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Abstract. This work is based on Isabelle/HOL-CSP 2.0, a shallow em-
bedding of the failure-divergence model of denotational semantics pro-
posed by Hoare, Roscoe and Brookes in the eighties. In several ways,
HOL-CSP is actually an extension of the original setting in the sense
that it admits higher-order processes and infinite alphabets.
In this paper, we present a particular sub-class of CSP processes which
we call Proc-Omata, a fantastic beast between processes and functional
automata. For this class of processes, particular proof techniques can be
applied allowing for reasoning over unbounded families of sub-processes
and similar architectural compositions.
We develop the basic theory of deterministic and non-deterministic Proc-
Omata, both their relation to conventional CSP processes as well as
possible transformation operations on them. As an application of the
Proc-Omata theory, we demonstrate the use of so-called compactification
theorems that pave the way, for example, to proofs over process rings of
arbitrary size.
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1 Introduction
Communicating Sequential Processes (CSP) is a language to specify and

verify patterns of interaction of concurrent systems. Together with CCS and
LOTOS, it belongs to the family of process algebras. CSP’s rich theory comprises
denotational, operational and algebraic semantics.

The theory of CSP was first described in 1978 in a book by Tony Hoare [12],
but has since evolved substantially [5,6,26]. The denotational semantics of CSP
is described by a fully abstract model of behaviour designed to be compositional:
a process P encompasses all possible behaviours, i. e. sets of traces annotated by
additional information that allow to reason over

– deadlocks (the resulting semantic domain is called failure semantics F)



– and additionally livelocks (the failure/divergence semantics FD).

Several attempts have been undertaken to formalize this fairly complex the-
ory, notably [7,32,16,21,13]. The presented work here is based on HOL-CSP
[31,29,3,4], a shallow embedding of the denotational and operational semantics
theory in the proof-assistant Isabelle/HOL. HOL-CSP is in several ways not only
a formalization, but a generalization of the original setting:

– the set of traces 𝛼 traces is constructed over an arbitrary type ′𝛼 in HOL,
paving the way for dense-time, vector-spaces, etc, 3,

– in generally, HOL-CSP attempts to remove finiteness-restrictions, and
– the semantic domain is encapsulated in the type ′𝛼 process belonging to the

cpo type class (see Sect. 2.4). Thus, process patterns can be expressed as
functions over processes.

In this paper, we present the formal theory of Proc-Omata built on top of HOL-
CSP. Proc-Omata are a sub-class of CSP processes, that have an extremely
simple process structure but possess a functional automata [19,20] inside which
can have an infinite state and communication alphabet. For certain process-
patterns such as an i-indexed family of interleaving processes ∣∣∣ i ∈# M . P(i),
it is possible to convert this pattern into a Proc-Omata provided that the P(i)
can be converted into Proc-Omata. Since this construction is possible for index-
sets M of arbitrary size, this paves the way for proofs of properties such as
deadlock- or livelock freeness over process-patterns. The key-instruments of this
constructions are a particular form of equations we call compactification theorems
that we formally prove correct in this paper.

Functional automata consist of a transition function 𝜏 coming in two flavors:

1. the deterministic version of 𝜏 has type ′𝜎 ⇒ ′e ⇒ ′𝜎 option, i.e. in a state
s∶∶ ′𝜎, given an event e∶∶ ′e, the transition may result in a successor state s ′∶∶ ′𝜎
or fail, and

2. the non-deterministic version of 𝜏 having type ′𝜎 ⇒ ′e ⇒ ′𝜎 set allowing a
transition from a state s∶∶ ′𝜎 for an event e∶∶ ′e to a (possibly empty) set of
successor states.

Automata based on a deterministic transition function will be called determin-
istic and denoted A𝑑, and non-deterministic (denoted A𝑛𝑑) otherwise.

Now, Proc-Omata have the general form of a CSP process schema:

𝜇 X . (𝜆𝜎. 2e ∈ 𝜀 A 𝜎 → ⊓𝜎 ′ ∈ 𝜏 A s e. X 𝜎 ′)

where 𝜏 A is the transition of automaton A and 𝜀 A computes the set of events
for which A is enabled (ready to make a transition) to a successor state (both in
the deterministic and non-deterministic case). If P is a Proc-Omata, then classic
CSP theory gives us the definitions for:

1. the set of traces 𝒯 (P 𝜎0) from some initial state 𝜎0,
3 or even differential equations as in cyber-physical system models [10]



2. and the set of failures ℱ (P 𝜎0) from some initial state 𝜎0.

Note that Proc-Omata have no divergences.

Example 1 Consider the Collatz-Process:

Collatz x = ( 2 x ∈ {0,1∶∶nat} → SKIP)
2 (2 x ∈ Even → Collatz (x div 2))
2 (2 x ∈ Odd → Collatz (3∗x + 1))

Seen as a symbolic LTS, this process looks like this:

Collatz xSKIP
x ∈ {0, 1}

x ∈ Even | x ↦ x / 2

x ∈ Odd | x ↦ 3∗x+1

Fig. 1: LTSs for the Copy Buffer example

Presented as a Proc-Omata CA the Collatz process has the following form:

𝜏 CA = (𝜆𝜎 e. if 𝜎=0 ∧ e∈{0,1} then Some 1
else if 𝜎=0 ∧ even e then Some 0

else if 𝜎=0 ∧ odd e then Some 0 else None)

and where enabledness is defined by 𝜀 CA = (𝜆𝜎. {e ∣ 𝜏 CA 𝜎 e ≠ 3}).

The example above gives rise to a particular proof-methodology: First, we
construct for a process P a Proc-Omata and prove that it is equivalent; this
proof can be either done by fix-point induction or in finitary cases by model-
checking. Second, we apply the above-mentioned compactification theorems over
Proc-Omata. Third, we can prove properties over the compactified Proc-Omata
by classical invariant reasoning over the state-space of the latter.

In this paper, we proceed as follows: after an introduction into ”classic”
CSP and our extensions HOL-CSP and HOL-CSPM in Isabelle/HOL in Sect. 2, we
present the core-constructions of this paper: formal definitions of deterministic
and non-deterministic Proc-Omata’s, a number of basic and evolved theorems
over them, the compactification theorems allowing to internalize compositions
of Proc-Omata’s and the groundwork for inductive proofs, and the consequences
for bisimulation proof schemes.

Note that HOL-CSP[31], HOL-CSPM[3] as well as the novel contribution
HOL-CSP_OpSem [4] containing the proofs discussed here are published in the
Archive of Formal Proofs AFP 4.

