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Abstract Certifications of critical security or safety system properties
are becoming increasingly important for a wide range of products. Certi-
fying large systems like operating systems up to Common Criteria EAL
4 is common practice today, and higher certification levels are at the
brink of becoming reality.
To reach EAL 7 one has to formally verify properties on the specification
as well as test the implementation thoroughly. This includes tests of the
used hardware platform underlying a proof architecture to be certified.
In this paper, we address the latter problem: we present a case study that
uses a formal model of a microprocessor and generate test programs from
it. These test programs validate that a microprocessor implements the
specified instruction set correctly.
We built our case study on an existing model that was, together with an
operating system, developed in Isabelle/HOL. We use HOL-TestGen, a
model-based testing environment which is an extension of Isabelle/HOL.
We develop several conformance test scenarios, where processor models
were used to synthesize test programs that were run against real hard-
ware in the loop. Our test case generation approach directly benefits
from the existing models and formal proofs in Isabelle/HOL.
Keywords: test program generation, symbolic test case generations,
black box testing, white box testing, theorem proving, interactive testing

1 Introduction

Certifications demonstrating that certain security or safety requirements are met
by a system are becoming increasingly important for a wide range of products.
Certifications play an increasing role in industrial applications including oper-
ating systems and embedded systems. While the certifications of large systems,
including fully functional operating systems up to Common Criteria EAL 4 are
common practice today, higher-levels involve the use of formal methods and
combined test and proof activities, covering various layers of a system including
soft and hardware-components. To reach EAL7 [8] one has to formally verify
properties on the specification as well as test the implementation thoroughly.
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The certification of systems combining software and hardware, such as mod-
ern avionics systems, requires to test microprocessors in the context of the de-
veloped system. Thus, an isolated verification (and certification) by the chip
manufacturer is not enough. Test program generation, i. e., generating test cases
in terms of low level programs for the microprocessor under test, is a well-
established technique for validating processor designs. As it allows to validate
processors on the instruction set or assembly level, it is well suitable for validat-
ing commercial off-the-shelf (COTS) processors for which, usually, implementa-
tion details are not available. Microprocessor vendors that want to support their
customers in certification processes can provide them with the necessary test
programs. Such a set of test cases is called a certification kit and selling usually
manually developed certification kits is a profitable business, as is the case for,
e. g., avionics certifications according to DO-178 and DO-245 [16].

We present a case study for the model-based generation of test programs (i.e,
the basis for a certification kit) for a realistic model of a RISC processor called
VAMP. VAMP is inspired by IBM’s G5 architecture. In the Verisoft project (see
http://www.verisoft.de), a formal model for both the processor and a small
operating system has been developed in Isabelle/HOL. We will adapt and reuse
the processor model to generate test cases that can be used to check if a given
hardware conforms to the model of the VAMP processor. The presented test
scenario is of particular interest for the higher levels of certification processes as
imposed by Common Criteria EAL 7. Even if the transition from C programs
to the processor models has been completely covered by deductive verification
methods as in CompCert [18], certification bodies will require test sets checking
the conformance of the underlying processor model to real hardware.

At present, specification-level verification and the development of test sets
are usually two distinguished tasks. Moreover, test sets for certification kits are
usually developed manually. In contrast, our model-based test case generation
approach uses the design model that was already used for the verification task. In
particular, we are using HOL-TestGen to generate test sequences generated
from the VAMP model. As HOL-TestGen is built on top of Isabelle/HOL,
i. e., test specification are expressed in terms of higher-order logic (HOL), we
can directly benefit from the already existing verification models. In fact, the
tight integration of a verification and a test environment is a distinguishing
feature of HOL-TestGen.

2 Background

2.1 The Verified Architecture Microprocessor (VAMP)

The Verified Architecture Microprocessor (VAMP) as well as the micro-kernel
VAMOS [10] has been developed and verified in the context of the German
research projects Verisoft (http://www.verisoft.de) and VerisoftXT (http:
//www.verisoftxt.de). The goal in particular of the former project was the
pervasive formal verification of computer systems from the application level down
to the silicon, i. e., the hardware design.

http://www.verisoft.de
http://www.verisoft.de
http://www.verisoftxt.de
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On the Application Software Layer, this includes foundational proofs jus-
tifying a verification approach for system-level concurrent programs that are
running as user processes on the micro-kernel VAMOS [10]. On the System Soft-
ware Layer, VAMOS provides an infrastructure for memory virtualization, for
communication with hardware devices, for process (represented as a sequence
of assembly instructions), and for inter-process communication (IPC) via syn-
chronous message passing that need to be verified. On the Tools Layer, the
correctness of the compiler needs to be verified and, finally, on the Hardware
Layer, the functional correctness of the hardware design is formally verified.

Application 
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System 
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Hardware 
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  Operating System 
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         App          App          App 
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Figure 1. The Verisoft System Layers.

These four layers comprise the Verisoft Architecture (see Figure 1); each of
the layers is in itself structured in several sub-layers.

