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Abstract In this paper, we adapt model-based testing techniques to concurrent
code, namely for test generations of an (industrial) OS kernel called PikeOS.
Since our data-models are complex, the problem is out of reach of conventional
model-checking techniques. Our solution is based on symbolic execution im-
plemented inside the interactive theorem proving environment Isabelle/HOL ex-
tended by a plugin with test generation facilities called HOL-TestGen.
As a foundation for our symbolic computing techniques, we refine the theory of
monads to embed interleaving executions with abort, synchronization, and shared
memory to a general but still optimized behavioral test framework.
This framework is instantiated by a model of PikeOS inter-process communica-
tion system-calls. Inheriting a micro-architecture going back to the L4 kernel, the
system calls of the IPC-API are internally structured by atomic actions; according
to a security model, these actions can fail and must produce error-codes. Thus,
our tests reveal errors in the enforcement of the security model.

1 Introduction

The verification of systems combining soft- and hardware, such as modern avionics sys-
tems, asks for combined efforts in test and proof: In the context of certifications such as
EAL5 in Common Criteria [14], the required formal security models have to be linked
to system models via refinement proofs, and system models to code-level implementa-
tions via testing techniques. Tests are required for methodological reasons (“did we get
the system model right? Did we adequately model the system environment?”) as well as
economical reasons (state of the art deductive verification techniques of machine-level
code are practically limited to systems with ca. 10 kLOC of size, see [11]).

This paper stands in the context of an EAL5+ certification project [7] of the com-
mercial PikeOS operating system used in avionics applications; PikeOS [18–20] is a
virtualizing separation kernel in the tradition of L4-microkernels [10]. Our work com-
plements the testing initiative by a model-based testing technique linking the formal
system model of the PikeOS inter-process communication against the real system. This
is a technical challenge for at least the following reasons:

– the system model is a transaction machine over a very rich state,
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– system calls were implemented by internal, uninterruptible “atomic actions” re-
flecting the L4-microkernel concept; atomic actions define the granularity of our
concurrency model, and

– the security model is complex and, in case of aborted system calls, leads to non-
standard notions of execution trace interleaving.

To meet these challenges, we need to revise conceptual and theoretical foundations.
– We use symbolic execution techniques to cope with the large state-space; their in-

herent drawback to be limited to relatively short execution traces is outweighed by
their expressive power,

– we extend the “monadic test-sequence approach” proposed in [2, 4] to a test-method
for concurrent code. It combines an IO-automata view [13] with extended finite
state machines [9] using abstract states and abstract transitions, and

– we need an adaption of concurrency notions, a “semantic view” on partial-order
reduction and its integration into interleaving-based coverage criteria.

This sums up to a novel, tool-supported, integrated test methodology for concurrent
OS-system code, ranging from an abstract system model in Isabelle/HOL which was
not not authored by us, complemented by our embedding of the latter into our monadic
sequence testing framework, our setups for symbolic execution down to generation of
test-drivers and the code instrumentation.

2 Theoretical and Technical Foundations

2.1 HOL-TestGen: From Formal Specifications to Testing

HOL-TestGen [3, 4] a specification-based test case generation environment that inte-
grates seamlessly formal verification and testing in a very unique way. HOL-TestGen’s
features are:
1. it is an extension of Isabelle/HOL [16] and, thus, inherits all its features (e. g.,

formal modeling and verification, code generation),
2. its test case generation algorithm is based on the symbolic computation engine of

Isabelle and, thus, can count as highly trustworthy,
3. generates automatically test hypothesis such as the uniformity hypothesis and thus

establish a formal link between test and proof (see [4] for details).
Besides test data, HOL-TestGen also generates test drivers including the test oracles

for the system under test (SUT) verifying it against the HOL specification. Fig. 1 shows
on the left the HOL-TestGen architecture, and on the right a screen shot of its user
interface and a test execution. The usual workflow is as follows:
1. we model the SUT using Isabelle/HOL (system specification). This modeling pro-

cess can leverage the full power and methodology of Isabelle, for example, the sys-
tem specification can build upon the rich library of datatypes provided by Isabelle
or properties of the system specification can be formally proven.

2. we specify the set of test goals (test specification), again, in Isabelle/HOL.
3. we use the test case generation implementation of HOL-TestGen to automatically

generate abstract test cases (that may still contain, e. g., constraints of the form
0 < x < 10) from the system specification and test specification.
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Fig. 1. The HOL-TestGen Workflow.

4. we use constraint solvers generating test data, i. e., we construct ground instances
for the constraints in the test cases (e. g., we choose x to be 4).

5. we generate automatically test scripts that execute the SUT as well as validate the
test output (by test oracles)

6. we compile the test script, together with a generic test harness, which controls the
test execution and collects statistics about the number of successful or failed tests,
to actually execute the test.

Depending on the SUT, we might need to manually write a small test adapter that, e. g.,
converts data types between the representation in the generated test scripts and the one
actually used in the SUT. Moreover, for multi-threaded implementations, a scheduler
mapping has to be provided that maps abstract threads to the critical infrastructures in
the implementation. Usually, the manually written code is orders or magnitude smaller
than the generated code of the testers and often reusable between different scenarios.