4 For the developer version, see https://gitlab.lisn.upsaclay.fr/burkhart.
wolff/hol-csp2.0/.

https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0/
https://gitlab.lisn.upsaclay.fr/burkhart.wolff/hol-csp2.0/


2 Background

2.1 Classic CSP Syntax

At a glance, the syntax of the classical CSP core language reads as follows:

P ∶∶= SKIP | STOP | P 2 P ′ | P ⊓ P ′ | P [[A]] P ′ | P ; P ′ | P \ A
| a → P | 2a ∈ A → P(a) | ⊓a ∈ A → P(a) | Renaming P g | 𝜇 X . f (X)

SKIP signals termination ans STOP denotes a deadlock.
Two choice operators are distinguished:
1. the external choice -2-, which forces a process “to follow” whatever its con-

text requires,
2. the internal choice -⊓-, which imposes on the context of a process “to follow”

the non-deterministic choices made.
With the prefix operator a → P which signals a and continues with P (where
a is an element of a set Σ of events), generalized choices of the form 2a∈A →
P(a) resp. ⊓a∈A → P(a) are constructed (A is originally a finite set). When
events are tagged with channels, i. e. Σ = CHANNELS × DATA, syntactic sugar
like c?x∈A→P(x) or c!x∈A→P(x) is added; the former reads intuitively as “x
is read from channel c” while the latter means “x is arbitrarily chosen from A
and sent into c” (where c ∈ CHANNELS and x ∈ DATA).

The sequential composition P ; P ′ behaves first like P and, once it has
successfully terminated, like P ′. P \ A consists in hiding the events of the set A.
Renaming P g results in a process in which each event e of P is renamed in g(e).
The Sliding operator P � P ′ is defined as (P 2 P ′) ⊓ P ′. The fixed point 𝜇 X .
f (X) operator satisfies (𝜇 X . f (X)) = f (𝜇 X . f (X)) (but requires precautions,
see Sect. 2.4).

CSP describes all communication with one single primitive: the synchronized
product written P [[A]] P ′. Note that interleaving P ∣∣∣ P ′ stands for P [[{}]] P ′,
whereas the parallel operator P ∣∣ P ′ is a shortcut for P [[UNIV ]] P ′ (UNIV is
the universal set).

2.2 Classic CSP Semantics

The denotational semantics (following [26]) comes in three layers: the trace
model, the (stable) failures model and the failure/divergence model.

In the trace semantics model, the behaviour of a process P is denoted by a
prefix-closed set of traces, denoted 𝒯 P, similar to the well-known concept of a
“language of an automata”. Since traces are finite lists and infinite behaviour is
therefore represented via the set of approximations, an additional element tick
(written ✓) is used to represent explicit termination signalized by SKIP. Note
that, obviously, tick should only appear at the end of a trace (traces should be
front-tickFree).

It is impossible to distinguish external and internal non-determinism in the
trace model since the traces of both operators are just the union of their argu-
ment traces. To be more discriminant, [5] proposed the failure semantics model,



where traces were annotated with a set of refusals, i. e. sets of events a process
can not engage in. This leads to the notion of a failure (t, X) ∈ ℱ P which is a
pair of a trace t and a set of refusals X. Consider for example the process P = (a
→ SKIP) 2 (a → STOP). The traces 𝒯 P will non-deterministically lead to a
situation where the process accepts termination (but refuses everything else) or
just refuses everything. So, if we assume Σ = {a, ✓}, then the traces 𝒯 P will
be {[], [a]}. The failures ℱ P are then {([], {{✓}}), ([a], {Σ, {a}})} (plus all
subsets of the respective refusal sets, which is required for the recursion ordering
discussed in Sect. 2.4).

Finally, [5] enriched the semantic domain of CSP with one more element,
the set of divergences (written 𝒟 P), in order to distinguish deadlocks from
livelocks5. In the failure divergence model, the semantic domain consists of a
pair of failures and divergences, where the latter are traces to situations where
livelocks may occur.

In contrast to Hoare Logics and its Hoare Triples, which is a framework to
reason over terminating calculations6, CSP and process refinement are designed
to reason over non-terminating calculations. Three classic refinement notions are
considered:
1. the trace refinement: P ⊑𝑇 Q ≡ 𝒯 P ⊇ 𝒯 Q,
2. the failure refinement: P ⊑𝐹 Q ≡ ℱ P ⊇ ℱ Q, and
3. the failure-divergence refinement P ⊑𝐹𝐷 Q ≡ ℱ P ⊇ ℱ Q ∧ 𝒟 P ⊇ 𝒟 Q .

It turns out that beyond common protocol refinement proofs and test-problems,
many properties such as deadlock or livelock freeness can be expressed via a
refinement statement.

2.3 Theories and Locales in Isabelle and HOL

Isabelle is a major interactive proof assistant implementing higher-order logic
(HOL). As an LCF style theorem prover, it is based on a small logical core (ker-
nel) to increase the trustworthiness of proofs without requiring — yet supporting
— explicit proof objects.

The Isabelle distribution comes with a number of library theories constructed
solely from definitional axioms; among them basic data-types for sets, lists, arith-
metics, a substantial part of analysis, and — particularly relevant here — Scott
domain theory (HOLCF) [18] providing a particular type class ′𝛼∶∶pcpo, i.e. the
class of types ′𝛼 for which a least element ⊥ and a complete partial order -⊑- is
defined.

HOLCF provides the concept of continuity, the concept of admissibility, the
fixed point operator 𝜇 x. f x as well as the fixed point induction for admissible
predicates. Isabelle’s type inference can automatically infer, for example, that if
′𝛼∶∶pcpo, then ( ′𝛽 ⇒ ′𝛼)∶∶pcpo.

A distinguishing feature of Isabelle is the locale mechanism, i. e. theories
that may be parameterized by types, constant-symbols and local hypotheses
5 also called infinite internal chatter as occurring in processes like 𝜇 x. a → x \ {a}
6 although this calculation can be extended, see [22].



over them. Since locales may inherit from other locales, they represent a pow-
erful structuring mechanism for orders and algebraic structures very similar to
dependent types available in other systems.

