
Event-B as DSL in Isabelle and HOL
Experiences from a Prototype

Benoît Ballenghien1[0009−0000−4941−187𝑋] and Burkhart
Wolff2[0000−0002−9648−7663]

1 Université Paris-Saclay, LMF, France
benoit.ballenghien@universite-paris-saclay.fr

2 Université Paris-Saclay, LMF, France
burkhart.wolff@universite-paris-saclay.fr

Abstract. The proof assistant Isabelle/HOL is made available inside a
flexible system framework allowing for logically safe extensions, which
comprise both theories as well as implementations for code-generation,
documentation, and specific support for a variety of formal methods.
Following the techniques in [9] and the theoretical groundwork in [4], we
show the major milestones for the implementation of a B-Tool and the re-
sulting refinement method inside the Isabelle/HOL platform. The proto-
type HOL-B provides IDE support, documentation support, a theory for
the Z-Mathematical Toolkit underlying the B-Method, and a generated
denotational semantics for a B MACHINE specification implemented as
a specification construct in Isabelle/HOL.
Extended by more automated proof machinery geared to refinements,
HOL-B can serve as a more portable, flexible and extensible tool for
Event-B that may profit from the large Isabelle/HOL libraries providing
Algebra and Analysis theories.

Keywords: Event-B, DSLs, Formal Methods, Isabelle/HOL, Refine-
ment

1 Introduction

A recurring question in formal methods research groups is :
What is actually a domain specific language (DSL) ?

The second author of this paper proposed a particular answer to this question,
that led to a number of infrastructure developments in the Isabelle/HOL [7]
platform. The infrastructure exploits the fact that the Isabelle/HOL proof as-
sistant is made available inside a flexible system framework allowing logically
safe extensions, which comprise both theories as well as implementations for
an IDE, documentation, specific support for a variety of formal methods and
code-generation.

Boiling down [9] and its more theoretical groundwork in [4] to just one sen-
tence, this can be read like this:



A DSL is a function from a DSL syntax to a conservative theory transformation,

so, a bit more formally, a function of type DSL𝑠𝑦𝑛𝑡𝑎𝑥 ⇒ theory ⇒ theory, where
we still have to clarify what conservative means.

The objective of this paper is to make this idea still more precise and to
construct along this line a prototype for Event-B [8][1][5][2][3] inside the Is-
abelle/HOL platform. The result, Isabelle/HOL-B, offers a library for basic
Event-B concepts (the Z-Mathematical Toolkit underlying the B Method), syn-
tax and IDE support for editing, and the generation of a denotational semantics
for Event-B [9] machines, which can be used for refinement proofs. However, so-
phisticated support for the latter, i. e. Event-B specific automated proof support,
is out of the scope of this paper. (The latter is, in our view, the true research
question.)

We will proceed as follows: after the introduction of HOL and a strict mini-
mum of the Isabelle platform API in SML, we will describe the Z-Mathematical
Toolkit, and finally the parser, type-checker, and encoder parts of the DSL func-
tion. The resulting Isabelle/HOL-B 3 will be demonstrated with an example.

2 Background

2.1 Isabelle, HOL and the Conservative Method

Isabelle is a platform for proof assistants in various logics, where Higher-Order
Logic (HOL) is the one which is most commonly used. It has a fairly small
kernel in the tradition of LCF provers, which certifies all derivations on formulas.
Formulas and logical rules are represented in typed terms of the polymorphic 𝜆-
calculus. Induction and closure rules can be derived within the system. Modeling
in HOL has strong similarities with programming in a functional programming
language.

The core of the logic HOL can be based on a very small set of seven axioms
introducing the equality, the type bool, the logical connectives, and a type ind
which must have an infinite carrier set. HOL comes by construction with a
typed set theory; 𝛼 set’s are characteristic functions of type 𝛼 ⇒ bool with {}
as notation for 𝜆x. False and UNIV as 𝜆x. True.

Extensions of this core are built exclusively by two syntactically restricted
axiom schemes:

– the constant definitions which state the equality of a fresh constant symbol
to a closed 𝜆-term (not containing this symbol)

– the type definitions which state an isomorphism between a fresh type con-
structor symbol to a closed 𝜆-term denotating a nonempty set.

The first can be seen as the introduction of an abbreviation for a known
concept; the latter as an introduction as constraint of a subset of some type
3 ... available at https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0/

-/tree/master/Event-B

https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0/-/tree/master/Event-B
https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0/-/tree/master/Event-B


constructed over bool and ind. It is not difficult to see that these definitional
axioms will preserve logical consistency of the HOL core.