2.2 A Gentle Introduction to Sequence Testing Theory

Sequence testing is a well-established branch of formal testing theory having its roots
in automata theory. The methodological assumptions (sometimes called testability hy-
pothesis in the literature) are summarized as follows:
1. The tester can reset the system under test (the SUT) into a known initial state,
2. the tester can stimulate the SUT only via the operation-calls and input of a known

interface; while the internal state of the SUT is hidden to the tester, the SUT is
assumed to be only controlled by these stimuli, and

3. the SUT behaves deterministic with respect to an observed sequence of input-output
pairs (it is input-output deterministic).



The latter two assumptions assure the reproducibility of test executions. The latter con-
dition does not imply that the SUT is deterministic: for a given input ι, and in a given
state σ, SUT may non-deterministically choose between the successor states σ′ and
σ′′, provided that the pairs (o′, σ′) and (o′′, σ′′) are distinguishable. Thus, a SUT may
behave non-deterministically, but must make its internal decisions observable by appro-
priate output. In other words, the relation between a sequence of input-output pairs and
the resulting system state must be a function.

(in:”a“,out:1) (in:”a“,out:2)

(in:”a“,out:1)

(a) IO-Deterministic SUT.

(in:”a“,out:1) (in:”a“,out:2)

(in:”a“,out:1)

(b) IO-Deterministic SUT.

(in:”b“,out:2) (in:”b“,out:2)

(in:”a“,out:1)

(c) Non-IO-Determin. SUT.

Fig. 2. IO-Determinism and Non-IO-Determinism

There is a substantial body of theoretical work replacing the latter testability hy-
pothesis by weaker or alternative ones (and avoiding the strict alternates of input and
output, and adding asynchronous communication between tester and SUT, or adding
some notion of time), but most practical approaches do assume it as we do throughout
this paper. Moreover note, that there are approaches (including our own paper [5]) that
allow at least a limited form of access to the final (internal) state of the SUT.

A sequence of input-output pairs through an automaton A is called a trace, the set
of traces is written Trace(A). The function In returns for each trace the set of inputs for
which A is enabled after this trace; in Fig. 2c for example, In [(“a”, 1)] is just {“b”}.
Dually, Out yields for a trace t and input ι ∈ In(t) the set of outputs for which A is
enabled after t; in Fig. 2b for example, Out([(“a”, 1)], “a”) this is just {1, 2}.

Equipped with these notions, it is possible to formalize the intended conformance
relation between a system specification (given as automaton SPEC labelled with input-
output pairs) and a SUT. The following notions are known in the literature:

– inclusion conformance [6]: all traces in SPEC must be possible in SUT,
– deadlock conformance [8]: for all traces t ∈ Traces(SPEC) and b < In(t), b must be

refused by SUT, and
– input/output conformance (IOCO) [21]: for all traces t ∈ Traces(SPEC) and all
ι ∈ In(t), the observed output of SUT must be in Out(t, ι).

2.3 Using Monadic Testing Theory

The obvious way to model the state transition relation of an automaton A is by a relation
of the type (σ × (ι × o) × σ) set; isomorphically, one can also model it via:

ι⇒ (σ⇒ (o × σ) set)



or for a case of a deterministic transition function:
ι⇒ (σ⇒ (o × σ) option)

In a theoretic framework based on classical higher-order logic (HOL), the distinction
between “deterministic” and “non-deterministic” is actually much more subtle than one
might think: since the transition function can be underspecified via the Hilbert-choice
operator, a transition function can be represented by

step ι σ = {(o, σ′)| post(σ, o, σ′)}
or:

step ι σ = Some(SOME(o, σ′). post(σ, o, σ′))

for some post-condition post. While in the former “truly non-deterministic” case step
can and will at run-time choose different results, the latter “underspecified determinis-
tic” version will decide in a given model (so to speak: the implementation) always the
same way: a choice that is, however, unknown at specification level and only declara-
tively described via post. For the system in this paper and our prior work on a processor
model [5], it was possible to opt for an underspecified deterministic stepping function.

We abbreviate functions of typeσ⇒ (o×σ) set orσ⇒ (o×σ) option MONSBE(o, σ)
or MONSE(o, σ), respectively; thus, the aforementioned state transition functions of io-
automata can be typed by ι→ MONSBE(o, σ) for the general and ι→ MONSE(o, σ) for
the deterministic setting. If these function spaces were extended by the two operations
bind and unit satisfying three algebraic properties, they form the algebraic structure of
a monad that is well known to functional programmers as well as category theorists.
Popularized by [22], monads became a kind of standard means to incorporate stateful
computations into a purely functional world.

Since we have an underspecified deterministic stepping function in our system
model, we will concentrate on the latter monad which is called the state-exception
monad in the literature.

The operations bind (representing sequential composition with value passing) and
unit (representing the embedding of a value into a computation) are defined for the
special-case of the state-exception monad as follows:

definition bindSE :: "(’o,’σ)MONSE ⇒(’o ⇒(’o’,’σ)MONSE) ⇒(’o’,’σ)MONSE"
where "bindSE f g = (λσ. case f σof None ⇒None

| Some (out, σ’) ⇒g out σ’)"

definition unitSE :: "’o ⇒(’o, ’σ)MONSE" ("(return _)" 8)
where "unitSE e = (λσ. Some(e,σ))"

We will write x ← m1; m2 for the sequential composition of two (monad) com-
putations m1 and m2 expressed by bindSE m1(λ x.m2). Moreover, we will write “return”
for unitSE.

