Microprocessor

A Case-Study

Achim D. Brucker, Abderrahmane Feliachi, Yakoub Nemouchi

and Burkhart Wolff \

Introduction

 Certifications of critical security or safety system properties
are becoming increasingly important

« Common Creteria is an international stadard (ISO/IEC 15408)
for computer security certification

* The Common Criteria requires for each level:
v EAL1: Functionally Tested
v EAL2: Structurally Tested
v"EAL3: Methodically Tested and Checked
v"EAL4: Methodically Designed, Tested, and Reviewed
v EAL5: Semi-formally Designed and Tested
v EALG: Semi-formally Verified Design and Tested
v"EALT: Formally Verified Design and Tested

Introduction

* The principal goal of the EU IP Euro-MILS

v Certification > EALS for the PikeOS real time operating system
=>» this requires the test of the underlying hardware of the entire system

v'In industry, this is done by special “test kits”
v"Our motivation: automatically generating test kits which check that a
given Hardware meets the requirements imposed by PikeOS
* Our contributions :
v'Use a formal model of microprocessor (specified in Isabelle/HOL)

v'Generate test programs from this model (using HOL-TestGen)

Outline

* Introduction

* Instead of PikeOS: The Verisoft system architecture
* VAMOS, (gate-level) VAMP, abstract VAMP
* Expressing Test-Scenarios in HOL-TestGen
* Experimental Results

* Conclusion

C-Level —

Assembly —
Level

Gate —
Level

e

Verisoft Layers

Application
Software

Micro-Kernel
(VAMOS)

Operating System
(SOS)
System

Software

Tools

Hardware

Host System

* The Context:
The Verisoft Project

v Main goal:
pervasive formal verification of
a computer system from
application level to hardware
(in Isabelle)

v'developed and verified in
context of german BMBF
project Verisoft

* We just use the VAMPasm
for testing

VAMP Microarchitecture

Instruction Fetch IR

Instruction Decode

Reservation Stations

FXU FPU1 FPU2

Execution
Producers

Completion

WriteBack

-

Gate-level VAMP

* VAMP layers

v’ Consist of 5 layers
v'Instruction Fetch Layer
v'Instruction Decode Layer
v'Execution Layer
v"Completion Layer
v"WriteBack Layer

* VAMP Functional model

v'IF and ID: realize a pipelined
implementation

v EX, C, WB realize Tomasulo
scheduler with

v'Five functional units
v'Fair scheduling policy on CDB
v"ROB for precise interrupts

VAMP Abstract Model The abstract VAMP
* VAMP Model

v The processor consists of set of
transitions

Processor

v" Those transitions are defined over
Instruction Set Architecture
configurations

Configuration Composed of

|

Configuration
1

* A configuration consists of 5
elements

v"Program Counter : a 30 bit register

v Delayed Program Counter : a 30 bit
register

v General Purpose Registers: a register
file consisting of 32 registers of 32
bits each

Transition n v S,oecial Purpose Registers: a register
file consisting of 32 registers of 32

bits

v'"Memory Model: a 2™ bytes
n addressable memory

Configuration

HOL-TestGen session using
Isabelle/jEdit Front-End

Scenariol.thy (modified)

| B ScenarioL.thy (~/codebox/hol-testgen/add-ons /security/examples /firewall/CommonScenarios /Scenariol/)]
exhibit the same behaviour as the modelled policy. *} v
g
test spec "port positive x A accross_hosts x A fix_values x — FUT x = TestPolicy x" %
=
txt{* The following command puts the test theorem into the desired form. *}
apply (prepare fw spec)
txt{* Next, the policy is unfolded and possibly simplified *}
apply (simp add: policyLemmas)
txt{* Test case generation, takes about half a minute in this example: *}
apply (gen test cases "FUT") |
txt{* Simplification of the generated test cases. This makes test data generation more efficient. *}
apply (simp all add: policylLemmas)
A6AF Output
txt{*Sy~
store t 100% v [Tracing ¥ Autoupdate (Update)
proof (prove): step 6 [
text{*
ex:eina goal (96 subgoals):
e 1. FUT (1:int, (Hostl, 1:int, udp), (Host2, 3389:int, tcp), data) = Some (allow ())
\texttt 2. FUT (1l:int, (Hostl, 1:int, udp), (Host2, 3389:int, udp), data) = Some (deny ())
\texttd 3. PO ((?7X35X6 < (4096:int) A (1024:int) < ?7X35X6) A ?77X35X6 # (3389:int)) 4
this td 4. FUT (l:int, (Hostl, l:int, udp), (Host2, ??X35X6, tcp), data) = Some (allow ())
i 5. THYP ((3x<4096:int.
indicat .
] (1024:int) < x A
solutio :
R, | x # (3389:int) A