Our work focuses on the hardware layer, more precisely the assembly-level
(VAMPasm), i. e., the instruction set of the Verified Architecture MicroProces-
sor (VAMP) [3]. VAMP is a pipelined reduced instruction set (RISC) processor
based on the out-of-order execution principle (see Hennessy and Patterson [15]
for details). The VAMPasm (Section 3 presents the formal model we are using
in our work) includes 56 instructions: 8 instructions for memory data transfer, 2
instructions for constant data transfer, 2 instructions for register data transfer,
14 instructions for arithmetic and logical operations, 16 instructions for test op-
erations, 6 instructions for shift operations, 6 instructions for control operations
as well as 2 instructions for interrupt handling.
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In our unit and sequence test scenarios, we generate tests from a formal
model of the instruction set, i. e., we test the conformance of the gate level
(which corespondents to the implementation in traditional model-based testing)
to assembly-level (which corespondents to the model in traditional model-based
testing).

2.2 Isabelle/HOL and the HOL-TestGen Framework

Isabelle [20] is a proof assistant based on a kernel ensuring logical correctness. It
is highly customizable to a variety of logics, among them first order logic (FOL),
Zermelo-Fraenkel set-theory (ZF) and most notably higher-order logic (HOL).
The HOL instance is well equipped with a number of components that support
for specific specification constructs such as type definitions, (recursive) function
definitions involving termination proofs and inductive set definitions. Isabelle is
an interactive development environment providing immediate feedback in formal
proof attempts and symbolic computations, as well as tools for automatic rea-
soning such as an term rewriting engine and various decision procedures. Beyond
a verification environment, Isabelle can also be understood as a framework for
building formal methods tools [24].

Figure 2. A HOL-TestGen Session Using the Isabelle/jEdit Front-End.

HOL-TestGen [5–7] is such a formal tool built on top of Isabelle/HOL.
While Isabelle/HOL is usually seen as “proof assistant,” HOL-TestGen (see
Figure 2) is used as a document centric modeling environment for the domain
specific background theory of a test (the test theory), for stating and logically
transforming test goals (the test specifications), as-well as for the test generation
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method implemented using Isabelle’s tactic procedures. In a nutshell, the test
generation method consists of:
1. a test case generation phase, which is essentially a process intertwining

bounded case-splitting on variables (i. e., applying rules of the form: x ::
αlist = x = []∧∃al′. x = a#l′), simplification with respect to the underlying
theory (using, e. g., |a#l′| = |l′| + 1, etc.) and in a CNF-like normal form
that leads to partitioning of the input/output relation.

2. a test data selection phase, which essentially uses a combination of constraint
solvers using random test generation and the integrated SMT-solver Z3 [9]
to construct an instance for each partition,

3. a test execution phase converts the instantiated test cases (“test oracles”) to
test driver code that is run against the system under test (SUT).

A detailed account on the symbolic computation performed by the test case
generation and test selection procedures is described by Brucker and Wolff [6].

Several approaches for the generation of test cases are possible: while unit-
test oriented test generation methods essentially use pre-conditions and post-
conditions of system operation specifications, sequence-test oriented approaches
essentially use temporal specifications or automata-based specifications of system
behavior. In the case of test program generation, the state of the processor is an
important element of the test description. The tests describe then sequences of
state transitions that the processor may perform when executing the program
instructions.

As HOL is a purely functional specification formalism, it has no built-in con-
cepts for states and state transitions. To support sequence test specifications,
HOL-TestGen uses the well-known notion of monads. The state-exception
monad is, in fact, well fitted for this purpose, which is modeling partial state
transition functions of type

type_synonym (o, σ) MONSE = σ⇀(o ×σ)

Using monads, programs under test can be seen as i/o stepping functions of type
ι ⇒ (o, σ)MONSE, where each stepping function may either fail for a given state
σ and input ι, or produce an output o and a successor state.

The usual concepts of bind (representing sequential composition with value
passing) and unit (representing the embedding of a value into a computation)
are defined for the case of the state-exception monad as follows:

definition bindSE :: (o, σ) MONSE ⇒(o ⇒(o’, σ) MONSE) ⇒(o’, σ) MONSE
where bindSE f g = λσ. case f σ of None ⇒ None

| Some(out, σ’) ⇒g out σ’

definition unitSE :: o ⇒(o, σ) MONSE
where unitSE e = λσ. Some(e, σ)

x ←f; g is written for bindSEf(λx. g) and return for unitSE. On this basis, the
concept of a valid test sequence (no exception, P yields true for observed output)
can be specified as follows:

σ |= o1 ←SUT i1; . . .; on ←SUT in; return (P o1 · · · on)
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where σ |= m is defined as (m σ 6=None ∧fst(m σ)). For iterations of i/o stepping
functions, an mbind operator can be used, which takes a list of inputs ιs =

[i1, . . ., in], feeds it subsequently into SUT and stops when an error occurs.
Using mbind, valid test sequences for a program under test SUT satisfying a post-
condition P can be reformulated by:

σ |= os ←mbind ιs SUT; return(P os)

which is the HOL-TestGen’s standard way to represent sequence test specifi-
cations. For cases, where a post-condition depends explicitly on the underlying
state, we use the state-exception primitive:

definition assertSE :: (σ ⇒bool) ⇒(o, σ) MONSE
where assertSE P = (λσ. if P σthen Some(True,σ) else None)

instead of return(P).

