensing system.

The main contribution of this paper is the representation of the symbolic
testing theory of Circus in Isabelle using the symbolic infrastructure of the prover.
We show how the original formalization can be much simplified using shallow
symbolic computations.

The paper is organised as follows: Section 2 briefly recalls the context of
this work, namely essential issues on Circus and Circus-based testing, the Is-
abelle/HOL formal environment, and Isabelle/Circus, an embedding of the de-
notational semantics of Circus in Isabelle/HOL, which makes it possible to reason
on Circus specifications; Section 3 discusses and describes our main choices for
embedding the symbolic notions necessary for generating symbolic tests from
Circus specifications; on these bases, Section 4 explains how the operational se-
mantics and the Circus testing theories have been formulated as Isabelle/HOL
definitions and theories, leading to some Isabelle/HOL tactics for symbolic test
generation; moreover, the definition of two basic test selection criteria is pre-
sented, as well as the instantiation of symbolic tests into concrete ones.

2 Context

2.1 Circus and Circus-based testing

Circus is a formal specification language which combines the notions of states
and complex data types in a Z-like style with a process-algebra in the tradition
of CSP. The language comes with a formal notion of refinement allowing a formal
development ranging from abstract specifications and to executable models and
programs. Circus has a denotational semantics [14] presented in terms of the
UTP [10], and a corresponding operational semantics [2]. UTP is essential for
providing a seamless semantic framework for states and processes. A simple
example of a Circus specification is given in fig. 1; it describes a Fibonacci-
number generator.

In [2] the foundations of testing based on Circus specifications are stated
for two conformance relations: traces inclusion and deadlocks reduction (usually
called conf in the area of test derivation from transition systems). The basis
of this work is an operational semantics that expresses in a symbolic way the
evolution of systems specified in Circus. Using this operational semantics, sym-
bolic characterizations of traces, initials, and acceptance sets have been stated

The Circus Testing Theory Revisited in Isabelle/HOL 3

channel out : N
process Fibonacci =̂ begin

state FibState == [x , y : N]
InitFibState =̂ x := 1; y := 1
InitFib =̂ out !1 → out !1 → InitFibState
OutFibState =̂ var temp : N • (temp := y ; y := x + y ; x := temp)
OutFib =̂ µX • out !(x + y) → OutFibState; X
• InitFib; OutFib
end

Figure 1. The Fibonacci generator in Circus

and used to define relevant notions of tests. Two symbolic exhaustive test sets
have been defined respectively for traces refinement and deadlocks reduction:
proofs of exhaustivity guarantee that, under some basic testability hypotheses,
a system under test (SUT) that would pass all the concrete tests obtained by
instantiation of the symbolic tests of the symbolic exhaustive test set satisfies
the corresponding conformance relation.

Testability hypotheses are assumptions on the SUT that are essential to
prove that the success of a testing campaign entails correctness. In the Circus
testing theory, the first testability hypothesis is that the SUT behaves like some
unknown Circus process SUTCircus . This means that, in any environment, the
execution of the SUT and SUTCircus give the same observations. In this context,
even though the SUT is not a Circus process, one can use refinement to compare
it to a given Circus specification. This requires, however, that events used in the
specification are perceived as atomic and of irrelevant duration in the SUT.
The tests are defined using the following notions:

– cstraces : a constrained symbolic trace is a pair composed of a symbolic trace
st and a constraint c on the symbolic variables of st .

– csinitials: the set csinitials associated with a cstrace (st , c) of a Circus
process P contains the constrained symbolic events that represent valid con-
tinuations of (st , c) in P , i.e. events that are initials of P after (st , c).

– csinitials : given a process P and one of its cstraces (st , c), the set csinitials
contains the constrained symbolic events that represent the events that are
not initials of P for any of the instances of (st , c).

– csacceptances: a csacceptances set associated with a cstrace (st , c) of a Circus
process P is a set of sets SX of symbolic acceptances. An acceptance is a set
of events in which at least one event must be accepted after (st , c).

Examples of a constrained symbolic trace of Fibonacci and of a constrained
symbolic event in csinitials after this cstrace is:

([out .1, out .1, out .a, out .b], a = 2 ∧ b = 3) (out .a, a 6= 5)

Symbolic tests for traces inclusion. traces inclusion refers to inclusion of
trace sets: process P2 is a traces inclusion of process P1 if and only if the set
of traces of P2 is included in that of P1. Symbolic tests for traces inclusion are
based on some cstrace cst of the Circus process P used to build the tests, followed
by a forbidden symbolic continuation, namely a constrained symbolic event cse

4 A. Feliachi, M-C. Gaudel, M. Wenzel and B. Wolff

belonging to the set csinitials associated with cst in P . Such a test passes if
its parallel execution with the SUT blocks before the last event, and fails if it is
completed. A test that, if successful, deadlocks at the end, is used to check that
forbidden traces cannot be executed. An example of a test for traces inclusion
for Fibonacci in given by:

([out .1, out .1, out .a, out .b], a = 2 ∧ b 6= 3)

Given a Circus process P the set of all the symbolic tests described above
is a symbolic exhaustive test set with respect to traces inclusion: a SUT that
would pass all the instances of all the symbolic tests is a traces inclusion of P ,
assuming some basic testability hypotheses that are given in [2], where the proof
can also be found.