2.4 Isabelle/HOL-CSP

Isabelle/HOL-CSP is a shallow embedding of CSP in HOL based on the tradi-
tional semantic domain described by 9 “axioms” over the three semantic func-
tions 𝒯 :: ′𝛼 process ⇒ ′𝛼 trace set, ℱ :: ′𝛼 process ⇒ ′𝛼 failure set and 𝒟 ::
′𝛼 process ⇒ ′𝛼 trace set:

– the empty trace is always the initial trace and any trace is front-tickFree;
– traces of a process are prefix-closed and a process can refuse all subsets of

refusals;
– any event refused by a process after a trace s must be in a refusal set asso-

ciated to s;
– the tick accepted after a trace s implies that all other events are refused;
– a divergence trace with any suffix is itself a divergence one
– once a process has diverged, it can engage in or refuse any sequence of events.
– a tick-ending divergence trace has a tickFree divergence trace prefix of max-

imal length.
More formally, a process P of the type Σ process should have the following
properties:

([] ∈ 𝒯 P ∧ (∀ s X . (s, X) ∈ ℱ P ⟶ front-tickFree s) ∧
(∀ s t. s @ t ∈ 𝒯 P ⟶ s ∈ 𝒯 P) ∧
(∀ s X Y . (s, Y ) ∈ ℱ P ∧ X ⊆ Y ⟶ (s, X) ∈ ℱ P) ∧
(∀ s X Y . (s, X) ∈ ℱ P ∧
(∀ c. c ∈ Y ⟶ s @ [c] ∉ 𝒯 P) ⟶ (s, X ∪ Y ) ∈ ℱ P) ∧
(∀ s X . s @ [✓] ∈ 𝒯 P ⟶ (s, X − {✓}) ∈ ℱ P) ∧
(∀ s t. s ∈ 𝒟 P ∧ tickFree s ∧ front-tickFree t ⟶ s @ t ∈ 𝒟 P) ∧
(∀ s X . s ∈ 𝒟 P ⟶ (s, X) ∈ ℱ P) ∧ (∀ s. s @ [✓] ∈ 𝒟 P ⟶ s ∈ 𝒟 P))

The core of HOL-CSP is to encapsulate this wishlist into a type definition. This
is achieved by 1) defining the pair of failures and divergences Σ process0 via
(Σ✓ list × (Σ✓) set)set × (Σ✓)set (where Σ✓ = Σ ⊎ {✓}), 2) by turning the
above wishlist into a data-constraint is-process of type Σ process0 ⇒ bool, and
3) by establishing an isomorphism between the subset of Σ process0’es satisfying
is-process via the-specification construct:

typedef ′𝛼 process = {P ∶∶ ′𝛼 process0 . is-process P}

Subsequently, we provide definitions for each CSP operator in terms of Σ pro-
cess0; these definitions formalize directly the textbook [26]. Finally, we prove that
each operator preserves the is-process-invariant. The preservation even holds for
arbitrary (possibly infinite) sets A in the generalisations 2x∈A → P(x) resp.
⊓x∈A → P(x). Note that both use higher-order abstract syntax and have the
type ′𝛼 set ⇒ ( ′𝛼 ⇒ ′𝛼 process) ⇒ ′𝛼 process.



A major problem prevails: how to give semantics to the fixed point operator?
This is achieved by turning the denotational domain of CSP into a Scott complete
partial order (cpo) [27], which provides semantics for the fixed point operator 𝜇
x. f (x) under the condition that f is continuous wrt. this partial ordering. Since
the natural ordering - ⊑𝐹𝐷 - is too weak for this purpose, Roscoe and Brookes
[23] proposed a complete process ordering P ⊑ Q which is stronger, i. e. P ⊑ Q
⟹ P ⊑𝐹𝐷 Q, and yet ensures completeness at least for general read and write
operations. It is based on the concept refusals after a trace s (defined as ℛ𝑎 P
s ≡ {X ∣ (s, X) ∈ ℱ P}):

P ⊑ Q ≡ 𝒟 Q ⊆ 𝒟 P ∧ (∀ s. s ∉ 𝒟 P ⟶ ℛ𝑎 P s = ℛ𝑎 Q s) ∧ min-elems (𝒟 P) ⊆
𝒯 Q

Theorem 1 (Continuity) Almost all HOL-CSP operators ⊗ are continuous
wrt. -⊑-, i. e.:

cont f ⟹ cont g ⟹ cont(𝜆x. (f x) ⊗ (g x))

Based on the lemma that ⊑𝐹𝐷 is admissible for the fixed point induction,
when f is continuous we have an induction rule of the following form.

Theorem 2 (Fixed-point Inductions) For cont f, we have:

C (⊥) ⊑𝐹𝐷 Q ⟹ (⋀x. C (x) ⊑𝐹𝐷 Q ⟹ C(f x) ⊑𝐹𝐷 Q) ⟹ C (𝜇 X . f X) ⊑𝐹𝐷 Q

Proposition 1 (CSP-Algebra) HOL-CSP provides about 200 rules derived
from the denotational semantics, be it monotonicities or equalities, which were
called the “axioms” in the literature. We show here only the small collection used
in the subsequent example proof:

(∀ y. c y ∈ S) ⟹ c?x → P x [[S ]] c?x → Q x = c?x → (P x [[S ]] Q x)
(∀ y. c y ∈ S) ⟹ inj c ⟹ c!a → P [[S ]] c?x → Q x = c!a → (P [[S ]] Q a)
d a ∉ S ⟹ (⋀y. c y ∈ S) ⟹ d!a → P [[S ]] c?x → Q x = d!a → (P [[S ]] c?x → Q x)
d ∈ S ⟹ (⋀y. c y ∉ S) ⟹ d → P [[S ]] c?x → Q x= c?x → (d → P [[S ]] Q x)
d a ∉ C ⟹ c ∈ C ⟹ c → Q [[C ]] d!a → P = d!a → (c → Q [[C ]] P)
∀ y. c y ∉ B ⟹ c?x → P x \ B = c?x → (P x \ B)
∀ y. c y ∉ B ⟹ c!a → P \ B = c!a → (P \ B)
c a ∈ B ⟹ c!a → P \ B = P \ B etc.
The theories HOL-CSP and HOL-CSPM [3] also add a number of extensions of

the original language. This includes for the binary operators P [[A]] P ′, P ; P ′,
P 2 P ′, P ⊓ P ′, the generalizations [[S]]i ∈# M . P(i), ∣∣∣ i ∈# M . P(i), etc.
Roscoe’s operators Interrupt P △ P ′ and Throw (exception handler) P Θ a
∈ A. P ′(a) have also been included since they come in handy in some of the
more general constructions. Finally, [29] proposed another refinement ordering,
the trace-divergence ordering P ⊑𝐷𝑇 Q ≡ P ⊑𝑇 Q ∧ 𝒟 Q ⊆ 𝒟 P, which has
surprisingly benign properties wrt. operational semantics and which is relevant
for applications [10].