This definition of bindSE and unitSE satisfy the required monad laws:

bind_left_unit: (x ← return c; P x) = P c
bind_right_unit: (x ←m; return x) = m
bind_assoc: (y ← (x ←m; k x); h y) = (x ←m; (y ←k x; h y))



On this basis, the concept of a valid monad execution, written σ |= m, can be ex-
pressed: an execution of a Boolean (monad) computation m of type (bool, σ) MONSE
is valid iff its execution is performed from the initial state σ, no exception occurs
and the result of the computation is true. More formally, σ |= m holds iff (m σ ,
None∧ fst(the(m σ))), where fst and snd are the usual first and second projection into a
Cartesian product and the the projection in the Some-variant of the option type.

We define a valid test-sequence as a valid monad execution of a particular format:
it consists of a series of monad computations m1 . . . mn applied to inputs ι1 . . . ιn and
a post-condition P wrapped in a return depending on observed output. It is formally
defined as follows:

σ |= o1 ← m1 ι1; . . . ; on ← mn ιn; return(P o1 · · · on)

The notion of a valid test-sequence has two facets: On the one hand, it is exe-
cutable, i. e., a program, iff m1, . . . ,mn, P are. Thus, a code-generator can map a valid
test-sequence statement to code, where the mi where mapped to operations of the SUT
interface. On the other hand, valid test-sequences can be treated by a particular simple
family of symbolic executions calculi, characterized by the schema (for all monadic
operations m of a system, which can be seen as the its step-functions):

(σ |= return P) = P (1a)

Cm ι σ m ι σ = None

(σ |= ((s← m ι; m′ s))) = False
(1b)

Cm ι σ m ι σ = S ome(b, σ′)

(σ |= s← m ι; m′ s) = (σ′ |= m′ b)
(1c)

This kind of rules is usually specialized for concrete operations m; if they contain pre-
conditions Cm (constraints on ι and state), this calculus will just accumulate those and
construct a constraint system to be treated by constraint solvers used to generate con-
crete input data in a test.

An Example: MyKeOS. To present the effect of the symbolic rules during symbolic
execution, we present a toy OS-model (our functional PikeOS including our symbolic
execution process, theories on interleaving, memory and test scenarios has a length of
more than 12 000 lines of Isabelle/HOL code; a complete presentation is therefore out
of reach). MyKeOS provides only three atomic actions for allocation and release of a
resource (for example a descriptor of a communication channel or a file-descriptor). A
status operation returns the number of allocated resources. All operations are assigned
to a thread (designated by thread_id) belonging to a task (designated by task_id, a
Unix/POSIX-like process); each thread has a thread-local counter in which it stores the
number (the status) of the allocated resources. The input is modeled by the data-type:

datatype in_c = alloc task_id thread_id nat
| release task_id thread_id nat
| status task_id thread_id



datatype out_c = alloc_ok | release_ok | status_ok nat

where out_c captures the return-values. Since alloc and release do not have a return
value, they signalize just the successful termination of their corresponding system steps.
The global table var_tab (corresponding to our symbolic state σ) of thread-local vari-
ables is modeled as partial map assigning to each active thread (characterized by the
pair of task and thread id) the current status:

type_synonym thread_local_var_tab = "(task_id ×thread_id) ⇀int"

The operation have the precondition that the pair of task and thread id is actually defined
and, moreover, that resources can only be released that have been allocated; the initial
status of each defined thread is set to 0.

Depicted as an extended finite state-machine (EFSM), the operations of our system
model SPEC are specified as shown in Fig. 3. A transcription of an EFSM to HOL

event :  alloc(tid,thid,m) 
guard : (tid,thid) dom(var_tab) �
send :   alloc_ok !
action : var_tab[tid,thid]+=m

event :  status(tid,thid) 
guard : (tid,thid) dom(var_tab) �
send :   status(n)!
action : n=var_tab[tid,thid]

event :  release(tid,thid,m) 
guard : (tid,thid) dom(var_tab) �
                ⋀ var_tab[tid,thid]>m
send :   release_ok!
action : var_tab[tid,thid]-=m var_tab

Fig. 3. SPEC: An Extended Finite State Machine for MyKeOS.

is straight-forward and omitted here. However, we show a concrete symbolic execu-
tion rule derived from the definitions of the SPEC system transition function, e. g., the
instance for Equation 1c:

(tid, thid) ∈ dom(σ) SPEC (alloc tid thid m) σ = Some(alloc_ok, σ′)

(σ |= s← SPEC (alloc tid thid m); m′ s) = (σ′ |= m′ alloc_ok)

where σ = var_tab and σ′ = σ((tid, thid) := (σ(tid, thid) + m)). Thus, this rule allows
for computing σ, σ′ in terms of the free variables var_tab, tid, thid and m. The rules
for release and status are similar. For this rule, SPEC (alloc tid thid m) is the concrete
stepping function for the input event alloc tid thid m, and the corresponding constraint
CSPEC of this transition is (tid, thid) ∈ dom(σ).

Conformance Relations Revisited. We state a family of test conformance relations
that link the specification and abstract test drivers. The trick is done by a coupling
variable res that transport the result of the symbolic execution of the specification SPEC



to the attended result of the SUT.