Symbolic tests for deadlocks reduction. deadlocks reduction (also called
conf) requires that deadlocks of process P2 are deadlocks of process P1. The
definition of symbolic tests for deadlocks reduction is based on a cstrace cst
followed by a choice over a set SX , which is a symbolic acceptance of cst . Such
a test passes if its parallel execution with the SUT is completed and fails if
it blocks before the last choice of events. An example of a test for deadlocks
reduction in Fibonacci is given by:

([out .1, out .1, out .a], a = 2) {out .3}

Given a Circus process P the set of all the symbolic tests described above is
a symbolic exhaustive test set with respect to deadlocks reduction [2] under the
same testability hypotheses as above. This is also proved in [2].

2.2 The Isabelle/HOL formal environment

Isabelle [12] is a generic theorem prover implemented in SML. Built upon a
small trusted logical kernel, it is possible to provide logical and technical ex-
tensions by user-programmed procedures in a logically safe way. These days,
the most commonly used logical extension is Isabelle/HOL supporting clas-
sical Higher-order Logics (HOL), i. e. a logic based on typed λ-calculus includ-
ing a Haskell-style type-system. HOL provides the usual logical connectives as
well as the object-logical quantifiers; in contrast to first-order logic, quantifiers
may range over arbitrary types, including total functions of type α ⇒ β. Is-
abelle/HOL comes with large libraries, where thousands of theorems have been
proven from definitional axioms; this covers theories for sets, pairs, lists, rela-
tions, partial functions, orderings, and arithmetics. We use the HOL-notation
throughout this paper (instead of, for example, the Z notation) in order to avoid
confusion. The empty list is written [] and the constructor #; lists of the form
a#b#[] were denoted [a, b]. The @-operator denotes list concatenation, the pro-
jections into lists are the usual hd [a, b] = a and tl [a, b] = [b]. Isabelle/HOL-
TestGen[1] is a technical extension providing support for formal test generation.

Isabelle/Circus is a formalization of UTP and the denotational semantics of
the Circus language[6] in Isabelle/HOL. For the work presented in this paper, we

The Circus Testing Theory Revisited in Isabelle/HOL 5

will use the operational semantics and the testing theory of Circus, and formalize
it on top of Isabelle/Circus. We will discuss in detail the impact of the symbolic
representation of the language for symbolic execution.

3 Shallow Symbolic Computations with Isabelle

The test sets introduced in section 2.1 are defined in [2] using symbolic variables
and traces. Symbolic variables are syntactic names that represent some values
without any type information. These symbolic variables are introduced to repre-
sent a set of values (or a single, loosely defined, value), possibly constrained by
a predicate. An alphabet a is associated to all symbolic definitions of the testing
theory. This alphabet enumerates the symbolic variable names.

A deep symbolic representation would require the definition of these symbolic
notions on top of Isabelle/HOL. This would rather be heavy to realize and may
introduce some inconsistency in the theory. The main problem is that symbolic
variables are just names. They are syntactic not typed entities and the type
information recorded in Circus variables is not present at this stage. Moreover,
constraints would also be syntactic entities, and thus, have to be presented in a
side-calculus mimicking Circus substitution and type-checking.

As an alternative to this deep symbolic execution, we opt for a so-called
shallow embedding. This embedding is based directly on the Isabelle symbolic
representation and computation facilities. Isabelle, as a formal framework, pro-
vides powerful symbolic computation facilities that can be reused directly for our
purpose. This requires symbolic variables to be HOL variables, which are seman-
tic typed entities manipulated by the prover. Expressions over these variables
are written using HOL predefined operators or logical connectives, constraints
are entities directly represented as HOL predicates. With our representation, all
the symbolic execution is carried out by Isabelle’s symbolic computations.

This representation choice is natural since symbolic computations and higher-
order manipulations (definitions, theories, rules, ...) are not of the same nature.
They correspond to two different abstraction levels. This is not the case for
deep symbolic execution, which would be represented at higher order abstraction
level. In shallow representations, low-level symbolic computations are the basis
of high-level formal definitions.

This choice of embedding strongly influences the definition and representa-
tion of the operational semantics and testing theory. The impacts of this choice
are explained in various places in the following sections. In the sequel, we use
“symbolic execution” to refer to the explicit (deep) symbolic manipulations as
defined in [2]; we use “symbolic computations” to refer to the (shallow) imple-
mentation in Isabelle of these symbolic notions. A more detailed development of
these issues can be found in [5].