2.5 A Model and Sample Proof in HOL-CSP

Of course, proving refinements is not done by unfolding the definitions in the
denotational semantics. Instead, the predominant proof technique is merely fixed
point induction via Theorem 2, application of the algebraic rules of Proposition 1
as well as the monotonicity rules which are a consequence of Theorem 1. We
demonstrate this with the paradigmatic CopyBuffer example, where we model
a protocol COPY (“received data on channel left will eventually be copied into
channel right”) and an implementing SYSTEM which transfers the data from
some SEND-component into some REC -component using an internal channel
mid where REC acknowledges each data-package via a signal on the internal
ack-channel.

The formalisation of these model-elements proceeds as follows. The events
were defined by the inductive data-type introducing the channels:

datatype ′𝛼 channel = left ′𝛼 ∣ right ′𝛼 ∣ mid ′𝛼 ∣ ack

Note that this definition leaves open what data is actually transmitted. A syn-
chronisation set SYN is defined via {e ∣ ∃ x. e = mid x} ∪ {ack}. The process
COPY of type ′𝛼 channel process is defined by 𝜇 x. left?xa → right!xa → x, the
process SEND by 𝜇 x. left?xa → mid!xa → ack → x and the process REC by
𝜇 x. mid?xa → right!xa → ack → x. The latter two are wired together to the
process SYSTEM via SYSTEM ≡ SEND [[SYN ]] REC \ SYN.

Now we ask the question: does SYSTEM implement the protocol COPY ? This
can be rewritten as the following refinement problem : COPY ⊑𝐹𝐷 SYSTEM.
Unfolding COPY and applying Theorem 2 yields the two subgoals:

1. ⊥ ⊑𝐹𝐷 (SEND [[SYN ]] REC \ SYN )
2. ⋀x. x ⊑𝐹𝐷 (SEND [[SYN ]] REC \ SYN ) ⟹

left?a → right!a → x ⊑𝐹𝐷 (SEND [[SYN ]] REC \ SYN )

where the former is trivial and the latter represents the induction step. If we
unfold once SEND and REC and apply the reduction rules of Proposition 1,
this results in:

left?a → right!a → x ⊑𝐹𝐷 left?a → right!a → (SEND [[SYN ]] REC \ SYN )

Applying the monotonicity rules resulting from Theorem 1 we can reduce this
goal to the induction hypothesis x ⊑𝐹𝐷 (SEND [[SYN ]] REC \ SYN ).

Furthermore this proof can be highly automated (reduces to a few lines in
Isabelle/Isar). No assumption is made over ′𝛼, this construction is therefore truly
parametric over data, which is in stark contrast to model-checkers for CSP such
as [1,28]. Using the fact that functions over processes are continuous, we can
specify and analyse, e. g., global variables by VAR 𝜎𝑖𝑛𝑖𝑡 ≡ (𝜇 x. (𝜆𝜎. (Read!𝜎
→ x 𝜎) 2 (Update?𝜎 ′ → x 𝜎 ′))) 𝜎𝑖𝑛𝑖𝑡 and other building blocks of concurrent
programs like buffers, semaphores and monitors.



3 Deterministic Proc-Omata

3.1 Motivations

Refinements proofs as presented in Sect. 2.5 can quickly become counter-
intuitive and fastidious, in particular, if concurrent systems were modeled that
arise from iterative architectural compositions.7 We propose a certain sub-class
of CSP processes Proc-Omata to which many processes occurring in practice can
be equivalently represented.

We start with another example, a simple counter of two events communicated
by the environment:

Example 2 (Counter for integers) Given two distinct events inc (increase)
and dec (decrease), we can define a counter for integers as follows:

cnt ≡ 𝜇 x. (𝜆n. (inc → x (n + 1)) 2 (dec → x (n − 1)))
If inc and dec are of type ′𝛼, cnt is of type int ⇒ ′𝛼 process, something we

could call a higher-order process. In other words, we have defined for each integer
a process whose relationship to the others can be illustrated using the following
Labelled Transition System (LTS). Note that its non-symbolic presentation makes
the state-space infinite.

… cnt (− 1) cnt 0 cnt 1 …
decdecdecdec

inc inc inc inc

Fig. 2: LTS for the integer counter example

We observe that based on the algebraic properties of Mprefix and Det, and
relying on the fact that inc and dec are distinct, we can rewrite our counter
process as follows:

cnt =
(𝜇 x. (𝜆n. 2e∈{dec, inc} → (if e = inc then x (n + 1) else x (n − 1))))

Note that the fix-point operator acts on a function of type nat ⇒ nat process;
since nat process belongs to the type class cpo, this implies that nat ⇒ nat
process belongs to the cpo-class. Thus, type-inference establishes that the fix-
point exists and is — since the argument is continuous — unique. Thus, cnt is
a process function that is parameterised in the initial state.

7 In the CSP literature, the synchronous product P [[S ]] Q, hiding P \ S and renaming
were called the architectural composition operators.



3.2 Formal Definitions

We capture the intuition of the example above, by a formal definition of our
notion of a deterministic Proc-Omata: it is a higher-order process canonically
associated with a functional automaton [20]. Let us first define a deterministic
automaton by a record in Isabelle/HOL.
Definition 1 (abstract syntax of a deterministic automaton)

record ( ′𝜎, ′e) A𝑑 = 𝜏 ∶∶ ‹ ′𝜎 ⇒ ′e ⇒ ′𝜎 option›

Isabelle/HOL records support a limited form of object-orientation; records are
extensible (i. e. new fields my be added, while theorems established over an ex-
tensible record remain valid). We will exploit this feature in the following.

Definition 2 (enabledness) Let A be an automaton of type ( ′𝜎, ′e) A𝑑; we
denote its transition function by 𝜏 A. From the transition function, we derive
the following notion:

𝜀 A s ≡ {e ∣ 𝜏 A s e ≠ None}

Definition 3 (deterministic proc-Omata) To an automaton A we associate
a parametric process that we call a “Proc-Omata”. It is a function of type ′𝜎 ⇒
′e process that we denote by:

P[[A]]𝑑 ≡ 𝜇 X . (𝜆s. 2 e ∈ 𝜀 A s → X (the (𝜏 A s e)))

Example 3 (Proc-Omata for the integer counter) We associate to the
process cnt presented in Example 2 the deterministic automaton:

A ≡ (∣𝜏 = 𝜆n e. if e = inc then Some (n + 1 ∶∶ int) else if e = dec then
Some (n − 1) else None∣)
and prove that cnt n = P[[A]]𝑑 n.

When applying the operational rules of CSP to processes (cite ITP paper),
our intuition that process proceeds by transiting between several “states” can
be made explicit. In this paper, we use a simpler construction that just requires
that they exist and are explicitely accessible.