FUT (1:int, (Hostl, 1:int, udp), (Host2, x, tcp), data) = Some (allow ())) —

2001 GOLrEY (Vx<4096:int .

HOL-TestGen

* |sabelle

v An interactive proof Assistent based
on kernel ensuring logical correctness

v Customizable to variety of logics
(FOL,HOL, ZF)

v Supports many specification
constructs

v Provide tools for automatic reasoning

e HOL-TestGen
v Built on top of Isabelle/HOL

v Provide modeling environment for
test theory

v For stating and tranforming a test
specification

v For test generation using Isabelle’s
tactic procedures 8

The HOL-TestGen Workflow

- The use of Hol-TestGen
environment requires 4 major
steps each step has its own Step 2: Step 3:

specific tool Test Case Test data

generation selection

- Step 1 is performed on Hol-TestGen
by unsing test_spec

Step 1: Step 4:

- Step 2 is performed by .
gen_test_cases tactic specification s

execution
- Step 3 is performed by DeteCt
gen_test_data fa i | ures

- Step 4 is performed by
generate_test_script

= NS

7

Outline

* Introduction

* Instead of PikeOS: The Verisoft system architecture
* VAMOS, (gate-level) VAMP, abstract VAMP
* Expressing Test-Scenarios in HOL-TestGen
* Experimental Results

* Conclusion

10

VAMP Isabelle Model Our Approach

« VAMP assembly language

v" An assembly language was introduced
type_synonym regcont = int -- {x contents of register x} abstracting the VAMP ISA
type_synonym registers = regcont list -- {x register file *}

Processor

v"Addresses are represented by naturals
Configuration record Afcore; = dpc :: nat v"Memory and registers contents

0 pcp i nat represented by integers
OIS % TEQISHErS v" A configuration is introduced on

Sprs @i registers Isabelle/HOL by record type

Ul 2. L ASMcore,vith 5 fields
definition is_ASMcore :: ASMcore; =bool where v"The instructions are represented in an
Configuration \s_ASMcore st =asm,at (dpc st) A abstract datatype with readable
1 asm,at (pcp st) A nhames
length (gprs st) = 32 A
length (sprs st) = 32 A v The transition relations between
(¥ ind < 32. asm.int (reg (gprs st) ind)) A configurations is specified by Step on
(V ind < 32. asm_int (sreg (sprs st) ind)) A Isabelle
Transition n (V ad. asm_int (data_mem_read (mm st) ad))
definition Step :: ASMcore; =ASMcore, v Step execute the current program
, , instruction given in DPC
Configuration where Step st = exec_instr st (current_instr st)

v Those transition relations are used as

n the basis of test specification

11

Our Approach in different testing scenarios

* 4 types of instructions are concerned by test scenario:
v'"Memory related load/store operations
v"arithmetic operations
v'logical operations
v control flow realted operations
* 1 test scenario is presented as an example:

v Testing load/store operations

* The scenario is applied with :

v Unit testing scheme

\.\\ v'Sequence testing scheme

12

Testing Methodology
» 2 testing scenario schemes are applied:
v"Model-based unit testing

v"Model-based sequence testing

* Unit test scenario:
v"Unit-test specification has the following scheme:

test_spec pre ot = SUT o ¢ =, exec_1instr o ¢
v"Where test_spec is used to state test specification

v'pre o 1 is precondition over input variables o1 and SUT o | =K exec_instr g 1 is
postcondition over results

v =K is our conformance relation

* Goal of using Model-based unit testing scenario

v Test individually each operation or instruction with different data

13

Steps for unit testing scenario of
load/store operations

- Step 1 reduce the domain

of generated tests to Step 2: Step 3:
load/store operations Test Case Test data
. generation Se|eCtI0n
- Step 2 generation of test
cases and uniformity Step 1: Step 4:
hypotheses from TS Test Test

specification execution

- Step 3 instantiation of test
data for each test case D_eteCt
failures

- Step 4 test execution

N

7

load/store unit testing scenrio on
HOL-TestGen

test_spec is_load_store « = SUT o¢ ¢ =, exec_instr ogt
apply (gen_test_cases 0 1 SUT)—
store_test_thm load_store_instr

— 1. SUT oo(Ilb 77X7 77X6 77X5)

| {54 a)

gen_test_aata load_store_instr 2. THYP ((3Ix xa xb. SUT oo(Ilb xb xa x) (...)) —
(Vx xa xb. SUT oo(Ilbh xb xa x) (...)))

SUT oo(Ilb 1 0 1) oy

L]

Step 1 will be done by introducing the predicate is_load_store in precondition of TS

Step 2 8 test cases with symbolic operands for each instruction are generated

v A uniformity hypotheses is stated on each symbolic test case, which will allow to
select one concrete withess for each sympbolic test l

Step 3 instantiation of test data with gen_test_data

nit'test scenario will reveal design faults or undesired state modificatioh& /\\1\5\
I/ \\

- W

I

Our Approach: Testing Methodology

» 2 testing scenario are applied :
v Model-based unit testing
v Model-based sequence testing

» Sequence testing scenario:

v Sequence test specification has 2 schemes:
test_spec pre (s::instr list —

3 (0o E=(_ «—mbind ts execyawp; assertsg (Ao. o=r SUT oots)))
Or

test_spec pre :(s::instr list —
(oo F=(- <—mbind (:s@[load x 0]) execCvawr;
assertsg (Ao. (gprs o)!'0 = (gprs (SUT opes))! 0)))

v In both oy is an initial state and is is the sequence of instructions that will be
generateg

v execyamp is a lifting of exec_instr into state exception monad

* Goal of using Model-based sequence testing scenario
v'sequence of instructions up to a given length