4 Revisiting the Circus Testing Theories

The embedding of the testing theories of Circus essentially depends on its op-
erational semantics. Thus, we start by introducing a shallow embedding of the
Circus symbolic operational semantics in Isabelle/HOL.

6 A. Feliachi, M-C. Gaudel, M. Wenzel and B. Wolff

4.1 Operational semantics

The configurations of the transition system for the operational semantics of
Circus are triples (c | s |= A) where c is a constraint over the symbolic variables
in use, s a symbolic state, and A a Circus action. The transition rules over
configurations have the form: (c0 | s0 |= A0)

e−→ (c1 | s1 |= A1), where the label
e represents the performed symbolic event or ε.

The transition relation is also defined in terms of UTP and Circus actions. The
formalization of the operational semantics is realized on top of Isabelle/Circus.
In order to introduce the transition relation for all Circus actions, configura-
tions must be defined first. Following the shallow symbolic representation, we
introduce the following definitions in Isabelle/HOL.

Constraints. In the Circus testing theory [2], the transition relation of the
operational semantics is defined symbolically. The symbolic execution systemis
based on UTP constructs. Symbolic variables (values) are represented by UTP
variables with fresh names generated on the fly. The (semantics of the) constraint
is represented by a UTP predicate over the values of these symbolic variables.

In our shallow symbolic representation, symbolic values are given by HOL
variables, that can be constrained in proof terms, by expressing predicates over
them in the premises. This makes the symbolic configuration defined on free
HOL variables that are globally constrained in the context. Thus, the explicit
representation of the constraint in the configuration is not needed. It will be
represented by a (globally constrained) symbolic state and an action.

Actions. The action component of the operational semantics as defined in [2]
is a syntactic characterization of some Circus actions. This corresponds to the
syntax of actions defined in the denotational semantics. In our representation of
the operational semantics, the action component is a semantic characterization
of Circus actions. The Circus action type is given by (Θ, σ) action where Θ
and σ are polymorphic type parameters for channels and alphabet ; these type
parameters are instantiated for concrete processes.

Labels. All the transitions over configurations are decorated with labels to keep
a trace of the events that the system may perform. A label may refer to a com-
munication with a symbolic input or output value, a synchronization (without
communication) or an internal (silent) transition ε. In our representation, chan-
nels are represented by constructor functions of a data-type specific for a Circus
process specification. For our symbolic trace example in Section 2.1, we will have
the datatype Fibonacci_channels = out int, where Fibonacci_channels is
the concrete instance of the channel alphabet Θ, and out the only typed channel
constructor of the Fibonacci-process. A symbolic event is obtained by applying
the corresponding channel constructor to a HOL term, thus out(3) or out(a).
Labels are then defined either by one symbolic event or by ε.

States. In the Circus testing theory [2], the state is represented by an assignment
of symbolic values to all Circus variables in scope. Scoping is handled by variable
introduction and removal and nested scopes are avoided using variable renaming.

The Circus Testing Theory Revisited in Isabelle/HOL 7

As explained in section 3, symbolic variables are represented by HOL terms.
Consequently, the symbolic state can be represented as a symbolic binding (vari-
able name 7→ HOL term). Following the representation of bindings by extensible
records, the symbolic state corresponds to a record that maps field names to
values of an arbitrary HOL type. In order to keep track of nested statements,
each Circus variable in the state binds to a stack of values.

Operational semantics rules revisited. The operational semantics is defined
by a set of inductive inference rules over the transition relation of the form:

C

(s0 |= A0)
e−→ (s1 |= A1)

where (s0 |= A0) and (s1 |= A1) are configurations, e is a label and C is the
applicability condition of the rule. Note that the revised configurations are pairs
where s1 and s2 are symbolic states in the sense above, and the constraints are
no longer kept inside the configuration, but in a side-condition C of the entire
operational rule. This way, we can constrain on the HOL-side these symbolic
states. A lot of explicit symbolic manipulations (e. g. fresh symbolic variable in-
troduction) are built-in quantifiers managed directly by prover primitives. Thus,
the shallow representation reduces drastically the complexity of the rules [5].

The entire operational relation is defined inductively in Isabelle covering all
Circus constructs. Isabelle/HOL uses this specification to define the relation as
least fixed-point on the lattice of powersets (according to Knaster-Tarski). From
this definition the prover derives three kinds of rules:
– the introduction rules of the operational semantics used in the inductive

definition of the transition relation,
– the inversion of the introduction rules expressed as a huge case-splitting rule

covering all the cases, and
– an induction principle over the inductive definition of the transition relation.

4.2 Testing theories
As seen in Section 2.1, testing from Circus specifications is defined for two con-
formance relations: traces inclusion and deadlocks reduction. These conformance
relations are based on the notion of cstraces. As explained in section 3, we will
represent the “symbolic” by the “shallow”; consequently, all symbolic notions
defined in [2] are mapped to shallow computations from Isabelle’s point of view.