3 The VAMP Model

The Verified Architecture MicroProcessor (VAMP) [3] is a 32-bit RISC CPU with
a DLX-instruction set including floating point instructions, delayed program
counter, address translation, and support for maskable nested precise interrupts.
The VAMP hardware contains five execution units: the Fixed Point Unit, the
Memory Unit, and three Floating Point Units. Instructions have up to six 32-bit
source operands and produce up to four 32-bit results. The memory interface [2]
of the VAMP consists of two Memory Management Units that access instruction
and data caches, which in turn access a physical memory via a bus protocol.

In the context of the Verisoft project, an Isabelle/HOL specification (pro-
grammer’s model) of the VAMP processor was introduced. The processor con-
sists of a set of transitions defined over the Instruction Set Architecture (ISA)
configurations. A configuration is composed of five elements:
1. Program counter (pcp): a 30 bit register containing the address of next in-

struction to be executed, this register is used to fetch an instruction without
altering the execution of the current one. This pipelining mechanism is called
delayed pc.

2. Delayed program counter (dcp): a 30 bit register for delayed program counter,
containing the currently executed instruction. While the fetch of the next
instruction is performed in the pcp register, the dcp is kept unchanged until
the end of the execution of the current instruction.

3. General purpose registers (gprs): a register file consisting of 32 registers of
32 bits each. These registers are used in different operations, and can be
addressed by their index (0–31). The first register is always set to 0.

4. Special purpose registers (sprs): a register file consisting of 32 registers of
32 bits each, used for particular tasks. The first register for instance is the
status register, containing the interrupts masks. Some registers are used
as flags registers or as condition registers. Each special purpose register is
addressed directly by its name.
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5. Memory model (mm): a 232 bytes addressable memory. Different caching and
virtual memory infrastructures are implemented in the VAMP system.
The transition relation is defined by the execution of the program instruc-

tions defined in the initial configuration. The VAMP implements the full DLX
instruction set from Hennessy and Patterson [15]. This set includes load and
store operations for double words, words, half words and bytes. It includes also
different shift operations, jump-and-link operations and various arithmetic and
logical operations.

To avoid the complex and inconvenient bit vector representation of data and
instructions, an assembly language was introduced abstracting the VAMP ISA.
In this case addresses are represented by natural numbers and registers and
memory contents by integers. Our test specifications and experiments are based
on this instruction set (assembler) model.

The Isabelle theory of the assembler model is an abstraction of the instruc-
tion set architecture. In addition to the representation of addresses as naturals
and values as integers, some other ISA features are abstracted. The instructions
are represented in an abstract datatype with readable names. The address trans-
lation is not visible at this level, assembler computations live in linear (virtual)
memory space. Interrupts are not visible at this level as well. The assembler
configuration is an abstraction of the ISA configuration, defined as a record type
with the following fields:
– pcp: a natural number representing the program counter,
– dcp: a natural number representing the delayed program counter,
– gprs: a list of integers representing the general purpose register file,
– sprs: a list of integers representing the special purpose register file,
– mm: a memory model represented by a mapping from naturals to integers.

The HOL definition of the configuration is given by the ASMcoret record type.
The register file type is defined as a list of integers representing the different
registers.

type_synonym regcont = int -- {* contents of register *}
type_synonym registers = regcont list -- {* register file *}

record ASMcoret = dpc :: nat
pcp :: nat
gprs :: registers
sprs :: registers
mm :: memt

Since the assembler representation of addresses and values is less restrictive
than the bit vector representation, some conversion functions and restriction
predicates were defined to reduce the domain of addresses and values to only
meaningful values. This was the case also for the configurations, since the number
of registers is not mentioned in the definition of the registers type. The well-
fomedness of assembler configurations is given by the is_ASMcore predicate. This
predicate ensures that register files contain exactly 32 registers each. It also
checks that all register and memory cells contain valid values.
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definition is_ASMcore :: ASMcoret ⇒bool where
is_ASMcore st ≡asmnat (dpc st) ∧

asmnat (pcp st) ∧
length (gprs st) = 32 ∧
length (sprs st) = 32 ∧
(∀ ind < 32. asm_int (reg (gprs st) ind)) ∧
(∀ ind < 32. asm_int (sreg (sprs st) ind)) ∧
(∀ ad. asm_int (data_mem_read (mm st) ad))

The instruction set of the assembler is defined as an abstract datatype instr

in Isabelle. All operations mnemonics are used as datatype constructors, asso-
ciated to their corresponding operands. Different types of instructions can be
distinguished: data transfer commands, arithmetic and logical operations, test
operations, shift operations, control operations and some basic interrupts.

datatype instr =
-- {* data transfer (memory) *}
Ilb regname regname immed

|...
-- {* data transfer (constant) *}
| Ilhgi regname immed
| ...
-- {* data transfer (registers) *}
| Imovs2i regname regname
| ...
-- {* arithmetic / logical operations *}
| Iaddio regname regname immed
| ...
-- {* test operations *}
| Iclri regname
| ...
-- {* shift operations *}
| Islli regname regname shift_amount
| ...
-- {* control operations *}
| Ibeqz regname immed
| ...
-- {* interrupt *}
| Itrap immed
| ...