16

load/store sequence testing scenrio on

HOL-TestGen

test_spec list_all is_load_store (¢s::instr list) =

(oo E=(s <—mbind ts execyamp; assertsg (Ao. o= SUT oots)))
apply (gen_test_cases SUT)
store_test_thm load_stre_instr_seq

— gen_test _data load_stre_instr_seq

v

l.o0o E(s «mbind [Isw ??X597 ?7?7X586 ?77X575, Ilbu ??X557 ?77X546 ?7X535,
Ilbu ?7X517 ?77X506 77X595] execvawr;
assertsg (Ao. o= SUT ogl[Isw ??X597 ?77X586 ?77X575,
Ilbu ?7X557 ?77X546 ?77X535,
Ilbu ??X517 ?7?X506 ?7X595]))
2. THYP ((Ix1 x2 x3 x4 x5 x6 x7 x8 x9. ooF=(s <-mbind [Isw x1 x2 x3,
Ilbu x4 x5 x6, Ilbu x7 x8 x9] execyawp; (...))) —
(Vx1 x2 x3 x4 x5 x6 x7 x8 x9. oof=(s <—mbind [Isw x1 x2 x3,
Ilbu x4 x5 x6, Ilbu x7 x8 x91 execyapr; (...))))

loo0 =(s «<mbind [Isw 0 1 8,
— assertsg (Mo

Ilbu 1 0@ -3, Ilbu 3 2 8] execvaw;
o= SUT ogl[Isw 06 1 8, Ilbu 1 6 -3, Ilbu 3 2 8]))

Step 1 Filtering by is_load_store
the entire input sequences,
without filtring we have 178809
cases...

Step 2 After filtring for a
sequence of length < 4 we have
585 test cases:

v585=1+ 8+ 8*8 + 8*8*8

Step 3 instantiation of test data
for each test case

Sequence testing scenario
(« purpose») designed tol' reveal

- Byte alighment errors
\A\

- Memory errors caused by
piplining >

/ \

Outline

* Introduction

* Instead of PikeOS: The Verisoft system architecture
* VAMOS, (gate-level) VAMP, abstract VAMP
* Expressing Test-Scenarios in HOL-TestGen
* Experimental Results

* Conclusion

18

\\\

Experimental results

* In unit testing scenario
* Strong assumption on testability

* the test driver has actually access to registers and Memory

* [n sequence scenario of load/store operations
* 39 seconds in test partitionning phase
* 42 in test data selection
* 2 seconds of test program generation

e 585 test programs for scenario in 83 seconds!!!

19

Experimental results

* |In this paper, we focussed on test generation method
* No experiments was done against ‘real’ hardware

* However, we generated mutants from the generated code (using
isabelle’s code generator) of the processor model

» 585 test programs (of this scenario) were run against the mutant set
* Results : 91% Kkills...

Number of successful test cases: 54 of 585 (ca. 9%)

Number of warning: @ of 585 (ca. 0%)
Number of errors: 0 of 585 (ca. 0%)
Number of failures: 531 of 585 (ca. 91%)

Number of fatal errors: @ of 585 (ca. 0%)

Outline

* Introduction

* Instead of PikeOS: The Verisoft system architecture
* VAMOS, (gate-level) VAMP, abstract VAMP
* Expressing Test-Scenarios in HOL-TestGen
* Experimental Results

* Conclusion

21

Related Work

Formal verification is widely used in industry since at least 10 years

* 1997: Functional verification of the superscalar sh-4 microprocessor by P.Biswas, A.Freeman,
K.Yamada, N.Nakagawa, K.Ushiyama

* 2003: Formal verification at intel by John Harrison

Formal models of complete micro-processors as well as verification approaches that provide
verification from application layer to the hardware are rare.

* 2010: Besides of VAMP we have Formal verification and verification of microkernel by Jan
Dorrenbacher

* 2003: We have Fox Formal Specification and Verification of arm6 by Anthony C.J.Fox

Test program generation for microprocessor intruction sets have been known for long time
* 2001: A new functional test program generation methodology by F.Fallah and K.Takayama.

* 2005: A configurable random test program generator for micro-processors by Haihua Shen. Lin ma,
and Hang Zhang.

Only few works suggest to use model based or specification based test program generation
algorithms

* 2011: Reconfigurable model based test program generator for microprocessors by Alexander
Kalkin, Eugene Kornykhin, Dmitry Vorobyev.

22

2|

Conclusion

* We introduced a model-based test generation technique for a realistic model
of a RISC processor called VAMP. The technique is of particular interest for
higher level certification (for example in higher EAL levels Common Criteria)

* We adapted and reuse the formal model of the processor implemented on
Isabelle/HOL to generate test cases

* We automatically converted the test cases to test programs that can be used
to check if a given hardware model conforms to the VAMP processor

* We evaluated the technique by generating mutants from the generated
code of the model and killing theme by the generated test sets.

23