Symbolic traces definition. let cstraces(P) the set of constrained symbolic
traces of the process P . A cstrace is a list of symbolic events associated with a
constraint defined as a predicate over the symbolic variables of the trace. Events
are given by the labels, different from ε, of the operational semantics transitions.
Let us consider the relation noted “=⇒” defined by:

cf1
[]

=⇒ cf1

cf1
ε−→ cf2 cf2

st
=⇒ cf3

cf1
st

=⇒ cf3

cf1
e−→ cf2 cf2

st
=⇒ cf3 e 6= ε

cf1
e#st
=⇒ cf3

(*)

where cf1, cf2 and cf3 are configurations.
The cstraces set definition is given in [2] using the relation (*) as follows:

8 A. Feliachi, M-C. Gaudel, M. Wenzel and B. Wolff

Definition 1. for a given process P, an initial constraint c0, an initial state s0

cstracesa(c0, s0,P) =

{(st ,∃(αc \ αst) • c) | s P1 • αst ≤ a ∧ (c0 | s0 |= P)
st

=⇒ (c | s |= P1)}
cstracesa(begin state[x : T]P • end) = cstracesa(w0 ∈ T , x := w0,P)

One can read: the constrained symbolic traces of a given configuration are the
constrained symbolic traces that can be reached using the operational semantics
rules starting from this configuration.

The shallow symbolic representation of this definition is simpler since the
symbolic alphabet a is not addressed explicitly. It is also the case for the symbolic
constraint because it is described by the characteristic predicate of the set of
these traces. Therefore, the cstraces set is defined in our theory as follows:

Definition 2. cstraces P = {st. ∃ s P1. (s0 |=P) =st⇒ (s |=P1)}

Since the operational semantics rules contain premises that ensure the valid-
ity of the target constraint, the trace constraint is embedded in the set predicate:
in our formalization, a constrained symbolic trace is seen as a concrete trace,
i. e. a trace with symbolic HOL variables, restricted by rules premises. Thus, the
constraint of a constrained symbolic trace can be retrieved using set membership.

4.3 Test-generation for traces inclusion
The first studied conformance relation for Circus-based testing corresponds to
the traces-inclusion refinement relation. This relation states that all the traces
of the SUT belong to the traces set of the specification, or in other words, the
SUT should not engage in traces that are not traces of the specification.

As seen in Section 2.1, a forbidden cstrace is defined by a prefix which is a
valid cstrace of the specification followed by a forbidden symbolic event (contin-
uation). The set of forbidden continuations is called csinitials, the set of valid
continuations is csinitials. Because of the constrained symbolic nature of the
cstraces and events, csinitials is not exactly the complement of csinitials.

csinitials definition. csinitials is the set of constrained symbolic events a
system may perform after a given trace. It is defined in [2] as follows:

Definition 3. For every (st , c) ∈ cstracesa(P)

csinitialsa(P , (st , c)) =
{(se, c ∧ c1) | (st@[se], c1) ∈ cstracesa(P) ∧ (∃ a • c ∧ c1)}

Symbolic initials after a given constrained symbolic trace are symbolic events
that, concatenated to this trace, yield valid constrained symbolic traces. Only
events whose constraints are compatible with the trace constraint are considered.

We introduce the shallow symbolic representation of this definition as follows:

Definition 4. csinitials (P, tr) = {e. tr@[e] ∈ cstraces (P)}

All explicit symbolic manipulations are removed, since they are implicitly
handled by the prover. The constraint of the trace is not considered, since at
this level tr is considered as a single concrete trace.

The Circus Testing Theory Revisited in Isabelle/HOL 9

csinitials definition. In order to generate tests for the traces inclusion re-
lation, we need to introduce the definition of csinitials. This set contains the
constrained symbolic events the system must refuse to perform after a given
trace. These elements are used to lead the SUT to execute a prohibited trace,
and to detect an error if the SUT do so.

Definition 5. for every (st , c) ∈ cstracesa(P)

csinitials
a
(P , (st , c)) ={

(d .α0, c1) |
(
α0 = a(#st + 1) ∧
c1 = c ∧ ¬

∨
{c2 | (d .α0, c2) ∈ csinitialsa(P , (st , c))}

)}
The csinitials set is built from the csinitials set: if an event is not in csinitials
it is added to csinitials, constrained with the constraint of the trace. If the event
is in csinitials it is added with the negation of its constraint. The new symbolic
variable α0 is defined as a fresh variable in the alphabet a, the next after the
symbolic variables used in the symbolic trace st .

In our theories, the symbolic execution is carried out by the symbolic compu-
tations of the prover. Consequently, all explicit symbolic constructs are removed
in the representation of csinitials. This representation is introduced as follows:

Definition 6. csinitialsb (P,tr) = {e. ¬Sup {e ∈csinitials(P,tr)}}

where the Sup operator is the supremum of the lattice of booleans which is
predefined in the HOL library, i. e. generalized set union. No constraint is asso-
ciated to the trace tr because it is globally constrained in the context. Symbolic
csinitials are represented by sets of events where the constraint can be retrieved
by negating set membership over the csinitials set.