σ |= o1 ← SPEC ι1; . . . ; on ← SPEC ιn; return(res = [o1 · · · on])
−→

σ |= o1 ← SUT ι1; . . . ; on ← SUT ιn; return(res = [o1 · · · on])

Successive applications of symbolic execution rules allow to reduce the premise of this
implication to CSPEC ι1 σ1 −→ . . . −→ CSPEC ιn σn −→ res = [a1 · · · an] (where the
ai are concrete terms instantiating the bound output variables oi), i. e., the constrained
equation res = [a1 · · · an]. The latter is substituted into the conclusion of the implication.
In our previous example, case-splitting over input-variables ι1, ι2 and ι3 yields (among
other instances) ι1 = alloc t1 th1 m, ι2 = release t2 th2 n and ι3 = status t3 th3, which
allows us to derive automatically the constraint:

(t1, th1) ∈ dom(σ) −→ (t2, th2) ∈ dom(σ′) ∧ n < σ′(t2, th2) −→
(t3, th3) ∈ dom(σ′′) −→ res = [alloc_ok, release_ok, status_ok(σ′′(t3, th3)]

where σ′ = σ((t1, th1) := (σ(t1, th1) + m))) and σ′′ = σ′((t2, th2) := (σ(t2, th2) − n))).
In general, the constraint CSPECi ιi σi can be seen as an symbolic abstract test ex-

ecution; instances of it (produced by a constraint solver such as Z3 integrated into Is-
abelle) will provide concrete input data for the valid test-sequence statement over SUT,
which can therefore be compiled to test driver code. In our example here, the witness
t1 = t2 = t3 = 0, th1 = th2 = th3 = 5, m = 4 and n = 2 satisfies the constraint and
would produce (predict) the output sequence res = [alloc_ok, release_ok, status_ok 2]
for SUT according to SUT. Thus, a resulting (abstract) test-driver is:

σ |= o1 ← SUT ι1; . . . ; o3 ← SUT ι3;
return([alloc_ok, release_ok, status_ok 2] = [o1 · · · o3])

This schema of a test-driver synthesis can be refined and optimized. First, for itera-
tions of stepping functions an ’mbind’ operator can be defined, which is basically a fold
over bindSE. It takes a list of inputs ιs = [i1, . . . , in], feeds it subsequently into SPEC and
stops when an error occurs. Using mbind, valid test sequences for a stepping-function
(be it from the specification SPEC or the SUT) evaluating an input sequence ιs and
satisfying a post-condition P can be reformulated to:

σ |= os← mbind ιs SPEC; return(P os)

Second, we can now formally define the concept of a test-conformance notion:

(SPEC v〈Init,CovCrit,conf〉 SUT) =

(∀σ0 ∈ Init. ∀ι s ∈ CovCrit. ∀res.

σ0 |= os← mbind ιs SPEC; return(conf ιs os res)
−→

σ0 |= (os← mbind ιs SUT; return(conf ιs os res)))



For example, if we instantiate the conformance predicate conf by:

conf ιs os res = (length(ιs) = length(os) ∧ res = os)

we have a precise characterization of inclusion conformance introduced in the previous
section: We constrain the tests to those test sequences where no exception occurs in the
symbolic execution of the model. Symbolic execution fixes possible output-sequence
(which must be as long as the input sequence since no exception occurs) in possible
symbolic runs with possible inputs, which must be exactly observed in the run of the
SUT in the resulting abstract test-driver.

Using pre-and postcondition predicates, it is straight-forward to characterize dead-
lock conformance or IOCO mentioned earlier (recall that our framework assumes syn-
chronous communication between tester and SUT; so this holds only for a IOCO-
version without quiescence). Further, we can characterize a set of initial states or ex-
press constraints on the set of input-sequences by the coverage criteria CovCrit, which
we will discuss in the sequel.

2.4 Coverage Criteria for Interleaving

In the following, we consider input sequences ιs which were built as interleaving of one
or more inputs for different processes; for the sake of simplicity, we will assume that it
is always possible to extract from an input event the thread and task id it belongs to. It
is possible to represent this interleaving, for example, by the following definition:

fun interleave :: "’a list ⇒’a list ⇒’a list set"
where "interleave [] [] = {[]}"

|"interleave A [] = {A}"
|"interleave [] B = {B}"
|"interleave (a # A) (b # B) =
(λx. a # x) ‘interleave A (b # B) ∪
(λx. b # x) ‘interleave (a # A) B"

and by requiring for the input sequence ιs to belong to the set of interleavings of two
processes P1 and P2: ιs ∈ interleave P1 P2.

It is well known that the combinatorial explosion of the interleaving space rep-
resents fundamental problem of concurrent program verification. Testing, understood
as the art of creating finite, well-chosen subspaces for large input-output spaces, of-
fers solutions based on adapted coverage criteria [17] of these spaces, which refers to
particular instances of CovCrit in the previous section. A well-defined coverage crite-
rion [1, 23] can reduce a large set of interleavings to a smaller and manageable one. For
example, consider the executions of the two threads in MyKeOS: T = [alloc 3 1 2,
release 3 1 1, status 3 1] and T’ = [alloc 2 5 3, release 3 1 1, status 2
5]. Since our simplistic MyKeOS has no shared memory, we simulate the effect by
allowing T’ to execute a release-action on the local memory of task 3, thread 1 by us-
ing its identity. In general, we are interested in all possible values of a shared program
variable x at position l after the execution of a process P. To this end we will define two
sets of interleavings under two different known criteria.



– Criterion1: standard interleaving (SIN) the interleaving space of actions se-
quences gets a complete coverage iff all feasible interleavings of the actions of
P are covered.