3.3 Properties of Proc-Omata

As mentioned earlier, a deterministic Proc-Omata can be seen as a way of
accessing the states of the process from which we built an automaton. This paves
the way for using the underlying automaton for establishing indirectly proper-
ties about processes. The following formally proven results constitute bridges
between CSP and automata theory.

The first notable thing is that the step function is continuous. We can con-
sequently unfold the fixed point, leading to our first property.
Proposition 2 P[[A]]𝑑 s = 2 e ∈ 𝜀 A s → P[[A]]𝑑 (the (𝜏 A s e))



Theorem 3 (Deterministic Proc-Omata are non terminating) Using
the predicate non-terminating defined in HOL-CSP for processes expressing that
no trace is ending normally with ✓, we have:

non-terminating (P[[A]]𝑑 s)

Definition 4 (Reachability set of an automaton)

inductive-set ℛ𝑑 ∶∶ ‹( ′𝜎, ′e, ′𝛼) A𝑑-scheme ⇒ ′𝜎 ⇒ ′𝜎 set› (‹ℛ𝑑›)
for A ∶∶ ‹( ′𝜎, ′e, ′𝛼) A𝑑-scheme› and s ∶∶ ‹ ′𝜎›
where init ∶ ‹s ∈ ℛ𝑑 A s›
∣ step ∶ ‹t ∈ ℛ𝑑 A s ⟹ Some u = 𝜏 A t e ⟹ u ∈ ℛ𝑑 A s›

This definition captures the conventional concept of reacheability. It is a
necessary prerequisite for some results. Here are two examples: a characterization
of deadlock freeness and a computation of the events (the alphabet) of a process.

Theorem 4 (characterization of deadlock freeness)
deadlock-free (P[[A]]𝑑 s) = (∀ t∈ℛ𝑑 A s. 𝜀 A t ≠ ∅)

Theorem 5 (alphabet characterization)
events-of (P[[A]]𝑑 s) = ⋃ (𝜀 A ‘ ℛ𝑑 A s)

Finally, an interesting yet not too surprising property is that deterministic
Proc-Omata correspond to deterministic processes. The latter concept is defined
in the CSP theory such that no continuation of a trace can be in a refusals set
associated to it, i. e. deterministic P ≡ ∀ s e. s @ [e] ∈ 𝒯 P ⟶ (s, {e}) ∉ ℱ
P. Since such processes are maximal for the (⊑𝐹𝐷) ordering, we only have to
establish the following refinement for proving the equality.

Theorem 6 (FD refinement implies to equality) P[[A]]𝑑 s ⊑𝐹𝐷 P ⟹ P
= P[[A]]𝑑 s

Thus, establishing the core of the Proc-Omata theory requires some work,
indeed. Now comes the benefit: the general theorems for compactification.

3.4 Compactification of Synchronization

It turns out that the Proc-Omata behave very well in synchronization con-
texts. The main idea is that given two deterministic automaton A1 and A2 of
type ( ′𝜎, ′e) A𝑑 and a synchronization set E (of type ′e set), we construct a new
deterministic automaton A0 𝑑⊗[[E ]]𝑏𝑖𝑛 A1 of type ( ′𝜎 list, ′e) A𝑑 such that



P[[A0]]𝑑 s0 [[E ]] P[[A1]]𝑑 s1 = P[[A0 𝑑⊗[[E ]]𝑏𝑖𝑛 A1]]𝑑 [s0, s1]
under some assumptions on enableness-independence that we will discuss later.

With an intuitive inductive generalization, we end up with what we call a
compactification theorem.
Theorem 7 (Compactification of deterministic Proc-Omata) Assum-
ing ∣𝜎s∣ = ∣𝜎A∣ and a generalization of the hypothesis of independence on the
enableness, we show:

[[E]] (s, A)∈#mset (zip 𝜎s 𝜎A). P[[A]]𝑑 s = P[[𝑑⨂ [[E]] 𝜎A]]𝑑 𝜎s

If we say that this generalisation from the binary to the n-ary case is intuitive,
this does by no means imply that the underlying proofs are straight-forward; this
part of the Proc-Omata-theory took about NNN lines of highly dense proofs in
Isabelle/HOL.

The importance of Theorem 7 lies in the fact that an interative synchro-
nization of an arbitrary number of Proc-Omata can be reconstructed into an
Proc-Omata, paving the way for invariant proof techniques in combination with
what we evoked in Sect. 3.3.

Note that the order in which the Proc-Omata appears is arbitrary, but we
have to track the associated state, and this is why the zip function seems to
appear from nowhere.

Some basic ideas of this result already appeared in [30] from 2020. But instead
of one transition function 𝜏, the enableness 𝜀 had also to be defined independently
(rather than having it as a derived concept). This made the construction more
difficult to understand, and obscured the compactification result that was hidden
inside a proof for a particular example. Moreover, only the case E = ∅ and E
= UNIV i. e. interleaving and parallelism had been discussed, while the above
form of the compactification is suited for arbitrary synchronization sets.

As mentioned earlier, our result is always available as soon as we have the
independence assumption on the enableness (we write the binary version here):

∀ t0 ∈ ℛ𝑑 A0 s0. ∀ t1 ∈ ℛ𝑑 A1 s1. 𝜀 A0 t0 ∩ 𝜀 A1 t1 ⊆ E
This is necessary because otherwise the process resulting of the synchronization
would not be deterministic anymore.

4 Non Deterministic Proc-Omata

4.1 Formal Definitions

Instead of a ′𝜎 option, we may allow several states with the type ′𝜎 set. The
record is modified accordingly.
Definition 5 ( ′𝜎, ′e) A𝑛𝑑 = 𝜏 ∶∶ ‹ ′𝜎 ⇒ ′e ⇒ ′𝜎 set›

This is almost the same thing as ( ′𝜎, ′e) A𝑑, except that we adapt the
definition of enableness (we override the notation):



Definition 6 𝜀 A s ≡ {e ∣ 𝜏 A s e ≠ ∅}

The associated non-deterministic Proc-Omata is also a function of type ′𝜎
⇒ ′e process that we denote by P[[A]]𝑛𝑑.

Definition 7 P[[A]]𝑛𝑑 ≡ 𝜇 X . (𝜆s. 2e ∈ 𝜀 A s → ⊓s ′ ∈ 𝜏 A s e. X s ′)

The only limitation of this is that the GlobalNdet operator involved in the
definition is not continuous if 𝜏 A s e is not finite, and therefore the fixed point
only makes sense if ∀ s e. finite (𝜏 A s e), which is encapsulated in the predicate
finite-trans A. This is not only a restriction about Proc-Omata but more gener-
ally about the expressiveness of the framework HOL-CSP and HOL-CSPM, and will
be resolved in a future publication.