4.4 Test-generation for deadlocks reduction

The deadlocks reduction conformance relation, also known as conf, states that
all the deadlocks must be specified. Testing this conformance relation aims at
verifying that all specified deadlock-free situations are dead-lock free in the SUT.
A deadlock-free situation is defined by a cstrace followed by the choice among
a set of events the system must not refuse, i. e. if the SUT is waiting for an
interaction after performing a specified trace, it must accept to perform at least
one element of the proposed csacceptances set of this trace.

csacceptances definition. In order to distinguish input symbolic events from
output symbolic events in the symbolic acceptance sets, the set IOcsinitials is
defined. This set contains, for a given configuration, the constrained symbolic
initials where input and output information is recorded. Since inputs and out-
puts are considered separately in the labels of the transition relation, the set of
IOcsinitials is easy to define. It contains the set of labels (different from ε) of
all possible transitions of a given configuration.

10 A. Feliachi, M-C. Gaudel, M. Wenzel and B. Wolff

Definition 7. for a given process P1

IOcsinitialsast(c1, s1,P1) ={
(l ,∃(αc2 \ (α(st@[l]))) • c2) | s2, P2 •

(c1 | s1 |= P1)
l−→ (c2 | s2 |= P2) ∧ l 6= ε ∧ α(st@[l]) ≤ a

}

A symbolic acceptance set after a given trace must contain at least one
symbolic event from each IOcsinitials set obtained from a stable configuration
after this trace. In our representation of this definition the alphabets a and α(st)
are not addressed explicitly, and the constraint is defined as the set predicate.

Definition 8. IOcsinitials cf = {e. ∃ cf’. cf -e→ cf’ ∧e 6=ε}

The general definition of csacceptances was introduced in [2] as follows:

Definition 9. for every (st , c) ∈ cstracesa(P1) we define

csacceptancesa(c1, s1,P1, (st , c)) =SX |

∀ c2, s2,P2 •
(

(c1 | s1 |= P1)
st

=⇒ (c2 | s2 |= P2) ∧
(∃ a • c2 ∧ c) ∧ stable(c2 | s2 |= P2)

)
•

∃ iose ∈ SX • iose ∈ IOcsinitialsast(c2, s2,P2) �a c

where

stable(c1 | s1 |= P1) = ¬ ∃ c2, s2,P2 • (c1 | s1 |= P1)
ε−→ (c2 | s2 |= P2)

S �a c = {(se, c ∧ c1) | (se, c1) ∈ S ∧ (∃ a • c ∧ c1)}

The csacceptances are computed using the IOcsinitials after a given stable con-
figuration of the specification. A configuration is stable if no internal silent evo-
lution is possible directly for its action. Only IOcsinitials whose constraints are
compatible with the constraint of the tested trace are considered. A filter func-
tion � is introduced in order to remove unfeasible initials.

The csacceptances set defined above is infinite and contains redundant ele-
ments since any superset of a set in csacceptances is also in csacceptances. A
minimal symbolic acceptances set csacceptancesmin can be defined to avoid this
problem. The csacceptancesmin set after a given cstrace must contain exactly one
element from each IOcsinitials set. Unlike csacceptances, the csacceptancesmin

contain only elements that are possible IOcsinitials. It is defined as follows:

Definition 10.
csacceptances_min tr s A =

cart (
⋃
{SX. ∃ t∈(after_trace tr s A). SX ∈IOcsinitials t})

where after_trace is defined by:

after_trace tr s A = {t. (s |=A) =tr⇒A t ∧stable t}

and cart operator defined below is a generalized Cartesian product whose ele-
ments are sets, rather than tuples. It takes a set of sets SX as argument, and
defines also a set of sets, characterized as follows:

The Circus Testing Theory Revisited in Isabelle/HOL 11

cart SX = {s1. (∀ s2∈SX. s2 6={} −→(∃ e. s2 ∩s1 = {e}))

∧ (∀ e∈s1. ∃ s2∈SX. e∈s2)}

The resulting csacceptancesmin of this definition is minimal (not redundant),
but can still be infinite. This can come from some unbound internal nondeter-
minism in the specification that leads to infinite possibilities. In this case, the
set cannot be restricted and all elements must be considered.

Each element of the resulting csacceptancesmin set is a set of symbolic events.
A symbolic acceptance event is represented as a set of concrete events. The
instantiation of these sets is done using the membership operator.