The HOL library provides a rich number of mathematical concepts like carte-
sian products, number theories, inductive sets and datatypes. For the latter con-
structions, Isabelle/HOL provides specific support in form of DSL’s for these
specification constructs, that compile them into definitional axioms and derive
the proof rules from them usually automatically. This includes recursive function
definitions as well as record notations built over cartesian products.

2.2 A Gentle Introduction into Isabelle Programming

The final result of our programming exercise is shown in Fig. 1: A theory com-
mand deeply integrated in the Isabelle IDE allowing continuous parsing and
type-checking, navigation into the resulting implicit definitions as well as the
underlying background theory adding the set theory operators (that B actually
inherited from the ”Z-Mathematical Toolkit”). Here, navigation means that the
IDE treats the MACHINE as a hypertext allowing to link to a corresponding
(implicit) declaration by mouse click. In the following, we will describe the tech-
niques to construct the DSL function and its integration into Isabelle which
results in this behaviour.

(a) A Machine Spec ... (b) ... and its Navigation.

Fig. 1: A B-Machine Specification in Isabelle/HOL-B

First, there are commands giving access to the underlying SML toplevel; by :
ML ‹... some ML code ... ›

we get a programming IDE that gives access to the interfaces of the Isabelle
system. In particular, the concrete datatype term provides a syntactic model of
𝜆-terms (consisting of free/bound variables, abstraction, application), with the
usual operations (substitution, reduction etc.). Terms are annotated by explicit



type information, which we have to compute before terms can be certified and
used by more complex operations like ”generate a definition” or ”generate a
record to represent the MACHINE state”. The concrete datatype theory cap-
tures the signature of a theory (with type constructor declarations, constant
symbol declaration, and syntax configurations) as well as a set of axioms and
derived theorems. Both were captured in the concrete datatype thm which cap-
tures the traditional triple Γ ⊢𝑇ℎ 𝜑 (from local assumptions Γ within the theory
Th the formula 𝜑 has been derived).

3 The Z Mathematical Toolkit
In this section, we will discuss the background theory of Z, B and Event-B which
was developed in the 80s at the University of Oxford and which led, at least in
the Z case, to a standardized Mathematical Toolkit. HOL and B have closely
related, but different foundations: HOL is based on functions, while Z/B are
based on sets. The former has the advantage that typed-lambda calculi have
higher-order term normal-forms which are decidable, while the latter permits
a more traditional mathematical presentation. These foundational choices have
consequences in the modeling style: HOL libraries tend to totalize all functions (1
/ 0 is usually defined by 0 in many HOL systems) while Z/B emphasize to model
partiality explicitly, even at the cost of additional complexity in substitution and
deduction. Note that we are not saying here that the HOL approach is unsound
- we recall the long mathematical tradition to totalize functions which lies, for
example, at the heart of calculus.

Given that most Z/B users develop their models in a typed way anyway,
we suggest to rebuild the Mathematical Toolkit inside the typed set theory of
HOL rather than axiomatic set theory, which is viable, but hampers the access
to HOL libraries.

As a start, we have to redefine the set operators (i. e. constants in HOL) ∅,
A × B, and � A of type ′𝛼 set, ′𝛼 set ⇒ ′𝛽 set ⇒ ( ′𝛼 × ′𝛽) set and ′𝛼 set ⇒
′𝛼 set set, respectively. On top we define the set operators from the book:

definition rel∶∶ ‹[ ′a set, ′b set] ⇒ ( ′a ⇔ ′b) set› (infix ‹↔› 100)
where ‹A ↔ B ≡ � (A × B)›

definition pfun ∶∶ ‹[ ′a set, ′b set] ⇒ ( ′a ⇔ ′b) set› (‹- → -› [54,53] 53)
where ‹S → R ≡ {f ∈ S ↔ R. ∀ x y1 y2. (x, y1)∈f ∧ (x, y2)∈f ⟶ y1 = y2}›

definition pinj∶∶‹[ ′a set, ′b set] ⇒ ( ′a ⇔ ′b) set› (‹- ↣ -› [54,53] 53)
where ‹S ↣ R ≡ {s ∈ S → R. ∀ x1 x2 y. (x1,y)∈s ∧ (x2,y)∈s ⟶ x1 = x2}›

definition dom-restr ∶∶ ‹[ ′a set , ′a ⇔ ′b] ⇒ ( ′a ⇔ ′b)› (‹- � -› [71,70] 70)
where ‹S � R ≡ {(x, y). (x, y) ∈ R ∧ x ∈ S}›

definition dom-substr ∶∶‹[ ′a set , ′a ⇔ ′b] ⇒ ′a ⇔ ′b› (‹- −� -› [71,70] 70)
where ‹S −� R ≡ {(x, y). (x, y) ∈ R ∧ x ∉ S}› ... etc. etc.