An inductive function is defined over the assembler instructions to provide
the semantics of each operation. This function returns for each configuration
and instruction, the configuration resulting from executing the instruction in
the initial configuration.

fun exec_instr :: [ASMcoret, instr] ⇒ASMcoret
where
-- {* Arithmetic Instructions *}
exec_instr st (Iaddo RD RS1 RS2) =

arith_exec st int_add (reg (gprs st) RS1)
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(reg (gprs st) RS2) RD
| ...
-- {* Logical Instructions *}
| exec_instr st (Iand RD RS1 RS2) =

arith_exec st s_and (reg (gprs st) RS1)
(reg (gprs st) RS2) RD

| ...
-- {* Shift Instructions *}
| exec_instr st (Isll RD RS1 RS2) =

arith_exec st sllog (reg (gprs st) RS1)
(reg (gprs st) RS2) RD

| ...

The transition relation is defined as a function that takes a configuration and
returns is successor. The transitions are defined by the execution of the current
program instruction given in the delayed program counter.

definition Step :: ASMcoret ⇒ASMcoret
where Step st ≡ exec_instr st (current_instr st)

These transition relations are used in our study as the basis of test specifications.
The assembler model is more abstract than the processor model, consequently,
different complex details are made transparent. Examples are interrupts handling
and virtual memory and caching, pipelining and instruction reordering. In a
black-box testing scenario, an abstract description of the system under test is
used as a basis for test generation. This will be the case in our study, where the
processor model is used to extract abstract test cases for the processor. The aim
of this testing scenario is to check that the processor behaves as described in the
assembler model, independently of the internal implementation details.

4 Testing VAMP Processor Conformance

As motivated earlier, we will apply essentially two testing scenarios: model-based
unit testing and sequence testing. In a unit testing scenario, the test specification
is described by pre- and post-conditions on the inputs and results produced by
the system under test. This scenario assumes control over the initial state and
the access to the internal states of the SUT after the test. In sequence testing
scenario, only the control of the internal state initialization is necessary, and
in some cases the reference to the final state. In principle, the test result is
inferred from a sequence system inputs and observed outputs. For any given
inputs and state, the system—defined as an i/o stepping function—may either
fail or produce outputs and a successor state. The unit testing scenario can be
seen as a special form of (one step) sequence testing, where the output state is
more or less completely accessible for the test.

In our case study, both testing scenarios are useful. The unit testing scenario
will be used to test individually each operation or instruction with different data.
Sequence testing will be used to test any sequence of instructions up to a given
length. We will address subsets of related instructions separately, a combination
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of different instruction types is possible but not explored here. We studied four
types of instructions: 1. memory related load and store operations, 2. arithmetic
operations, 3. logic operations and 4. control-flow related operations.

4.1 Generalities on Model-based Tests

A general test specification for unit instruction testing would be the following:

test_spec pre σ ι =⇒ SUT σ ι =k exec_instr σ ι

where _ =k_ is a specially defined executable equality that compares the content
of the registers and just the top k memory cells (instead of infinite memory).
_ =k _ is our standard conformance relation comparing the state controlled ac-
cording to the model and the state controlled by the SUT; here, we make the
testability assumption that we can trust our test environment that reads the
external state and converts it to its abstraction. Note that SUT is a free variable
that is replaced during the test execution with the system under test.

Each test case is composed of an instruction, an initial configuration and the
resulting configuration after the execution of the instruction. From this test spec-
ification, HOL-TestGen will produce tests for all possible instructions.Subsets
of instructions are isolated by adding a pre-condition in the test specification,
specifying the type of the instruction.

For instruction sequence testing, based on the combinators from the state-
exception monad (see Section 2.2) mbind, bind _ ←_; _ and the assertion assertSE
a test specification can be given specifications of valid test sequences from initial
state σ 0. In general, there are two kinds of sequence test scenarios: those who
involve just observations of the executions of the local steps and those who in-
volve a test over the final state. The former class is irrelevant in our application
domain since the local steps are just actions not reporting a computation result.
However, the latter scenario may just involve a conformance on the entire state:

test_spec pre ιs::instr list =⇒
(σ0 |=(_ ←mbind ιs execVAMP; assertSE (λσ. σ=k SUT σ0ιs)))

or just a bit of it, e. g., where a computation is finally loaded into register 0

which is finally compared:

test_spec pre ιs::instr list =⇒
(σ0 |=(_ ←mbind (ιs@[load x 0]) execVAMP;

assertSE (λσ. (gprs σ)!0 = (gprs (SUT σ0ιs))! 0)))

which requires that the last load action(s) are tested before, but makes less
assumptions over the execution environment (i. e., a trustworthy implementation
of _ =k_). In both schemes σ 0 is the initial state and ιs is the sequence of
instructions that will be generated and execVAMP is a lifting of exec_instr into
the state exception monad:

definition execVAMP where execVAMP ≡(λ i σ. Some ((), exec_instr σi))
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The pre-conditions pre of our test specifications—also called test purposes—
are added to the test specifications to reduce the generated instruction sequences
to any given subset.

