
Test Program Generation for a 
Microprocessor

A Case-Study
Achim D. Brucker, Abderrahmane Feliachi, Yakoub Nemouchi

and Burkhart Wolff



Introduction
• Certifications of critical security or safety system properties 

are becoming increasingly important

• Common Creteria is an international stadard (ISO/IEC 15408) 
for computer security certification

• The Common Criteria requires for each level:
üEAL1: Functionally Tested

üEAL2: Structurally Tested

üEAL3: Methodically Tested and Checked

üEAL4: Methodically Designed, Tested, and Reviewed

üEAL5: Semi-formally Designed and Tested

üEAL6: Semi-formally Verified Design and Tested

üEAL7: Formally Verified Design and Tested
2



Introduction
• The principal goal of the EU IP Euro-MILS 
üCertification > EAL5 for the PikeOS real time operating system   
è this requires the test of the underlying hardware of the entire system
üIn industry, this is done by special “test kits” 

üOur motivation:  automatically generating test kits which check that a 
given Hardware meets the requirements imposed by PikeOS

• Our contributions :
üUse a formal model of microprocessor  (specified in Isabelle/HOL)
üGenerate test programs from this model (using HOL-TestGen)

3



Outline

• Introduction

• Instead of PikeOS: The Verisoft system architecture
• VAMOS, (gate-level) VAMP, abstract VAMP
• Expressing Test-Scenarios in HOL-TestGen
• Experimental Results

• Conclusion

4



Application 
Software

System 
Software

Hardware

Micro-Kernel
(VAMOS)

CVM

Operating  System
(SOS) 

AppAppApp

VAMPasm

VAMP

Host System

C-Level

Assembly
Level

Gate
Level

Tools

Compiler

• The Context: 
The Verisoft Project
ü Main goal: 

pervasive formal verification of 
a computer system from 
application level to hardware 
(in Isabelle)
üdeveloped  and verified  in 

context of german BMBF 
project Verisoft

• We just use the VAMPasm
for testing

Verisoft Layers

5



Gate-level VAMP

Reorder Buffer

• PC environment

• Instruction Decode

• Execution

• Completion

• WriteBack

• VAMP layers
üConsist of 5 layers
üInstruction Fetch Layer
üInstruction Decode Layer
üExecution Layer
üCompletion Layer
üWriteBack Layer

• VAMP Functional model
üIF and ID: realize a pipelined 

implementation
üEX, C, WB realize Tomasulo 

scheduler with
üFive functional units
üFair scheduling policy on CDB
üROB for precise interrupts

VAMP Microarchitecture

MEM

Reservation Stations

Producers

GPR FPR SPR

DPCPC’

IR

FXU FPU1 FPU2 FPU3

Instruction Fetch

Instruction Decode

Execution

Completion

WriteBack 6



The abstract VAMP
• VAMP Model
ü The processor consists of set of 

transitions
ü Those transitions are defined over 

Instruction Set  Architecture 
configurations

• A configuration consists of 5 
elements
üProgram Counter : a 30 bit register 
üDelayed Program Counter : a 30 bit 

register 
üGeneral Purpose Registers: a register 

file consisting of 32 registers of 32 
bits each
üSpecial Purpose Registers: a register 

file consisting of 32 registers of 32 
bits
üMemory Model: a 2��	bytes 

addressable memory

VAMP Abstract Model

Configuration 
0

Configuration 
1

Configuration 
n

Processor

Transition 1
ISA

ISA

ISA

Transition n

PCP

DCP

GPRS

SPRS

MM

Composed of 

ISA

7



HOL-TestGen
• Isabelle
ü An interactive proof Assistent based 

on kernel ensuring logical correctness

ü Customizable to variety of logics  
(FOL,HOL, ZF)

üSupports  many specification 
constructs

üProvide tools for automatic reasoning

• HOL-TestGen
üBuilt on top of Isabelle/HOL

üProvide modeling environment for 
test theory

üFor stating and tranforming a test 
specification

üFor test generation using Isabelle’s 
tactic procedures

HOL-TestGen session using   
Isabelle/jEdit Front-End

8



The HOL-TestGen Workflow
• The use of Hol-TestGen 

environment requires 4 major 
steps each step has its own 
specific tool

• Step 1 is performed on Hol-TestGen 
by unsing test_spec

• Step 2 is performed by 
gen_test_cases tactic

• Step 3 is performed by 
gen_test_data

• Step 4 is performed by 
generate_test_script

Detect 
failures

Step 1:
Test 

specification

Step 2: 
Test Case 

generation

Step 3:
Test data 
selection

Step 4: 
Test 

execution

9



Outline

• Introduction

• Instead of PikeOS: The Verisoft system architecture
• VAMOS, (gate-level) VAMP, abstract VAMP
• Expressing Test-Scenarios in HOL-TestGen
• Experimental Results

• Conclusion

10



Our Approach
• VAMP assembly language
ü An assembly language was introduced 

abstracting the VAMP ISA
üAddresses are represented  by naturals
üMemory and registers contents 

represented by integers
üA configuration is introduced on 

Isabelle/HOL by record type  
ASMcore�	with 5 fields
üThe instructions are represented in an 

abstract datatype with readable 
names
üThe transition relations between 

configurations is specified by Step on 
Isabelle
üStep execute the current program 

instruction given in DPC
üThose transition relations are used as 

the basis of test specification

VAMP Isabelle Model

Configuration 
0

Configuration 
1

Configuration 
n

Processor

Transition 1
ISA

ISA

ISA

Transition n

11



Our Approach in different testing scenarios

• 4 types of instructions are concerned by test scenario:
üMemory related load/store operations
üarithmetic operations