– Criterion2: state variable interleaving (SVI) the interleaving space of actions
sequences gets a complete coverage iff all possible states of x at l in P are covered.
The number of interleavings increases exponentially with the length of traces (for

bounds of the combinatorial explosion, see [17]). Under SIN we derive 10 possible ac-
tions sequences, which is reduced under SVI to 3 sequences (where one leads to a crash;
recall our assumption that the memory is initially 0). Unlike to SIN, SVI has provided
a smaller interleaving set that cover all possible states. If we consider var_tab[3,1]
for x when executing status 3 1, the possible results may be undefined, O or 1. While
SIN has provided a bigger set, that cover all possible 3 states of x with redundant se-
quences representing the same value. In model-checking, this reduction technique is
also known as partial order reduction. It is now part of the beauty of our combined test
and proof approach, that we can actually formally prove that the test-sets resulting from
the test-refinements:

SPEC v〈Init,S IN,con f 〉 SUT and SPEC v〈Init,S VN,con f 〉 SUT

are equivalent for a given SPEC. The core of such an equivalence proof is, of course, a
proof of commutativity of certain step executions, so properties of the form:

o← SPEC ιi; o′ ← SPEC ι j; M o o′ = o′ ← SPEC ι j; o← SPEC ιi; M o o′,

which are typically resulting from the fact that these executions depend on disjoint parts
of the state. In MyKeOS, for example, such a property can be proven automatically for
all ιi = release t th and ι j = release t′ th′ with t , t′∨th , th′; such reordering theorems
justify a partial order on inputs to reduce the test-space. We are implicitly applying the
testability hypothesis that SUT is input-output deterministic; if a input-output sequence
is possible in SPEC, the assumed input-output determinism gives us that repeating the
test by an equivalent one will produce the same result.

3 Application: Testing PikeOS

In the following, we will outline the PikeOS model (the full-blown model developed as
part of the EUROMILS project is about 20 kLOC of Isabelle/HOL code), and demon-
strate how the this model is embedded into our monadic testing theory.

3.1 PikeOS System Architecture

PikeOS is an operating system that supervises and ensures the execution and separation
between software applications running on the top of various hardware platforms [19]. It
stands in the tradition of so-called separation kernels and follows ideas of the influen-
tial L4 kernel project [12]. The PikeOS architecture comprises four layers (see Fig. 4).
The virtual machine initialization table (VMIT) is a data-base containing the global
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Fig. 4. PikeOS architecture.

configuration of the system and its application structure. In the VMIT, partitions (vir-
tual machines), tasks (POSIX-like processes), their threads, their memory-, processor-,
and time resources, communication channels as well as access-control rights on these
resources were defined. Only at boot-time, partitions, processes and threads can be cre-
ated via PikeOS System Software (PSSW); at run-time the application structure and
its time-scheduling is fixed: PikeOS has no dynamic process creation. In other words:
based on the VMIT configuration, the PikeOS system software (PSSW) will generate a
set of virtual machines in the Partitions layer during the boot-phase. In this layer each
resource partition is composed from a set of applications, and can be executed under the
predefined policy and use the predefined resources of the VMIT. Applications in the re-
source partitions can also be used for system calls of PikeOS kernel. In kernel layer, the
set of resource partitions is seen as a set of PikeOS tasks, that contain PikeOS threads
and shares kernel resources (memory, files, processors, communication channels . . . ).

The kernel provides a set of APIs used by the threads and tasks. As in Unix-like
systems, special hardware—the MMU—gives application-level tasks the illusion to live
in an own separate memory space: the virtual memory. However, all threads belonging
to a task live in the same memory space, namely the memory space of the task they
belong to. In contrast, system-level tasks can also access the physical memory and the
MMU. Besides memory separation, PikeOS also offers time-separation and multi-core
support.

Our work focuses on a particular part of the kernel layer providing inter-process
communication (IPC), the PikeOS IPC API.

3.2 PikeOS IPC API

The IPC mechanism [19, 20] is the primary means of thread communication in PikeOS.
Historically, its efficient implementation in L4 played a major role in the micro-kernel
renaissance after the early 1990s. Microkernels had received a bad reputation, as sys-
tems built on top were performing poorly, culminating in the billion-dollar failure of
the IBM Workplace OS. A combination of shared memory techniques—the MMU is
configured such that parts of virtual memory space are actually represented by identi-
cal parts of the physical memory—and a radical redesign of the IPC primitives in L4
resulted in an order-of-magnitude decrease in IPC cost. Also in PikeOS, IPC message
transfer can operate between threads which may belong to different tasks. However,



the kernel controls the scope of IPC by determining, in each instance, whether the two
threads are permitted to communicate with each other. IPC transfer is based on shared
memory, which requires an agreement between the sender and receiver of an IPC mes-
sage. If either the sending or the receiving thread is not ready for message transfer, then
the other partner must wait. Both threads can specify a timeout for the maximum time
they are prepared to wait and have appropriate access-control rights. Our IPC model
includes eight atomic actions, corresponding more-or-less to code sections in the API
system calls p4_ipc_buf_send() and p4_ipc_buf_recv() protected by a global
system lock. If errors in these actions occur—for example for lacking access-rights—
the system call is aborted, which means that all atomic actions belonging to the running
system call as well as the call of the communication partner were skipped and execution
after the system calls on both sides is continuing as normal. It is the responsibility of
the application to act appropriately on error-codes reported as a result of a call.

3.3 PikeOS Model Organization

We model the protocol as composition of several operational semantics; this composi-
tion is represented by monad-transformers adding, for example, to the basic transition
semantics the semantics for abort behavior. The execution of IPC system calls is super-
vised by a protocol containing a number of stages corresponding to atomic actions.