The initial configuration can also be generated as an input of the test cases.
This may produce ill-formed configurations due to their abstract representation
in the assembler model. We choose for our study to define and use an empty
initial configuration σ 0 that is proved to be well-formed.

4.2 Testing Methodology

Common analysis techniques such as stuck-at-faults [14] are based on the idea
that a given circuit design—thus, an implementation—is modified by mutators
capturing a particular fabrication fault model, e. g.: one or n wires connecting
gates in the circuit are broken. This can be seen conceptually as a white-box
mutation technique and has, consequently, all advantages and all draw-backs
of an implementation-based testing method compared to all draw-backs and
all advantages to its specification-based counterparts. Stack-at-faults are very
effective for medium-size circuits and use the structure of the given design to
construct equivalence classes tests incorporating directly a fault model. This type
of testing technique, however, will not reveal design flaws such as a write-read
error under the influence of byte-alignments in the memory.

While we have a VAMP gate-level model in our hands and could have opted
for testing technique on this layer, for this paper, we opted to stay on the design
level of the VAMP machine. This does not mean that we can not refine with little
effort the equivalence classes underlying our tests further: instead of assuming
in our test hypothesis that “one write-read of a memory cell successful, thus all
write-reads in this cell successful,” one could force HOL-TestGen to generate
finer test classes, by exploring the byte-or the bit-level representations of registers
and memory cells.

4.3 Testing Load-Store Operations

To formalize a test purpose restricting our first test scenario to load and store
operations, the test purpose is_load_store is used. This predicate returns for
each instruction, if it is a load/store operation or not. It is defined just as a
constraint over the syntax of the VAMP assembly language:

abbreviation is_load_store_byte’ :: instr ⇒bool
where is_load_store_byte’ iw ≡

(∃ rd rs imm. (is_register rd ∧is_register rs ∧is_immediate imm) ∧
iw ∈{Ilb rd rs imm, Ilbu rd rs imm, Isb rd rs imm})

definition is_load_store :: instr ⇒bool
where is_load_store iw ≡is_load_store_word’ iw

∨is_load_store_hword’ iw
∨is_load_store_byte’ iw
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(the analogous test cases for is_load_store_word’ and is_load_store_hword’

iw are ommited here for space reasons).
Introducing this predicate in the pre-condition of the test specification re-

duces the domain of the generated tests to load/store operations. The resulting
test specification formally stating the test goal for unit test scenario is given by
the following:

test_spec is_load_store ι =⇒ SUT σ0 ι =k exec_instr σ0 ι
apply (gen_test_cases 0 1 SUT)
store_test_thm load_store_instr

The test case generation procedure defined in HOL-TestGen is used to preform
an exhaustive case splitting on the instructions datatype. Symbolic operands
are generated for each instruction to give a set of symbolic test cases. The test
generation produced 8 symbolic test cases, corresponding to the different load
and store operations. A uniformity hypothesis is stated on each symbolic test
case, which will allow us to select one concrete witness for each symbolic test
case. The final generation state contains 8 schematic test cases, associated to
8 uniformity hypotheses. The conjunction of the test cases and the uniformity
hypotheses is called a test theorem.

An example of a generated test case and its associated uniformity hypothesis
is given in the following. The variables starting with ??X (e. g., ??X4,??X5,) are
schematic variables representing one possible witness value.

1. SUT σ0(Ilb ??X7 ??X6 ??X5)
(...)

2. THYP ((∃ x xa xb. SUT σ0(Ilb xb xa x) (...)) −→
(∀ x xa xb. SUT σ0(Ilb xb xa x) (...)))

The second phase of test generation is the test data instantiation. This is done
using the gen_test_data command of HOL-TestGen. One possible resulting
test case is given by the following:

SUT σ0(Ilb 1 0 1) σ1

where σ 1 is the expected final state after executing the given operation. With
this kind of test cases, each operation is tested individually, in a unit test style.
This kind of test will reveal design faults i. e.if the result of the operation is not
correct. It also detects any undesired state modification, like changing some flags
or registers.

In a similar way, load and store instruction sequences are characterized using
the same predicate is_load_store which is generalized to entire input sequences
to the combinator list_all from the HOL-library. Rather than using a fairly
difficult to execute characterization in form of an automaton or an extended
finite state-machine that introduce some form of symbolic trace, we use monadic
combinators of the state-exception monad directly to define valid test sequences
constrained by suitable test purposes.

test_spec list_all is_load_store (ιs::instr list) =⇒
(σ0 |=(s ←mbind ιs execVAMP; assertSE (λσ. σ=k SUT σ0ιs)))
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apply (gen_test_cases SUT)
store_test_thm load_stre_instr_seq

Note that step two is just the call to the automatic test case generation method
(declaring the free variable SUT as the system under test of this test case), and
while the third command binds the results of this step to a data-structure called
test environment with the name load_store_instr_seq. The experimental eval-
uation of this scenario is discussed in the next section.