4.5 The CirTA system

CirTA stands for Circus Testing Automation, which is a test-generation envi-
ronment for Circus. It defines some general tactics for generating, cstraces and
test-cases for the two conformance relations introduced earlier.

cstraces generation tactic. Test definitions are introduced as test specifica-
tions that will be used for test-generation. For trace generation a proof goal is
stated to define the traces a given system may perform. This statement is given
by the following rule, for a given process P :

length(tr) ≤ k tr ∈ cstraces(P)

Prog(tr)
(1)

where k is a constant used to bound the length of the generated traces.
While in a conventional automated proof, a tactic is used to refine an inter-

mediate step (a “subgoal”) to more elementary ones until they eventually get
“true”, in prover-based testing this process is stopped when the subgoal reach
a certain normal form of clauses, in our case, when we reach logical formulas of
the form: C =⇒ Prog (tr), where C is a constraint on the generated trace. Note
that different simplification rules are applied on the premises until no further
simplification is possible. The shallow symbolic definition of cstraces makes it
possible to simplify the set membership operator into a predicate in the premises.
The final step of the generation produces a list of propositions, describing the
generated traces stored by the free variable Prog . The trace generation tactic is
described by the following algorithm:

Data: k : the maximum length of traces

Simplify the test specification using the cstraces Definition 2;

while length ≤ k ∧ more traces can be generated do

Apply the rules of (*) on the current goal;

Apply the rules of the operational semantics on the resulting subgoals;

end

The test specification 1 is introduced as a proof goal in the proof configuration.
The premise of this proof goal is first simplified using the definition of cstraces

12 A. Feliachi, M-C. Gaudel, M. Wenzel and B. Wolff

given in 2. The application of the elimination rules (*) on this proof goal gen-
erates the possible continuations in different subgoals. The elimination rules of
the operational semantics are applied to these subgoals in order to instantiate
the trace elements. Infeasible traces correspond to subgoals whose premises are
false. In this case, the system is able to close these subgoals automatically.

Specifications may describe unbounded recursive behavior and thus yield an
unbounded number of symbolic traces. The generation is then limited by a given
trace length k , defined as a parameter for the whole generation process. The list
of subgoals corresponds to all possible traces with length smaller than this limit.

The trace generation process is implemented in Isabelle as a tactic. The
trace generation tactic can be seen as an inference engine that operates with
the derived rules of the operational semantics and the trace composition relation.

csinitials generation tactic. The generation of csinitials is done using a
similar tactic as for cstraces. In order to capture the set of all possible csinitials,
the test theorem is defined in this case as follows:

S = csinitials(P , tr)

Prog S
(2)

the free variable Prog records the set S of all csinitials of P after the trace tr .

csinitials generation tactic. The generation of tests for traces inclusion
is done in two stages. First, the trace generation tactic is invoked to generate
the symbolic traces. For each generated trace, the set of the possible csinitials
after this trace is generated using the corresponding generation tactic. Using
this set, the feasible csinitials are generated and added as a subgoal in the final
generation state. This tactic can be represented in the following algorithm:

Data: k : the maximum length of tests

Generate cstraces using trace generation tactic for a length k;

foreach generated trace tr do

Simplify the test specification (2) using the csinitials Definition 6;

Generate the csinitials after tr using csinitials set generation tactic;

Apply case-splitting and simplification rules to generate the csinitials;

end

csacceptances generation tactic. test-generation in this case is based on
the generation of the csacceptancesmin set. For a given symbolic trace gen-
erated from the specification, the generation of the sets of csacceptancesmin

is performed in three steps. First, all possible stable configurations that can
be reached by following the given trace are generated. In the second step, all
possible IOcsinitials are generated for each configuration obtained in the first
step. Finally, the generalized Cartesian product is computed from all resulting
IOcsinitials. The generation tactic is defined in the following algorithm:

The Circus Testing Theory Revisited in Isabelle/HOL 13

Data: k : the maximum length of tests

Generate cstraces using trace generation tactic for a length k;

foreach generated trace tr do

Simplify the test specification using the csacceptancesmin Definition 10;

Generate all stable configurations after tr using the derived rules;

foreach generated stable configuration cf do

Generate all IOcsinitials after this configuration cf;

end

Introduce the definition of
⊗

for the resulting set;

Apply simplification rules to generate the sets csacceptancesmin ;

end

4.6 Some Test Selection Hypotheses

Symbolic tests cannot be used directly for testing. A finite number of concrete
(executable) tests must be instantiated from them. However, in some situations,
there is an infinite number of instances: it may come from infinite types, or
from symbolic tests with unbounded length, as mentioned in section 4.5. Some
selection criteria must be used to choose a finite subset of concrete finite tests.
They are formalized as test selection hypotheses on the SUT: assuming these
hypotheses the selected tests form an exhaustive test set [2, 8].

Selection hypothesis that can be used in the case of unbounded tests are
regularity hypotheses. The simplest one allows to bound the traces length: it
states that if the SUT behaves correctly for traces shorter than a given length, it
will then behave correctly for all the traces. Other selection criteria are needed
to choose a finite subset of concrete tests among the instances of symbolic tests.
uniformity hypotheses can be used to state that the SUT will behave correctly
for all the instances if it behaves correctly for some subset of them. Such a subset
can be obtained using on-the-fly constraint solving as, for instance, in [1]

Test selection hypotheses can be explicitly stated in our test-generation
framework CirTA. Currently, the classical regularity hypothesis on traces length
is used, where the maximum regularity length is provided as parameter. More-
over, for each resulting symbolic test, a uniformity hypothesis is stated to extract
a witness value for each symbolic value in the test. Concrete (witness) values
are represented by Isabelle schematic variables representing arbitrary (but con-
strained) values. These uniformity and regularity hypotheses are respectively
defined as introduction rules as follows:

P ?x1...?xn THYP((∃ x1, ..., xn • P x1...xn)→ (∀ x1, ..., xn • P x1...xn))

∀ x1, ..., xn • P x1...xn

[length(tr) < k]
....