From this definitional basis, we derive the laws from the mathematical toolkit,
which is usually an easy exercise. Here are a few examples:

dom (S � R) = S ∩ dom R S � R � T = S � (R � T)
dom (Q o

9 R) = (Q−1)⟨|dom R|⟩ p ∈ s −� r ⟹ p ∈ r
dom (dom g −� f ) ∩ dom g = ∅ f ∈ A ↔ B ⟹ s ∈ � A ⟹ s�f ∈ A ↔ B



Some definitions are a bit more delicate: since functions in B are relations,
the application needs to be distinguished from the built-in application in HOL.
These two definitions describe the conversions between functional and function-
as-relation applications:

‹Lambda A f ≡ {(x, y). x ∈ A ∧ y = f x}›
‹R ⋅ x ≡ SOME y. (x, y) ∈ R›

which results in the beta-reduction rule: a ∈ A ⟹ (Lambda A f ) ⋅ a = f a.
While the derivation of most rules from the definitions is straightforward,

there are some cases which actually required some more serious proof work:
the definitions of the various closure operators (reflexive/transitive ...) in the Z
Mathematical Toolkit take partiality into account; the resulting induction rules
therefore need different justifications than their HOL counterparts.

4 The Event-B Encoder
4.1 Getting Started: Parsing and Toplevel-Integration
Isabelle’s API provides a common infrastucture to construct parsers; a type
synonym 'a parser which are functions that map a stream of input tokens to
a parsed value and rest-stream, i. e. a function of type token list → ′a ∗ token
list. Parsing combinators [6] allow this kind of functions to be combined; notably
by the sequential composition P −− P ′ of parsers, the alternative P ∣∣ P ′ and
the mapping of a function f into the result of a parsing P >> f. The toplevel
function of the MACHINE parser reads as follows:

val parse-machine-spec = (
Parse.binding
−− keyword ‹variables› −− (Scan.repeat1 parse-var-decl)
−− keyword ‹invariants› −− (Scan.repeat1 parse-invariant)
−− keyword ‹init› −− (Scan.repeat1 parse-init)
−− keyword ‹events› −− (Scan.repeat1 parse-transition)
−− keyword ‹end.›

)

which allows for the toplevel composition of the DSL function by:

command command-keyword ‹MACHINE›
Machine Specification
(parse-machine-spec >> context-check >> (Toplevel.theory o semantics))

and its binding to the keyword MACHINE and thus its integration into the
Isabelle document model.

4.2 Getting Started: Semantics

We have to clarify some leftovers from the previous section. First, the function
context-check has to be constructed: it has type absy0 → theory → absy, i. e.
it converts a raw abstract syntax into a function that produces a richer syntax



where all sub-expressions are type-checked in the given theory context of the
MACHINE specification. Isabelle annotates the content in the IDE with coloring
and navigation information during this process.

Second, the semantics which is a function that takes the theory → absy func-
tion as input, executes it, and produces a theory extension theory → theory that
is lifted via the Isabelle combinator Toplevel.theory into a global transition of
the Isabelle system state. This completes the construction of the aforementioned
DSL function as well as its integration into the Isabelle system level. Note that
the pure functional API enables parallel execution inside the Isabelle kernel.

The semantics function generates type and constant definitions, notably:

– a record definition modeling the entire machine state; this constructs also
the definition of the ”variables” of the spec as selectors in that state,

– a constant definition that comprises all variable constraints,
– a constant definition is generated for the initial state,
– a predicate of state ⇒ bool for the invariant and a constant STATES com-

prising the set of states satisfying the invariant,
– for each event declaration L𝑖, there is a constant definition of the form

L𝑖-trans ≡ 𝜆𝜎 e 𝜎 ′. ∃ a1...a𝑛. guard 𝜎 e a1...a𝑛 ∧ action 𝜎 e 𝜎 ′ a1...a𝑛
– there is a constant definition for TRANS that composes the global transition

relation as union of the L𝑖-transitions.
For example, the start event in Fig. 1 is converted into the definition: start-trans
≡ 𝜆𝜎 event 𝜎 ′. ∃ v5. v5 ∈ � ∧ S 𝜎 = OFF ∧ S 𝜎 ′ = ON ∧ v3 𝜎 ′ = 0.