One possible generated test case of length 3 is given by the following subgoal:

1.σ0 |=(s ←mbind [Isw ??X597 ??X586 ??X575, Ilbu ??X557 ??X546 ??X535,
Ilbu ??X517 ??X506 ??X595] execVAMP;

assertSE (λσ. σ=k SUT σ0[Isw ??X597 ??X586 ??X575,
Ilbu ??X557 ??X546 ??X535,
Ilbu ??X517 ??X506 ??X595]))

2. THYP ((∃ x1 x2 x3 x4 x5 x6 x7 x8 x9. σ0|=(s ←mbind [Isw x1 x2 x3,
Ilbu x4 x5 x6, Ilbu x7 x8 x9] execVAMP; (...))) −→

(∀ x1 x2 x3 x4 x5 x6 x7 x8 x9. σ0|=(s ←mbind [Isw x1 x2 x3,
Ilbu x4 x5 x6, Ilbu x7 x8 x9] execVAMP; (...))))

where the first subgoal gives the schematic test case, and the second subgoal
states the uniformity hypothesis for this case.

The generation of test data is done similarly using the gen_test_data com-
mand, which instantiate the schematic variables with concrete values.

σ 0 |=(s ←mbind [Isw 0 1 8, Ilbu 1 0 -3, Ilbu 3 2 8] execVAMP;
assertSE (λσ. σ=k SUT σ0[Isw 0 1 8, Ilbu 1 0 -3, Ilbu 3 2 8]))

this corresponds to the following assembly code sequence:

ISW 0 1 8
LLBU 1 0 -3
LLBU 3 2 8

This test programs will eventually reveal errors related to read and write
sequences. Even if each operation is realized in a correct way, the sequencing
may contain errors, like errors due to byte alignment or information loss due to
pipelining.

In this testing scenario, we consider test post-conditions expressed on the
final state of the automaton. This post-condition is expressed using the state-
exception primitive assertSE. This scenario is not very realistic in hardware pro-
cessors, because the final state, in particular the internal processor registers,
will not be directly observable. An alternative scenario would be to consider
the state-exception primitive return that introduces a step by step checking of
the output values. This output value might be, e. g., retrieved from the updated
memory cell. Test specification for this kind of scenarios is as follows:

test_spec list_all is_load_store ιs =⇒
(σ0 |=(s ←mbind ι execVAMP’; return (SUT ι s)))

which require a modified VAMP where individual steps were wrapped into
trusted code that makes, e. g., internal register content explicit.
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4.4 Testing Arithmetic Operations

Similarly, we set up a unit test scenario, where we constrain by the test purpose
is_arith the operations to be tested to arithmetic ones:

test_spec σ= exec_instr σ0i =⇒is_arith i =⇒SUT σ0i σ
apply (gen_test_cases 0 1 SUT)
store_test_thm arith_instr

At this stage, each arithmetic operation is covered by one generated test case,
an example is given in the following:

1. SUT σ0(Iaddi ??X277 ??X266 ??X255) (...)

which contains a test case for he addition operation.
A note on the test granularity is at place here: as such, the granularity that

HOL-TestGen applies to test arithmetic operations is fairly coarse: just one
value satisfying all constraints over a variable of type integer is selected. This is
a consequence of our model (registers were represented as integers and not as
bitvectors of type: 32 word which would be (nowadays) a valuable alternative)
as well as the HOL-TestGen heuristics to select for each variable just one
candidate. The standard workaround would be to introduce in the test purpose
definitions more case distinctions, e. g., by x ∈{MinInt} ∪{-50 .. -100} ∪{0}
∪{50 .. -100} which result in finer constraints for each of which a solution in
the test selection must be found.

The sequence scenario is analogously:

test_spec list_all is_arith (ι::instr list) =⇒
(σ0 |=(s ←mbind ιs execVAMP; assertSE (λσ. σ=k SUT σ0ι)))

apply (gen_test_cases SUT)
store_test_thm arith_instr_seq

A possible generated sequence is given in the following, resulting from the
gen_test_data command.

σ 0 |=(s ←mbind [Isub 2 1 0, Iadd 1 5 2, Iadd 1 0 4] execVAMP;
assertSE (λσ. σ=k SUT σ0[Isub 2 1 0, Iadd 1 5 2, Iadd 1 0 4]))

which corresponds to the following assembly code sequence:

ISUB 2 1 0
IADD 1 5 2
IADD 1 0 4

This sequence corresponds to a subtraction followed by two addition operations.