4.2 Properties of Proc-Omata

We can obtain for non-deterministic Proc-Omata results similar to those
obtained for the deterministic case. First of all, unfolding the fixed point is
requiring the finite-trans assumption.
Proposition 3 finite-trans A ⟹ P[[A]]𝑛𝑑 s = 2 e ∈ 𝜀 A s → ⊓s ′ ∈ 𝜏 A s e.
P[[A]]𝑛𝑑 s ′

Theorem 8 (Non-deterministic Proc-Omata are non terminating)

finite-trans A ⟹ non-terminating (P[[A]]𝑛𝑑 s)

Of course, the notion of reachability has to be adapted.

Definition 8 (Reachability set of an automaton)

inductive-set ℛ𝑛𝑑 ∶∶ ‹( ′𝜎, ′e, ′𝛼) A𝑛𝑑-scheme ⇒ ′𝜎 ⇒ ′𝜎 set› (‹ℛ𝑛𝑑›)
for A ∶∶ ‹( ′𝜎, ′e, ′𝛼) A𝑛𝑑-scheme› and s ∶∶ ‹ ′𝜎›
where init ∶ ‹s ∈ ℛ𝑛𝑑 A s›
∣ step ∶ ‹t ∈ ℛ𝑛𝑑 A s ⟹ u ∈ 𝜏 A t e ⟹ u ∈ ℛ𝑛𝑑 A s›

Theorem 9 finite-trans A ⟹ deadlock-free (P[[A]]𝑛𝑑 s) = (∀ t∈ℛ𝑛𝑑 A s. 𝜀 A
t ≠ ∅)

Theorem 10 finite-trans A ⟹ events-of (P[[A]]𝑛𝑑 s) = ⋃ (𝜀 A ‘ ℛ𝑛𝑑 A s)

Actually, any deterministic Proc-Omata can be seen as a non-deterministic
one via the injection that maps None to ∅ and Some s to {s}. Therefore, all
our proofs (characterizations, compactifications) are done on non-deterministic
Proc-Omata and the deterministic versions presented in Sect. 3 are corollaries.



4.3 Compactification of Synchronization

Thanks to the fact that non-deterministic choice distributes on all the CSP
operators, and especially synchronization, we achieved to generalize the com-
pactification Theorem 7 as follows.

Theorem 11 (Compactification of deterministic Proc-Omata) Assum-
ing ∣𝜎s∣ = ∣𝜎A∣ and ∀ A∈set 𝜎A. finite-trans A, we show:

[[E]] (s, A)∈#mset (zip 𝜎s 𝜎A). P[[A]]𝑛𝑑 s = P[[𝑛𝑑⨂ [[E]] 𝜎A]]𝑛𝑑 𝜎s

We get rid here of the independence hypothesis and, since any deterministic
Proc-Omata can be seen as a non-deterministic one, this formula is a total
generalization of Theorem 7.

5 Terminating Proc-Omata

For keeping the intuition, we hid some details under the hood saying that
our automata were only described by a transition function in Definition 1 and
Definition 5. Such Proc-Omata are non-terminating (cf Theorem 3 and Theo-
rem 8), which prevent sequential composition (either we end with a deadlock, or
we don’t end at all, but never with SKIP). Since this may be useful for defining
small blocks of complex architectures, we have extended our definitions.

5.1 Formal Definitions

Actually our records (deterministic and non-deterministic) have an addi-
tional field: 𝒮𝐹, which is the set of final states. Formally, we have:

Definition 9 ( ′𝜎, ′e) A𝑑 = 𝜏 ∶∶ ‹ ′𝜎 ⇒ ′e ⇒ ′𝜎 option› 𝒮𝐹 ∶∶ ‹ ′𝜎 set›

Definition 10 ( ′𝜎, ′e) A𝑛𝑑 = 𝜏 ∶∶ ‹ ′𝜎 ⇒ ′e ⇒ ′𝜎 set› 𝒮𝐹 ∶∶ ‹ ′𝜎 set›

Morally when a final state is reached, we end the fixed point with SKIP.
Formally:

Definition 11 P𝑆𝐾𝐼𝑃[[A]]𝑑 = (𝜇 X . (𝜆s. if s ∈ 𝒮𝐹 A then SKIP else 2e∈𝜀 A s
→ X (the (𝜏 A s e))))

Definition 12 P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 = (𝜇 X . (𝜆s. if s ∈ 𝒮𝐹 A then SKIP else 2e∈𝜀 A
s → ⊓s ′ ∈ 𝜏 A s e. X s ′))

These definitions are of course generalizations of what we have in Sect. 3.2
and in Sect. 4.1, which are special cases when 𝒮𝐹 A = ∅. The fixed points can
be unfolded in the same way as in Proposition 2 and Proposition 3.



5.2 Properties of Proc-Omata

These new versions of Proc-Omata enjoy almost the same properties as the
previous ones, except that we now have to consider the possibility of terminating
with SKIP. We will only write here some non-deterministic results, knowing that
deterministic ones are straightforward corollaries thanks to the injection.

Theorem 12 finite-trans A ⟹ non-terminating (P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 s) = (𝒮𝐹 A ∩ ℛ𝑛𝑑 A
s = ∅)

Theorem 13 [[finite-trans A; fin-states-not-enabled A]]
⟹ deadlock-free𝑆𝐾𝐼𝑃 (P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 s) = (∀ t∈ℛ𝑛𝑑 A s. t ∈ 𝒮𝐹 A ∨ 𝜀 A t ≠ ∅)

The last one requires some explanation. deadlock-free𝑆𝐾𝐼𝑃 P is a predicate
on P defined as (𝜇 x. (⊓xa∈UNIV → x) ⊓ SKIP) ⊑𝐹𝐷 P and telling that
P is either always making progress, either terminating with SKIP. In the other
hand, fin-states-not-enabled A stipulates that 𝜀 A s = ∅ as soon as s ∈ 𝒮𝐹 A,
which is intuitive but needs to be assumed since it is not a consequence of our
formalization.

However, the most important result is probably the fact that we have man-
aged to extend the compactification of synchronization to such Proc-Omata.