3.4 Embedding the PikeOS Functional Model into the Monadic Framework

System State. In our model, the system state is an abstraction of the VMIT (which is
immutable) and mutable task specific resources. It is presented by the (polymorphic)
record type:

record (’memory,’thread_id,’thread,’sp_th_th,’sp_th_res,’errors)kstate=
resource :: ’memory
current_thread :: ’thread_id
thread_list :: "’thread list"
communication_rights :: ’sp_th_th
access_rights :: ’sp_th_res
error_codes :: ’errors
errors_tab :: ’thread_id ⇀’errors

Note that the syntax is very close to functional programming languages such as SML
or OCaml or F#. The parameterization is motivated by the need of having different ab-
straction layers throughout the entire theory; thus, for example, the resource field will
be instantiated at different places by abstract shared memory, physical memory, physical
memory and devices, etc.—from the viewpoint of an operating system, devices are just
another implementation of memory. In the entire theory, these different instantiations of
kstate were linked by abstraction relations establishing formal refinements. Similarly,
the field current_thread will be instantiated by the model of the ID of the thread in the
execution context and more refined versions thereof. thread_list represents information
on threads and there executions. The communication _rights field represent the com-
munication policy defined between the active entities (i. e., threads and tasks). The field



access_rights represent the access policy defined between active entities and passive
entities (i. e., system resources).

For the purpose of test-case generation, we favor instances of kstate which are as
abstract as possible and for which we derived suitable rules for fast symbolic execution.

Shared Memory Model. Shared memory is the key for the L4-like IPC implementa-
tions: while the MMU is usually configured to provide a separation of memory spaces
for different tasks (a separation that does not exist on the level of physical memory with
its physical memory pages, page tables, . . . ), there is an important exception: physi-
cal pages may be attributed to two different tasks allowing to transfer memory content
directly from one task to another.

We will use an abstract model for memory with a sharing relation between ad-
dresses. The sharing relation is used to model the IPC map operation, which establishes
that memory spaces of different tasks were actually shared, such that writes in one mem-
ory space were directly accessed in the other. Under the sharing relation, our memory
operations respect two properties:
1. Read memory on shared addresses returns the same value.
2. All shared addresses has the same value after writing.

We will present just the key properties of our shared memory model, where write is
denoted by _ :=$ _ and read by _ $ _:

typedef (α, β) memory = "..."

x shares(σ) x x shares(σ) y =⇒y shares(σ) x ...

x shares(σ) y =⇒y ∈ Domain σ=⇒ σ (x :=$ (σ $ y)) = σ

x ∈ Domain σ =⇒ σ $ x = z =⇒ σ(x:=$ z) = σ

z shares(σ) x =⇒σ(x :=$ a) $ z = a
¬(z shares(σ) x) =⇒σ(x :=$ a) $ z = σ$ z
x shares(σ) x’ =⇒σ(x :=$ y)(x’ :=$ z) = (σ(x’ :=$ z))

or, in other words, a memory theory where addresses were considered modulo sharing.

Atomic Actions. As mentioned earlier, the execution of the system call can be inter-
rupted or aborted at the border-line of code-segments protected by a lock. To avoid
the complex representation of interruption points, we model the effect of these lock-
protected code-segments as atomic actions. Thus, we will split any system call into a
sequence of atomic actions (the problem of addressing these code-segments and influ-
encing their execution order in a test is addressed in the next section). Atomic actions
are specified by datatype as follows:

datatype (’ipc_stage,’ipc_dir)actionipc = IPC ’ipc_stage ’ipc_dir
datatype p4_stageipc = PREP | WAIT | BUF | MAP | DONE

datatype (’thread_id ,’adresses) p4_directipc =
SEND "’thread_id" "’thread_id" "’adresses"
| RECV "’thread_id" "’thread_id" "’adresses"



type_synonym
ACTIONipc = (p4_stageipc,(nat×nat×nat,nat list)p4_directipc)actionipc

Where ACTIONipc is type abbreviation for IPC actions instantiated by p4_directipc.
The type ACTIONipc models exactly the input events of our monadic testing framework.
Thread IDs are triples of natural numbers that specify the resource partition the thread
belongs to as well as the task and the individual id. The stepping function as a whole
is too complex to be presented here; we refrain on the presentation of a portion of an
auxilliary function of it that models just the PREP_SEND stage of the IPC protocol; it
must check if the task and thread id of the communication partner is allowed in the
VMIT, if the memory is shared to this partner, if the sending thread has in fact writing
permission to the shared memory, etc. The VMIT is part of the resource, so the mem-
ory configuration, and auxiliary functions like is_part_mem_th allow for extracting the
relevant information from it. The semantic of the different stages is described using a
total functions:

definition PREP_SEND ::"ACTIONipc stateid⇒ ACTIONipc ⇒ACTIONipc stateid"
where "PREP_SEND σact =

(case act of (IPC PREP (SEND caller partner msg)) ⇒
...
if is_part_mem_th (get_thread_by_id’’ partner σ) (resource σ)
then
if IPC_params_c1 (get_thread_by_id’’ partner σ)
then ...)

Where PREP_SEND, WAIT_SEND, BUF_SEND, and DONE_SEND define an operational seman-
tic for the stages of the PikeOS IPC protocol.