ülogical operations
ü control flow realted operations

• 1 test scenario is presented as an example: 
üTesting load/store operations

• The scenario is applied with : 
ü Unit testing scheme

üSequence testing scheme
12



Testing Methodology
• 2 testing scenario schemes are applied :
üModel-based unit testing

üModel-based sequence testing 

• Unit test scenario: 
üUnit-test specification has the following scheme:

üWhere test_spec is used to state test specification

üpre σ ι is precondition over input variables σ ι and  SUT σ ι =k exec_instr σ ι is 
postcondition over results

ü =k is our conformance relation

• Goal of using Model-based unit testing scenario
üTest individually each operation or instruction with different data

13



Steps for unit testing scenario of      
load/store operations

• Step 1 reduce the  domain  
of generated tests to 
load/store operations 

• Step 2 generation of test 
cases and uniformity 
hypotheses from TS

• Step 3 instantiation of test 
data for each test case 

• Step 4 test execution 

Detect 
failures

Step 1: 
Test 

specification

Step 2: 
Test Case 

generation

Step 3: 
Test data 
selection

Step 4: 
Test 

execution

14



load/store unit testing scenrio on 
HOL-TestGen

• Step 1 will be done by introducing the predicate is_load_store in precondition of TS

• Step 2 8 test cases with symbolic operands for each instruction are generated
üA uniformity hypotheses is stated on each symbolic test case, which will allow to 

select  one concrete witness for each sympbolic test

• Step 3 instantiation of test data  with gen_test_data

• Unit test scenario will reveal design faults or undesired state modification 15



Our Approach: Testing Methodology
• 2 testing scenario are applied :
ü Model-based unit testing 
ü Model-based sequence testing

• Sequence testing scenario: 
üSequence test specification has 2 schemes:

ü Or

ü In both σ0 is an initial state and ιs is the sequence of instructions that will be 
generated
üexecvamp is a lifting of exec_instr into state exception monad

• Goal of using Model-based sequence testing scenario
üsequence of instructions up to a given length

16



load/store sequence testing scenrio on 
HOL-TestGen

• Step 1 Filtering by is_load_store 
the entire input sequences, 
without filtring we have 178809 
cases…

• Step 2 After filtring for a 
sequence of length < 4 we have 
585 test cases:
ü585= 1 + 8 + 8*8 + 8*8*8

• Step 3 instantiation of test data 
for each test case 

• Sequence testing scenario 
(« purpose») designed to reveal
• Byte alignment errors 
• Memory errors caused by 

piplining 17



Outline

• Introduction

• Instead of PikeOS: The Verisoft system architecture
• VAMOS, (gate-level) VAMP, abstract VAMP
• Expressing Test-Scenarios in HOL-TestGen
• Experimental Results

• Conclusion

18



Experimental results

• In unit testing scenario
• Strong assumption on testability
• the test driver has actually access to registers and Memory

• In sequence scenario of load/store operations
• 39 seconds in test partitionning phase

• 42 in test data selection
• 2 seconds of test program generation

• 585 test programs for scenario in 83 seconds!!!

19



Experimental results

• In this paper, we focussed on test generation method
• No experiments was done against ‘real’ hardware
• However, we generated mutants from the generated code (using

isabelle’s code generator) of the processor model

• 585 test programs (of this scenario) were run against the mutant set
• Results : 91% kills…

20



Outline

• Introduction

• Instead of PikeOS: The Verisoft system architecture
• VAMOS, (gate-level) VAMP, abstract VAMP
• Expressing Test-Scenarios in HOL-TestGen
• Experimental Results

• Conclusion

21



Related Work
• Formal verification is widely used in industry since at least 10 years

• 1997: Functional verification of the superscalar sh-4 microprocessor by P.Biswas, A.Freeman, 
K.Yamada, N.Nakagawa, K.Ushiyama

• 2003: Formal verification at intel by John Harrison

• Formal models of complete micro-processors as well as verification approaches that provide 
verification from application layer to the hardware are rare.
• 2010: Besides of VAMP we have Formal verification and verification of microkernel by Jan 

Dörrenbacher
• 2003: We have Fox Formal Specification and Verification of arm6 by Anthony C.J.Fox

• Test program generation for microprocessor intruction sets have been known for long time
• 2001: A new functional test program generation methodology by F.Fallah and K.Takayama.
• 2005: A configurable random test program generator for micro-processors by Haihua Shen. Lin ma, 

and Hang Zhang.

• Only few works suggest to use model based or specification based test program generation 
algorithms
• 2011: Reconfigurable model based test program generator for microprocessors by Alexander 

Kalkin, Eugene Kornykhin, Dmitry Vorobyev.

22



Conclusion

• We introduced a model-based test generation technique for a realistic model 
of  a RISC processor called VAMP. The technique is of particular interest for 
higher level certification (for example in higher EAL levels Common Criteria)

• We adapted and reuse the formal model of the processor implemented on 
Isabelle/HOL to generate test cases

• We automatically converted the test cases to test programs that can be used
to check if a given hardware model conforms to the VAMP processor

• We evaluated the technique by generating mutants from the generated
code of the model and killing theme by the generated test sets.

23