P (tr) THYP((∀ tr | length(tr) < k • P (tr))→ (∀ tr • P (tr)))

∀ tr • P (tr)

14 A. Feliachi, M-C. Gaudel, M. Wenzel and B. Wolff

P is the predicate of a (symbolic) test case, tr is a (symbolic) trace and THYP
is a constant used to preserve test hypotheses from automatic simplifications.
Schematic variables are represented in Isabelle with ? prefixing their name.

4.7 Test Instantiations

The last step of test-generation is the selection of actual witness values corre-
sponding to schematic variables produced by the uniformity hypothesis. Con-
straint solvers that are integrated with Isabelle are used for this instantiation,
in the same way as what was done in [1]. Two kind of solvers can be used: ran-
dom solvers and SMT solvers. The random constraint solving is performed using
QuickCheck, that instantiates randomly the values of the schematic variables. An
integration of QuichCheck with the Isabelle simplifier defined for HOL-TestGen
can also be used for more efficient random solving. The second kind of integrated
constraint solvers are SMT solvers and especially Z3 [4].

5 Conclusion

Related Work. There exists quite a variety of tools for supporting test gen-
eration. Symbolic evaluation and constraint solving are widely used, as well as
model checkers or similar techniques. The LOFT tool performed test generation
from algebraic specifications, essentially based on narrowing. TGV [11] performs
test generation from IOLTS (Input Output LTS) and test purposes for the ioco
conformance relation. TGV considers finite transition systems, thus enumera-
tive techniques are used to deal with finite data types. Some symbolic extension
of TGV, STG has been enriched by constraint solving and abstract interpreta-
tion techniques [3]. The FDR model-checker was used [13] for generating test
cases from CSP specifications for a conformance relation similar to ioco. In Spec
Explorer [16], the underlying semantic framework are abstract state machines
(ASM) and the conformance relation is alternating refinement. The techniques
are similar to those used for explicit model-checking. The ASM framework pro-
vides foundation to deal with arbitrarily complex states, but the symbolic ex-
tension, based on constraint solving, is still experimental. JavaPathFinder [17]
has been used for generating test input from descriptions of method precondi-
tions. The approach combines model checking, symbolic execution, constraint
solving and improves coverage of complex data structures in Java programs. A
very strong tool in this line of white-box test systems using symbolic execution
and model-checking is the Pex tool [15].

In our case, the use of a theorem prover, namely Isabelle/HOL, is motivated
by the fact that test generation from rich specification languages such as Circus
can greatly benefit from the automatic and interactive symbolic computations
and proof technology to define sound and flexible test generation techniques. Ac-
tually, this is extremely useful and convenient to deal with infinite state spaces.
TGV does not possess symbolic execution techniques and is thus limited to small
data models. Our approach has much in common with STG, however its devel-
opment was abandoned since the necessary constraint solving technologies had
not been available at that time. In contrast, CirTA uses most recent deduction

The Circus Testing Theory Revisited in Isabelle/HOL 15

technology in a framework that guarantees its seamless integration. On the other
hand, Symbolic JavaPathFinder and Pex are white-box testing tools which are
both complementary to our black-box approach.

Summary. We have described the machine-checked formalization CirTA of the
operational semantics and testing theory of Circus. Our experience has been
developed for Isabelle/HOL, but could be reused for other HOL systems (like
HOL4). Our formal reconstruction of the Circus theory lead to unforeseen simpli-
fications of notions like channels and configurations, and, last but not least, to the
concept of typing and binding inside the operational semantics rules, as well as
the derived rules capturing the deductive construction of symbolic traces. In fact,
since the original Circus theory is untyped, in a sense, Isabelle/Circus is an exten-
sion, and the question of the “faithfulness” of our semantic representation has to
be raised. While a direct, formal “equivalence proof” between a machine-checked
theory on the one hand and a mathematically rigorous paper-and-pencil devel-
opment on the other is inherently impossible, nevertheless, we would argue that
CirTA captures the essence of the Circus testing theory. Besides hands-on simu-
lations in concrete examples, there is the entire architecture of similar definitions
leading to closely related theorems and proofs that does establish a correspon-
dence between these two. This correspondence would be further strengthened if
we would complete the theory by a (perfectly feasible, but laborious) equivalence
proof between the operational and denotational semantics (for the time being,
such a proof does neither exist on paper nor in Isabelle). The correspondence
could again be strengthened, if the existing paper-and-pencil proof of equiva-
lence between the conformance relations and the refinement relation (given in
[2]) could be reconstructed inside CirTA.