Traces, Executions and Input Sequences. During our experiments, we will generate
input sequences rather than traces. An input sequence is a list of a datatype capturing
atomic action input syntactically. An execution is the application of a transition function
over a given input sequence. Using mbind, the execution over a given input sequence is
can be immediately constructed.

definition execution = (λis ioprog σ. mbind is ioprog σ)

IPC Execution Function. The execution semantic of the IPC protocol is expressed
using a total function:

fun exec_action ::"ACTIONipc stateid⇒ ACTIONipc ⇒ACTIONipc stateid"
where
PREP_SEND_run:"exec_action σ(IPC PREP (SEND caller partner msg)) =

PREP_SEND σ(IPC PREP (SEND caller partner msg))"|
(...)

The function is adapted to the monads using the following definition:

definition exec_action_Mon
where "exec_action_Mon = (λact σ. Some (error_codes(exec_action σact),

exec_action σact))"



System calls. As mentioned earlier, PikeOS system calls are seen as sequence of atomic
actions that respect a given ordering. Actually, each system call can perform a set of
operations. PikeOS IPC API provides seven different calls, the most general one is the
call P4_ ipc(). Using P4_ ipc(), five operations can be performed:
1. Send a copied message,
2. Receive a copied message,
3. Receive an event (not modeled),
4. Send a mapped message (not used in this paper), and
5. Receive a mapped message (not used in this paper).

The corresponding Isabelle model for the call is:

datatype (’thread_id, ’msg) P4_IPC_call =
P4_IPC_call ’thread_id ’thread_id ’msg

| P4_IPC_BUF_call ’thread_id ’thread_id ’msg
| P4_IPC_MAP_call ’thread_id ’thread_id ’msg
(...)

Communication coverage criterion. An IPC call defines a communication relation
between two threads. In PikeOS, IPC communications can be symmetric, transitive but
can not be reflexive (a thread can not send or receive an IPC message for himself).
The transitivity or intransitivity of IPC communications depends mainly on the defined
communication rights table and access rights table. In this section, we will define a set
of Isabelle rules to derive input sequences for ipc calls. The derived input sequences
express IPC communications between threads. Other rules, which are almost the same
as the ones used for deriving input sequences, will be defined to derive the possible
communications between threads after the execution of an IPC call. While IPC input
sequences will be used in scenarios for testing information flow policy via IPC error
codes, IPC communications let us to address scenarios on access control policy imple-
mented via the two tables cited before.

To this end we define a new coverage criterion, i. e., the set of interleavings that
satisfy all these constrains. The definition of the criterion is based on the functional
model of PikeOS IPC (see Sec. 3.2) and our technique to reduce the set of interleaving
if two actions can commute (see Sec. 2.4).

– Criterion3: IPC communications (IPCcomm) the interleaving space of input se-
quences gets a complete coverage iff all IPC communications of a given SUT are
covered.

IPC communications are input sequences. An example of a communication derived
under IPCcomm is:

[IPC PREP (SEND th_id th_id’ msg), IPC PREP (RECV th_id’ th_id msg),
IPC WAIT (SEND th_id th_id’ msg), IPC WAIT (RECV th_id’ th_id msg),
IPC BUF (RECV th_id’ th_id msg), IPC DONE (RECV th_id’ th_id msg),
IPC DONE (SEND th_id th_id’ msg)]"



4 Test Generation

Test scenarios. A test scenario is represented by a test specification and can have two
main schemes: unit test or sequence test. The specification TS_simple_example2 is
an example of a test scenario.

test_spec TS_simple_example2:
is ∈IPC_communication =⇒

σ 1 |= (outs ←mbind is(abortlift exec_action_Mon);return(outs = x)
−→σ1 |= (outs ←mbind is SUT; return(outs = x))

For a σ 1 definition that contains a suitable VMIT configuration, a possible is is, e. g.:

[IPC PREP (RECV (0,0,1) (0,0,2) [0,4,5,8]),
IPC PREP (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC WAIT (RECV (0,0,1) (0,0,2) [0,4,5,8]),
IPC WAIT (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC BUF (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC DONE (SEND (0,0,2) (0,0,1) [0,4,5,8]),
IPC DONE (RECV (0,0,1) (0,0,2) [0,4,5,8])]

The sequence is an abstraction of an IPC communication between the thread with the
ID = (0, 0, 1) and the thread with ID = (0, 0, 2) via a message msg = [0, 4, 5, 8]. Natural
numbers inside the message are abstractions on memory addresses. The execution se-
mantic of the input sequence is represented by our execution function exec_action_Mon.
We wrap around our execution function a monad transformer abortli f t that express the
behavior of an abort. The equality specify our conformance relation between SUT out-
puts and the model outputs. After using our symbolic execution process the out of this
test case is:

[NO_ERRORS,
NO_ERRORS,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV,
ERROR_IPC error_IPC_1_in_WAIT_RECV]

The error-codes observed in the sequence is related to IPC. The error-codes was re-
turned in the stage WAIT_ RECV. The interpretation of this error-codes is that the thread
has not the rights to communicate with his partner. We can observe the behavior of
our abort operator in this sequence of error-codes; All stages following WAIT_RECV are
purged (not executed), and the same error is returned instead. We focus on error-codes
in our scenarios, since error-codes represent a potential for undesired information flow:
for example, un-masked error-messages may reveal the structure of tasks and threads
of a foreign partition in the system; a revelation that the operating system as separation
kernel should prevent.

Generating Test Drivers. In this section we address the problem to compile "abstract
test-drivers" as described in the previous sections into concrete code and code instru-
mentations that actually execute these tests.