5 Conclusion

In this paper, we demonstrated how a perhaps little known technique to con-
struct DSL’s can be used to build tool support for the B method inside the
Isabelle platform. The resulting prototype offers a typed version of the mathe-
matical toolkit underlying B and Event-B, based on definitional principles and
derived rules, and continuous parsing and type-checking. Its integration into the
Isabelle document model also permits seamless navigation into models and li-
braries as well as document generation. The specification constructs were trans-
lated into a family of definitions capturing the denotational semantics repre-
senting the states, events and transitions of a Machine specification. While quite
powerful, our prototype is fairly small: about 450 lines for the encoder and about
3000 lines of definitions and proofs for the mathematical toolkit.

The potential benefit of our approach for the ABZ community is to profit
from the developments in the generic Isabelle platform wrt. libraries, powerful
prover technologies, and user interface technologies rather than investing effort
into own tools.

Future work will have to address specialized proof automation for the refine-
ment of B machines. Another line of extension is to adapt the powerful generic
code-generators of Isabelle to the idiom of the mathematical toolkit and to gen-
erate code and animations of B specifications.



References

1. Abrial, J.: The B-Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press (1996). https://doi.org/10.1017/CBO9780511624162, https://doi.
org/10.1017/CBO9780511624162

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

3. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: An Open Toolset for Modelling and Reasoning in Event-B. Int. J.
Softw. Tools Technol. Transf. 12(6), 447–466 (2010). https://doi.org/10.1007/
S10009-010-0145-Y, https://doi.org/10.1007/s10009-010-0145-y

4. Brucker, A.D., Tuong, F., Wolff, B.: Model Transformation as Conservative Theory-
Transformation. J. Object Technol. 19(3), 3:1–16 (2020). https://doi.org/10.
5381/JOT.2020.19.3.A3, https://doi.org/10.5381/jot.2020.19.3.a3

5. Cansell, D., Méry, D.: Foundations of the B Method. Comput. Artif. Intell. 22(3-4),
221–256 (2003), http://www.cai.sk/ojs/index.php/cai/article/view/456

6. Hutton, G.: Higher-Order Functions for Parsing. Journal of Functional Program-
ming 2(3), 323–343 (1992). https://doi.org/10.1017/S0956796800000411

7. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002). https://doi.org/10.1007/
3-540-45949-9

8. Robinson, K.A.: Introduction to the B Method, pp. 3–37. Springer London, London
(1999). https://doi.org/10.1007/978-1-4471-0585-5_1, https://doi.org/10.
1007/978-1-4471-0585-5_1

9. Wenzel, M., Wolff, B.: Building Formal Method Tools in the Isabelle/Isar Frame-
work. In: Schneider, K., Brandt, J. (eds.) Theorem Proving in Higher Order
Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany,
September 10-13, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4732,
pp. 352–367. Springer (2007). https://doi.org/10.1007/978-3-540-74591-4\
_26, https://doi.org/10.1007/978-3-540-74591-4_26

https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1007/S10009-010-0145-Y
https://doi.org/10.1007/S10009-010-0145-Y
https://doi.org/10.1007/S10009-010-0145-Y
https://doi.org/10.1007/S10009-010-0145-Y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.5381/JOT.2020.19.3.A3
https://doi.org/10.5381/JOT.2020.19.3.A3
https://doi.org/10.5381/JOT.2020.19.3.A3
https://doi.org/10.5381/JOT.2020.19.3.A3
https://doi.org/10.5381/jot.2020.19.3.a3
http://www.cai.sk/ojs/index.php/cai/article/view/456
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-1-4471-0585-5_1
https://doi.org/10.1007/978-1-4471-0585-5_1
https://doi.org/10.1007/978-1-4471-0585-5_1
https://doi.org/10.1007/978-1-4471-0585-5_1
https://doi.org/10.1007/978-3-540-74591-4\_26
https://doi.org/10.1007/978-3-540-74591-4\_26
https://doi.org/10.1007/978-3-540-74591-4\_26
https://doi.org/10.1007/978-3-540-74591-4\_26
https://doi.org/10.1007/978-3-540-74591-4_26

	Event-B as DSL in Isabelle and HOL
	1 Introduction
	2 Background
	2.1 Isabelle, HOL and the Conservative Method
	2.2 A Gentle Introduction into Isabelle Programming

	3 The Z Mathematical Toolkit
	4 The Event-B Encoder
	4.1 Getting Started: Parsing and Toplevel-Integration
	4.2 Getting Started: Semantics

	5 Conclusion