CirTA has been validated by a concrete case study. We developed, for a mes-
sage monitoring module stemming from an industrial partner, an Isabelle/Circus
model and derived tests for the real system. The component under test is embed-
ded in not less than 5k lines of Java code. It binds together a variety of devices
and especially patients pacemaker controllers, via sophisticated data structures
and operations which was the main source of complexity when testing. More
details about this case study can be found in [5, 7].

Isabelle/HOL is a mature theorem prover and easily supports our require-
ments for add-on tools for symbolic computation, but substantial efforts had
to be invested for building our formal testing environment nonetheless. With
regard to the experience of the last 10–20 years of the interactive theorem prov-
ing community, this initially steep ascend is in fact quite common, and we can
anticipate eventual pay-off for more complex examples at the next stage. HOL
as a logic opens a wide space of rich mathematical modeling, and Isabelle/HOL
as a tool environment supports many mathematical domains by proof tools, say
for simplification and constraint solving. Many of these Isabelle tools already
incorporate other external proof tools, such as Z3. Thus we can benefit from this
rich collection of formal reasoning tools for our particular application of Circus
testing, and exploit the full potential of theorem prover technology for our work.

16 A. Feliachi, M-C. Gaudel, M. Wenzel and B. Wolff

The Isabelle/HOL source code of Isabelle/Circus is already available in the
Archive of Formal Proofs 1. The source code of the CirTA environment will be
distributed with the next release of HOL-TestGen.

Future Work. Besides the perspective to complete CirTA by the discussed
equivalence theorems, our short term perspectives is to validate the environment
on larger Circus specifications, and then integrate the Circus test generation
framework with HOL-TestGen in order to benefit of its techniques for data-
oriented case-splitting, test-driver generation and (on-the-fly) constraint-solving
techniques. Moreover, we plan to study, develop and experiment with various
test selection strategies and criteria for Circus.

References

[1] A. D. Brucker and B. Wolff. On Theorem Prover-based Testing. Formal Aspects
of Computing (FAOC), 2012.

[2] A. Cavalcanti and M.-C. Gaudel. Testing for refinement in circus. Acta Inf.,
48(2):97–147, Apr. 2011.

[3] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: A symbolic test generation
tool. In TACAS 2002, volume 2280 of LNCS. Springer, 2002.

[4] L. De Moura and N. Bjørner. Z3: an efficient smt solver. In TACAS’08/ETAPS’08,
pages 337–340. Springer-Verlag, 2008.

[5] A. Feliachi. Semantics-Based Testing for Circus. PhD thesis, Université Paris-Sud
11, 2012.

[6] A. Feliachi, M.-C. Gaudel, and B. Wolff. Isabelle/Circus: A process specification
and verification environment. In VSTTE, volume 7152 of LNCS. Springer, 2012.

[7] A. Feliachi, M.-C. Gaudel, and B. Wolff. Exhaustive testing in hol-testgen/cirta
– a case study. Technical Report 1562, LRI, July 2013.

[8] M.-C. Gaudel and P. L. Gall. Testing data types implementations from algebraic
specifications. In Hierons et al. [9], pages 209–239.

[9] R. M. Hierons, J. P. Bowen, and M. Harman, editors. Formal Methods and Testing,
volume 4949 of Lecture Notes in Computer Science. Springer, 2008.

[10] C. Hoare and J. He. Unifying theories of programming. Prentice Hall, 1998.
[11] C. Jard and T. Jéron. TGV: theory, principles and algorithms, a tool for the auto-

matic synthesis of conformance test cases for non-deterministic reactive systems.
STTT, 6, October 2004.

[12] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[13] S. Nogueira, A. Sampaio, and A. Mota. Guided test generation from CSP models.
In ICTAC 2008, volume 5160 of LNCS, pages 258–273, 2008.

[14] M. Oliveira, A. Cavalcanti, and J. Woodcock. A denotational semantics for Circus.
Electron. Notes Theor. Comput. Sci., 187:107–123, 2007.

[15] N. Tillmann and W. Schulte. Parameterized unit tests. SIGSOFT Softw. Eng.
Notes, 30(5):253–262, Sept. 2005.

[16] M. Veanes et al. Formal methods and testing. chapter Model-based testing of
object-oriented reactive systems with spec explorer. Springer, 2008.

[17] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input generation with Java
PathFinder. In ISSTA 2004, pages 97–107. ACM, 2004.

[18] J. Woodcock and A. Cavalcanti. The semantics of circus. In ZB ’02, pages 184–203,
London, UK, UK, 2002. Springer-Verlag.

1 http://afp.sourceforge.net/entries/Circus.shtml

http://afp.sourceforge.net/entries/Circus.shtml

	The Circus Testing Theory Revisited in Isabelle/HOL