HOL-TestGen can generate test scripts (recall Fig. 1) in SML, Haskell, Scala and
F#. For our application, we generate SML test scripts and use MLton (www.mlton.org)
for building the test executable: MLton 1. provides a foreign function interface to C and
2. is easily portable to small POSIX system.

In more detail, we generate two SML structures automatically from the Isabelle
theories. The first structure, called Datatypes, contains the datatypes that are used
by the interface of the SUT. In our example, this includes, e. g., IPC_protocol and
P4_IPC_call. The second structure, called TestScript, contains a list of all gener-
ated test cases as well the test oracle, i. e., the algorithms necessary to decide if a test
result complies to the specification or not.

In addition, for testing C code, we need to provide a small SML structure (ca. 20
lines of code), called Adapter, that serves two purposes: 1. the configuration of the
foreign function, e. g., the mapping from SML datatypes to C datatypes and 2. the con-
cretization of abstractions to bridge the gap between an abstract test model and the con-
crete SUT. The Adapter structure only needs to be updated after significant changes to
either the system specification or the system under test.

For testing concurrent, i. e., multi-threaded, programs we need to solve a particu-
lar challenge: enforcing certain thread execution orders (a certain scheduling) during
test execution. There are, in principle, three different options available to control the
scheduler during test execution: 1. instrumenting the SUT to make the thread switching
deterministic and controllable, 2. using a deterministic scheduler that can be controlled
by test driver, or 3. using the features of debuggers, such as the GNU debugger (gdb),
for multi-threaded programs.

In our prototype for POSIX compliant systems, we have chosen the third option:
we execute the SUT within a gdb session and we use the gdb to switch between the
different threads in a controlled way. We rely on two features of gdb (thus, out approach
can be applied to any other debugger with similar features), namely: 1. the possibility to
attach to break points in the object code scripting code that is executed if a break point is
reached and 2. the complete control of the threading, i. e., gdb allows to switch explicitly
between threads while ensuring that only the currently active thread is executed (using
the option set scheduler-locking on).

This approach has the advantage that we neither need to modify the SUT nor do
we need to develop a custom scheduler. We only need to generate a configuration for
controlling the debugger. The necessary gdb command file is generated automatically
by HOL-Testgen based on a mapping of the abstract thread switching points to break
points in the object code. The break points at the entry points allows us to control
the thread creation, while the remaining break points allow us to control the switching
between threads. Thus, we only need the SUT compiled in debugging mode and this
mapping. In this sense, we still have a “black-box” testing approach.

Moreover, Using gdb together with taskset, we ensure that all threads are executed
on the same core; in our application, we can accept that the actual execution in gdb
changes the timing behavior. Moreover, we assume a sequential memory model, so our
approach does not cover TLB-related race conditions occurring in multi-core CPU’s.

www.mlton.org


5 Conclusion

Related Work. There is a wealth of approaches for tests of behavioral models; they
differ in the underlying modeling technique, the testability and test hypothesis’, the
test conformance relation etc.; in Sec. 2 we mention a few. Unfortunately, many works
make the underlying testability hypothesis’ not explicit which makes a direct compar-
ison difficult and somewhat vague. For the space of testability assumptions used here
(the system is input-output deterministic, is adequately modeled as underspecified de-
terministic system, synchronous coupling between tester and SUT suffices), to the best
of our knowledge, our approach is unique in its integrated process from theory, model-
ing, symbolic execution down to test-driver generation.

With respect to the test-driver approach, this work undeniably owes a lot Microsoft’s
CHESS project [15], which promoted the idea to actually control the scheduler of real
systems and use partial-order reduction techniques to test systematically concurrent
executions for races in applications of realistic size (e. g., IE, Firefox, Apache). For our
approach, controlling the scheduler is the key to justify the presentation of the system
as underspecified-deterministic transition function.

Conclusion and Future Work. We see several conceptual and practical advantages of
a monadic approach to sequence testing:
1. a monadic approach resists the tendency to surrender to finitism and construc-

tivism at the first-best opportunity; a tendency that is understandably wide-spread
in model-checking communities,

2. it provides a sensible shift from syntax to semantics: instead of a first-order, inten-
tional view in nodes and events in automata, the heart of the calculus is on compu-
tations and their compositions,

3. the monadic theory models explicitly the difference between input and output, be-
tween data under control of the tester and results under control of the SUT,

4. the theory lends itself for a theoretical and practical framework of numerous con-
formance notions, even non-standard ones, and which gives

5. ways to new calculi of symbolic evaluation enabling symbolic states (via invari-
ants) and input events (via constraints) as well as a seamless, theoretically founded
transition from system models to test-drivers.
We see several directions for future work: On the model level, the formal theory

of sequence testing (as given in the HOL-TestGen library theories Monad.thy and
TestRefinements.thy) providing connections between monads, rules for test-driver
optimization, different test refinements, etc., is worth further development. On a test-
theoretical level, our approach provides the basis for a comparison on test-methods, in
particular ones based on different testability hypothesis’.

Pragmatically, our test driver setup needs to be modified to be executable on the
PikeOS system level. For this end, we will need to develop a host-target setup (see
Sec. 4). Finally, we are interested in extending our techniques to actually test informa-
tion flow properties; since error-codes in applications may reveal internal information
of partitions (as, for example, the number of its tasks and threads), this seems to be
a rewarding target. For this purpose, not only action sequences need to be generated
during the constraint solving process, but also (abstract) VMITs.
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