4.5 Testing Control-Flow Related Operations

Also with branching operations we are following the same theme:

test_spec is_branch i =⇒SUT σ0i =k exec_instr σ0i
apply (gen_test_cases 0 1 SUT)
store_test_thm branch_instr
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This generates unit test cases for branching operations starting from the
initial sate σ 0. One example of the generated schematic test cases is given by:

1. SUT σ0(Ijalr ??X27X7) (...)

The problem with this scenario is that the initial state is fixed, while the
branching operations behavior depends essentially on the flag values. A more
interesting scenario would be to consider different initial states, where the flags
values are changed for each test case.

In the test sequence generation, the test specification is given as follows:

test_spec list_all is_branch (ιs::instr list) =⇒
(σ0 |=(s ←mbind ιs execVAMP; assertSE (λσ. σ=k SUT σ0ιs)))

apply (gen_test_cases SUT)
store_test_thm branch_instr_seq

The test sequence and test data generation returns, e. g., this concrete test
sequence:

σ 0 |=(s ←mbind [Ij 1, Ijalr 0] execVAMP;
assertSE (λσ. σ=k SUT σ0[Ij 1, Ijalr 0]))

which corresponds to the following assembly code sequence:

IJ 1
IJALR 0

The test data generation in all the considered scenarios is performed by
constraint solving and random instantiation. This leads to test sequences with
coarsely grained memory access. As such, an underlying fault-model is some-
what arcane (i. e., interferences of operations in distant memory areas). If one is
interested in such faults, a more dense test method should be chosen.

Rather, one would adding additional constraints to reduce the uniformity
domain again. One could simply bound the range of addresses to be used in test
sequences, or define a used-predicate over input sequences that computes the set
of addresses that store-operations write to, and constrain the load-operations to
this set, or the like. This kind of constraints can also be used to improve the
coverage of our selected data, by dividing the uniformity domain into different
interesting sub-domains.

5 Experiences and First Experimental Data

Methodologically, we deliberately refrained in this paper to modify the model—
we took it “as is,” and added derived rules to make it executable in test scenarios
where we assume a reference implementation running against the SUT. For ex-
ample, the model describes padding functions for bytes, words, and long-words
treating the most significant bit differently in certain load and store operations;
in the semantic machine model as it was developed in the Verisoft Project, there
are comparisons on these padding functions themselves—this is possible in HOL,
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but in no functional executable language, had therefore to be replaced by equiv-
alent formulations exploiting the fact there are only three variants of padding
functions, thus a finite number, were actually used in the VAMP machine. An-
other issue is the linear memory in the machine (a total, infinite function from
natural numbers to memory cells, i. e., long words); comparisons on memory, as
arising in tests where the real state has to be compared against the specified
state, had to be weakened to finitized conformance relations.

While as a whole, our approach is done in a pretty generic model-based
testing framework, a few adaptions had to be made due to some specialties
of this model. For example, since the assembly language has 56 variants, case-
splitting over the language explodes fast over the length of test sequences. While
sequence tests are methodologically and pragmatically more desirable (less con-
trol over the state is assumed), they are therefore more vulnerable to state-
space explosion: sequences of length 3 generate at some point of the process
56+562+563 = 178808 cases. In this situation, a few heuristic adaptions (repre-
sented on the tactic level) and more significantly, constraints on the level of the
test purposes had to be imposed with respect to state-space explosion, test pur-
poses like list_all is_logic ι helps to reduce the test sequences to 7+72+73,
i. e., a perfectly manageable size (see discussion in the next section).

5.1 Test Generation

As mentioned earlier, we opted for a combination of unit and sequence test
scenarios. Unit tests have the drawback of imposing stronger assumptions on
testability: it is assumed that the test driver has actually access to registers and
memory (which essentially boils down to the fact that we trust code in the test
driver that consists of store-operations of registers into the memory). Sequence
tests rely on the observed behavior of tests and make weaker assumptions on
testability, for the price of being more vulnerable to state-space explosion.

The sequence scenarios on load-and store operations in Section 4.3 uses 39
seconds in the test partitioning phase and 42 seconds in the test data selection
phase (measurements were made on a Powerbook with a 2.8 Ghz Intel Core 2
Duo). 1170 subgoals were generated, where one third are explicit test hypothesis
and two third are actual test cases. The other scenarios in Section 4.5, Section 4.4
and the more basic Section 4.1 use considerably less time (between two and
twenty seconds for the entire process).

5.2 Test Execution

Nevertheless, compile time for the model (as part of the test drivers) was less
than a second; compilation of the entire test driver in SML depends, of course,
drastically on the size of finally generated tests. Since we restrained via test
purposes the test cases in each individual scenario to about 1000, the compile
time for a test remained below 3 seconds. Scaling up our test plan is essentially
playing with a number of control parameters; however this is usually done only
at the end of the test plan development for reasons of convenience.
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Our study focuses for the moment on test generations; we did not do any
experiments against hardware so far. However, there is a hardware-simulator in
the sources of the Verisoft-project; in the future, we plan to generate mutants of
this simulator and get thus experimental data on the bug-detection capabilities
on the generated test sets.