Theorem 14 [[∣𝜎s∣ = ∣𝜎A∣; ∀ A∈set 𝜎A. finite-trans A;
∀ A∈set 𝜎A. fin-states-not-enabled A]]

⟹ [[E]] (s, A)∈#mset (zip 𝜎s 𝜎A). P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 s = P𝑆𝐾𝐼𝑃[[𝑛𝑑⨂ [[E]] 𝜎A]]𝑛𝑑 𝜎s

5.3 Compactification of Sequential Composition

The extension of our formalization for allowing terminating Proc-Omata was
actually motivated by the fact that SKIP is the neutral element for the sequential
composition. In other words we have P ; SKIP = P and SKIP ; P = P. This
makes it possible to split big architectures into smaller sub-components, which
can potentially be Proc-Omata. But why should we only consider the binary
case? For the MultiSeq operator, we proved a compactification theorem in the
same philosophy as Theorem 14.

Theorem 15 [[𝜎A ≠ []; ∣𝜎s∣ = ∣𝜎A∣; ∀ A∈set 𝜎A. finite-trans A;
fin-states-not-enabled (last 𝜎A)]]

⟹ SEQ (s, A)∈@zip 𝜎s 𝜎A. P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 s = P𝑆𝐾𝐼𝑃[[𝑛𝑑⨂ ; 𝜎A]]𝑛𝑑 𝜎s



6 Examples

6.1 Dining Philosophers

A good illustration of the power of Proc-Omata reasoning is the Dining
Philosophers example, first introduced by Dijkstra in 1965 and reformulated to
the present form by Hoare [12].

Let is assume that N philosophers are dining around a round table, each one
sharing his right and left fork with his right and left neighbour respectively. Of
course, to be able to eat, a philosopher needs its two forks, which may result in
a deadlock. This will become clearer with the formalization in HOL-CSP.

We first start by a datatype for the channels.
Definition 13
datatype dining-event = picks (phil∶nat) (fork∶nat)

∣ putsdown (phil∶nat) (fork∶nat)

Then we can define a right-handed philosopher and a fork as fixed points.

Definition 14 RPHIL i ≡ 𝜇 x. picks i i → picks i ((i − 1) mod N ) → putsdown
i ((i − 1) mod N ) → putsdown i i → x

Definition 15 FORK i ≡ 𝜇 x. (picks i i → putsdown i i → x) 2 (picks ((i +
1) mod N ) i → putsdown ((i + 1) mod N ) i → x)

Now, the philosophers are interleaved, so are the forks, and the resulting
global process is obtain by parallelizing philosophers and forks.

Definition 16 (Architecture of Dining Philosophers)

RPHILS ≡ ∣∣∣ P∈#mset (map RPHIL [0..<N ]). P
FORKS ≡ ∣∣∣ P∈#mset (map FORK [0..<N ]). P
RDINING = FORKS ∣∣ RPHILS

Reasoning about the possibility of deadlock for such a system can be difficult:
you do not really know where to start. But if we can find automata so that our
processes may be written in terms of deterministic Proc-Omata, we inherit the
powerful theorems seen in Sect. 3.

This can be achieved for the forks and the right-handed philosophers. With
the appropriate definitions we prove FORK i = P[[fork-A i]]𝑑 0 and RPHIL i =
P[[rphil-A i]]𝑑 0. Finally, using the compactification Theorem 7, we obtain a big
Proc-Omata for RDINING.

Theorem 16 RDINING = P[[𝑑⨂ [[∅]] (map rphil-A [0..<N ])
𝑑⊗[[UNIV ]]𝑏𝑖𝑛𝑡𝑢𝑝𝑙𝑒 𝑑⨂ [[∅]] (map fork-A [0..<N ])]]𝑑 (replicate N 0, repli-
cate N 0)



We can then show that (replicate N 1, replicate N 1) is reachable from the
initial state (replicate N 0, replicate N 0), and that in this state our Proc-
Omata has its enableness empty. This corresponds to the situation where each
philosopher has picked his right fork, thus no left fork is available. With the
characterization Theorem 4, we have proven that RDINING is not deadlock
free.

We can correct this by introducing a left-handed philosopher, who picks his
left fork before his right one as follows.

Definition 17 LPHIL0 ≡ 𝜇 x. picks 0 (N − 1) → picks 0 0 → putsdown 0 0
→ putsdown 0 (N − 1) → x

Definition 18 (Corrected architecture of Dining Philosophers)

PHILS ≡ ∣∣∣ P∈#add-mset LPHIL0 (mset (map RPHIL [1..<N ])). P
DINING = FORKS ∣∣ PHILS

Once compactified, a proof by invariant shows that the enableness in every
reachable state is never empty, which results in the following theorem.

Theorem 17 deadlock-free DINING

6.2 Copy Buffer with a Queue

We just saw an example where Proc-Omata are the ideal tool. Here we would
like to present a case where things are not going so well.

We want to consider a buffer with a queue where the data transmitted by
the sender is stored until the recipient actually receives it.

We start with a datatype.
Definition 19
datatype ′a chan = left ′a ∣ enqueue ′a ∣ dequeue ′a ∣ right ′a

Intuitively we define the sender and the recipient, and synchronize them with
the queue as follows.

Definition 20 (Definitions for the Copy Buffer with a queue)

send ≡ 𝜇 X . left?x → enqueue!x → X

rec ≡ 𝜇 X . dequeue?x → right!x → X

queue ≡ 𝜇 X . (𝜆L. (enqueue?x → X (x # L)) 2

(if L = [] then STOP else dequeue!last L → X (butlast L)))



QueueBuffer-pre L ≡ send [[range enqueue]] (queue L [[range dequeue]] rec)

QueueBuffer L ≡ QueueBuffer-pre L \ range enqueue ∪ range dequeue

We can write send, rec and queue as Proc-Omata without much difficulty,
and therefore QueueBuffer-pre with compactification. As a consequence of The-
orem 4, we immediately obtain that QueueBuffer-pre is deadlock free. But when
it comes to QueueBuffer, because of the Hiding, we can no longer express it as a
Proc-Omata and consequently we lose the characterization with enableness. But
actually, using the Proc-Omata obtained for QueueBuffer-pre, we can still apply
a fixed point induction in which we let the state free. This allows us to only look
one step further and prove relatively easily that QueueBuffer is deadlock free.