To give an idea on how the test cases will be executed, we did some experi-
ments using the generated executable model. Starting from the abstract model,
an executable translation of it in SML is performed using the Isabelle’s code-
generation facilities. This generated code contains all the type and constant
definitions that are needed to execute the different assembler operations on an
executable state. A sketch of the generated SML code for the VAMP processor
is given in the following:

structure VAMP : sig
datatype num = One | Bit0 of num | Bit1 of num
datatype ’a set = Set of ’a list | Coset of ’a list
datatype instr = Ilb of IntInf.int * IntInf.int * IntInf.int |
...
Ijr of IntInf.int | Itrap of IntInf.int | Irfe

val int_add : IntInf.int -> IntInf.int -> IntInf.int
val int_sub : IntInf.int -> IntInf.int -> IntInf.int
val cell2data : IntInf.int -> IntInf.int
val exec_instr : unit aSMcore_t_ext -> instr -> unit aSMcore_t_ext
val sigma_0 : unit aSMcore_t_ext
val execInstrs : unit aSMcore_t_ext -> instr list

-> unit aSMcore_t_ext
...

where the datatype definition instr is generated from the instruction type defi-
nition introduced in Section 3. the functions definitions are generated from their
corresponding constants and functions defined in the model.

Our fist experiment was the application of the generated test cases on this
executable model. Using the HOL-TestGen test script generation, two test
scripts were generated for load/store and arithmetic operations sequence. For
both cases, 585 test cases were generated and then transformed to executable
testers. Running all these tests did, obviously, not reveal any error, since the
same model was used for test generation and execution.

To evaluate the quality our generated test cases, we introduced some changes
to the executable model, producing a mutant model. Three changes were intro-
duced in the int_add, int_sub and cell2data operations of the generated SML
code. In this case, a majority of tests detected the errors. For testing the arith-
metic operations, we obtained:

Number of successful test cases: 303 of 585 (ca. 51%)
Number of warning: 0 of 585 (ca. 0%)
Number of errors: 0 of 585 (ca. 0%)
Number of failures: 282 of 585 (ca. 49%)
Number of fatal errors: 0 of 585 (ca. 0%)
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For testing the load/store operations, we obtained:

Number of successful test cases: 54 of 585 (ca. 9%)
Number of warning: 0 of 585 (ca. 0%)
Number of errors: 0 of 585 (ca. 0%)
Number of failures: 531 of 585 (ca. 91%)
Number of fatal errors: 0 of 585 (ca. 0%)

6 Conclusion and Related Work

6.1 Related Work

Formal verification is widely used in the hardware industry since at least ten
years (e. g., [4, 12, 13, 21, 23]). Nevertheless, formal models of complete pro-
cessors as well as verification approaches that provide an end-to-end verifica-
tion from the application layer to the hardware design layer are rare. Besides
VAMP [10], notably, exceptions are Fox [12] and Appenzeller and Kuehlmann
[1]. The closest related work with respect to the processor model is Fox [12] to
which our approach should be directly applicable.

Similarly, test program generation approaches for microprocessor instruction
sets have been known for a long time (e. g., [11, 17, 19, 22]). Among them manual
approaches based on informal descriptions of the instruction set such as Fallah
and Takayama [11] or random testing approaches such as Shen et al. [22]. Only a
few works suggest to use model-based or specification-based test program gener-
ation algorithms, e. g., Kamkin et al. [17] and Mishra and Dutt [19]. These works
have in common that they are based on dedicated test models that are indepen-
dently developed from the verification models. Mishra and Dutt [19] is the most
closely related work; the authors are using the explicit state model checker SMV
to generate test programs from a dedicated test model for SMV that concen-
trates on pipelining faults. In contrast, our approach seamlessly integrates the
test program generation into an existing verification tool chain, re-using existing
verification models.

6.2 Conclusion and Future Work

We presented an approach for testing the conformance of a processor with respect
to an abstract model that captures the instruction set (i. e., the assembly-level)
of the processor. This abstraction level is particular important as, first, it is
the level of detail that is usually available for commercial off-the-shelf (COTS)
processors and, second, it is the target level of high-level compilers.

Thus, our approach can, on the one hand, support the certification of the
COTS processors for which the manufacturer is neither willing to certify the
processor itself or to disclose the necessary internal details. Moreover, our ap-
proach helps to bridge the gap between the software layer (e. g., in avionics
requiring certification according to DO-178 [16]) and the hardware layer (e. g.,
in avionics requiring certification according to DO-254 [16]).
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As (embedded) systems combining hardware and software components for
providing core functionality in safety critical systems (e. g., “fly-by-wire”) are
used more and more often, we see an increasing need for validation techniques
that seamlessly bridge the gap between hardware and software. Consequently,
we see this area as the utterly important one for future work: providing a test
case generation methodology that can be applied end-to-end in the development
process and allows for validating each development step. These test cases, called
certification kits, are required even if compilers and processors are formally ver-
ified: The system builders require them for proving, as part of their certification
process, that their are applying the tools correctly (i. e., according to their spec-
ification).
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