7 Future Work

The previous example underlined the fact that the theory we developed
can be useful even when we do not achieve to express the whole system as a
Proc-Omata. Indeed, be able to see some sub-components as automata is al-
ready enough to simplify induction proofs, derive properties on the alphabet
(events-of ), etc. Actually the step-laws and the distributivity of internal choice
allowed us to establish for some operators powerful properties. For example, for
Throw and Interrupt, we have the following theorems.
Theorem 18 finite-trans A ⟹
Throw (P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 s) B Q =
(if s ∈ 𝒮𝐹 A then SKIP
else 2e∈𝜀 A s

→ (if e ∈ B then Q e
else ⊓ s ′∈𝜏 A s e. Throw (P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 s ′) B Q))

Theorem 19 finite-trans A ⟹
P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 s △ Q =
Q 2 (if s ∈ 𝒮𝐹 A then SKIP else 2e∈𝜀 A s → ⊓ s ′∈𝜏 A s e. P𝑆𝐾𝐼𝑃[[A]]𝑛𝑑 s ′ △ Q)

For the external choice, when the Proc-Omata are non terminating, we can
obtain something similar to the compactification.

Theorem 20 [[finite s-A-set; ⋀s A. (s, A) ∈ s-A-set ⟹ finite-trans A]]
⟹ 2(s, A)∈s-A-set. P[[A]]𝑛𝑑 s =

2e∈⋃ (s, A)∈s-A-set 𝜀 A s
→ ⊓ (s ′,

A)∈{uu- ∣ ∃ s ′ s A.
uu- = (s ′, A) ∧
(s, A) ∈ s-A-set ∧ e ∈ 𝜀 A s ∧ s ′ ∈ 𝜏 A s e}.

P[[A]]𝑛𝑑 s ′



As a future work, it should be interesting to extend such properties or even
maybe find a way to compactify other operators. This would require modifying
the formalism (for example the external choice can be resolved, that is to say
some Proc-Omata should disappear) and this is something we did not achieve
yet.

Another future work could be to connect our Proc-Omata formalization with
a model checker such as Cubicle [9]. Indeed we traduced for example deadlock
freeness into a predicate over the reachable states of an automaton which size is
finite but unbounded. Such tools are designed to deal with this kind of parame-
terized systems so the connection should be possible, resulting in the possibility
of quickly check for counter examples and even maybe construct invariants that
we could use later in a verified Isabelle proof.

Lastly, our formalization lends itself very well to sub-component breakdown.
A future project we have already started is to create a library of elementary
bricks for which we define and establish the correspondence with Proc-Omata.
Such bricks shall be assembled together, becoming bigger Proc-Omata thanks
to compactification theorems.

8 Related Work

In the introduction, we claimed that HOL-CSP is arguably the most compre-
hensive formalization of CSP; here, we’d like to substantiate this claim.

The theory of CSP has attracted a lot of interest since the eighties and
nineties, both as a theoretical device as well as a modelling language to analyze
complex concurrent systems. A wealth of theoretical articles appeared to inves-
tigate certain fragments and extensions of the core framework; it is therefore not
surprising that attempts to their formalisations have been undertaken with the
advent of interactive proof assistants.

Most noteworthy to these attempts is an early CSP trace semantics model in
HOL System proposed by [8]. Its successor [7] presented a first failure-divergence
semantics for a restricted set of operators and used the notion of a universal
(polymorphic) alphabet8. Note that [32] tackled already with subtle difficulties
concerning is-process and ✓.

The tool CSP-Prover [15] — based on a deep embedding of CSP in an Is-
abelle/HOL theory on the stable failures model — allows for the refinement
verification [15] by using some automated support for induction. However, only
if a process is divergence-free, its failures are the same as its stable failures. In
our view, this is a too strong assumption for both a theory as well as a practical
tool.

In the past few years, CSP benefited from a renewed interest with proof
assistants. CSP Agda was introduced in 2026 [13] with an implementation quite
8 Our first attempts for HOL-CSP [32] are based on a extended version of this theory

ported to Isabelle/HOL



different from HOL-CSP since it is based on coinductive data types. Only trace
and stable failures semantics have been covered so far, and the library of proven
laws is fairly modest [14]. In 2020, an operational semantics of CSP in Coq was
introduced [11] by a direct definitional approach. The theory covers only trace
refinement and a subset of CSP’s operators, but offers rather well-developed
proof automation for this language fragment close to conventional automata
theory.

With respect to all these formalizations in HOL, we would like to remind the
importance of the general fact that invariants (like is-process) or bridge theorems
(like Hoare’s P ;e Q ≡ P ⊑𝐹𝐷 (e → Q) 2 P) do not simply generalise from one
fragment to the next, and that features which are well studied in one fragment are
not necessarily well-understood in the whole picture. It is our main contribution
to provide an integrated formal theory that tackles with the complexities of
the necessary generalisations. This involved a revision of the role of the After
operator in the entire theory.

In the late nineties, research focused on automated verification tools for CSP,
most notably on FDR (see [1] for the latest instance). It relies on an operational
CSP semantics, that allows for a conversion of processes into labelled transition
systems, where the states were normalized by the “axioms” derived from the de-
notational semantics. For finite event sets, FDR can reduce refinement proofs to
bisimulation problems. With efficient compression techniques, state-elimination
and factorization by semantic equivalence [25], FDR was successful in analysing
some industrial applications. However, such a model checker can never handle
infinite cases. Another similar model checking tool [28] implemented some more
optimization techniques, such as partial order reduction, symmetric reduction,
and parallel model checking, but is also restricted to the finite case. In a way,
these tool require for their foundation integrated denotational/algebraic/opera-
tional techniques as provided by our theory.

Attempts to find characterizations of processes to generalise finite results
to infinite ones by data-independence [17,2,24], a variant of parametric model-
checking, have seen only a limited success. Roscoe developed a data independent
technology to verify security protocols modelled with CSP/FDR, which allows
the node to call infinite fresh values for nonces, thus infinite sequence of opera-
tions [24]. An extension of this work was proposed in [2] using the script language
CSP𝑀. However, in their works, even though each agent in the security protocol
can perform infinite number of operations, the number of agent entities remains
finite. HOL-CSP satisfies the need to parameterization and high-order processes
naturally [30] as a consequence of their pcpo-type structure. A formalization and
theory development of CSP𝑀 has been undertaken [3] but is out of the scope of
this paper.

9 Conclusion

After introducing the framework HOL-CSP, we presented a formalization of
Proc-Omata, a bridge that allows us to see processes as automata providing
powerful proof techniques. We actually presented several motivations and vari-



ants with increasing levels of abstraction before giving an overview of the key
results: the compactification theorems. We illustrated this with two examples:
the Dining Philosophers where the situation of a parameterized unbounded ring
of processes fits our theory perfectly, and the Copy Buffer with a queue where we
can still use Proc-Omata on sub-components. This motivates the future works
that we presented: tend to generalize the formalism in order to include more
operators, and connect external tools for quick counter examples, help in the
construction of invariants, etc.
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