
A Corrected Failure-Divergence Model
for CSP in Isabelle/HOL

1

H. Tej, B. Wolff

Universität Bremen, FB3
Postfach 330440
D-28334 Bremen

{bu,ht}@informatik.uni-bremen.de

Abstract. We present a failure-divergence model for CSP following
the concepts of [BR 85]. Its formal representation within higher order
logic in the theorem prover Isabelle/HOL [Pau 94] revealed an error in
the basic definition of CSP concerning the treatment of the termination
symbol tick.
A corrected model has been formally proven consistent with Isabelle/-
HOL. Moreover, the changed version maintains the essential algebraic
properties of CSP. As a result, there is a proven correct implemen-
tation of a "CSP workbench" within Isabelle.

1 Introduction

In his invited lecture at FME'96, C.A.R. Hoare presented his view on the status quo
of formal methods in industry. With respect to formal proof methods, he ruled that
they "are now sufficiently advanced that a [...] formal methodologist could occasio-
nally detect [...] obscure latent errors before they occur in practice" and asked for their
publication as a possible "milestone in the acceptance of formal methods" in industry.

In this paper, we report of a larger verification effort as part of the UniForM pro-
ject [Kri+95]. It revealed an obscure latent error that was not detected within a decade.
It can not be said that the object of interest is a "large software system" whose failure
may "cost millions", but it is a well-known subject in the center of academic interest
considered foundational for several formal methods tools: the theory of the failure-
divergence model of CSP ([Hoa 85], [BR 85]). And indeed we hope that this work
may further encourage the use of formal proof methods at least in the academic com-
munity working on formal methods.

Implementations of proof support for a formal method can roughly be divided into
two categories. In direct tools like FDR [For 95], the logical rules of a method
(possibly integrated into complex proof techniques) are hard-wired into the code of
their implementation. Such tools tend to be difficult to modify and to formally reason
about, but can possess enviable automatic proof power in specific problem domains
and comfortable user interfaces.

1 This work has been supported by the German Ministery for Education and Research
(BMBF) as part of the project UniForM under grant No. FKZ 01 IS 521 B2.

The other category can be labelled as logical embeddings. Formal methods such as
CSP or Z can be logically embedded into an LCF-style tactical theorem prover such
as HOL [GM 93] or Isabelle[Pau94]. Coming with an open system design going back
to Milner, these provers allow for user-programmed extensions in a logically sound
way. Their strength is flexibility, generality and expressiveness that makes them to
symbolic programming environments.

In this paper we present a tool of the latter category (as a step towards a future
combination with the former). After a brief introduction into the failure divergence se-
mantics in the traditional CSP-literature, we will discuss the revealed problems and
present a correction. Although the error is not "mathematically deep", it stings since
its correction affects many definitions. It is shown that the corrected CSP still fulfils
the desired algebraic laws. The addition of fixpoint-theory and specialised tactics ex-
tends the embedding in Isabelle/HOL to a formally proven consistent proof environ-
ment for CSP. Its use is demonstrated in a final example.

2 The Failure Divergence Semantics

In this section, we follow closely the presentation of [Cam 91], whose contribution
is a formal, machine-assisted version of a subset of CSP based on [BR 85] and [Ros
88] without the sequential operator, the parallel interleave operator and a proof-theory
based on fixpoint induction. With [Cam 91], we share some major design decisions,
in particular the choice of the alternative process ordering in [Ros 88] (see below).

In its trace semantics model it is not possible to describe certain concepts that
commonly arise when reasoning about concurrent programs. In particular, it is not
possible to express non-determinism, or to distinguish deadlock from infinite internal
activity. The failure-divergence model incorporates the information available in the
trace-semantics, and in addition introduces the notions of refusal and divergence to
model such concepts.

Example 2.1: Non-Determinism

Let a and b be any two events in some set of events Σ. The two processes

(a → Stop) p (b → Stop) (1)

and

(a → Stop) é (b → Stop) (2)

cannot be distinguished under the trace semantics, in which both processes are capable
of performing the same sequences of events, i.e. both have the same set of traces
{ ãñ,ãañ,ãbñ}. This is because both processes can either engage in a and then Stop, or
engage in b and then Stop. We would, however, like to distinguish between a deter-
ministic choice of a or b (1) and a non-deterministic choice of a or b (2).

This can be done by considering the events that a process can refuse to engage in
when these events are offered by the environment; it cannot refuse either, so we say
its maximal refusal set is the set containing all elements of Σ other than a and b,
written Σ\{a,b}, i.e. it can refuse all elements in Σ other than a or b. In the case of the
non-deterministic process (2), however, we wish to express that if the environment
offers the event a say, the process non-deterministically chooses either to engage in a,

⁄ to refuse it and engage in b (likewise for b). We say therefore, that process (2) has
two maximal refusal sets, Σ\{a} and Σ\{b}, because it can refuse to engage in either a
or b, but not both. The notion of refusal sets is in this way used to distinguish non-
determinism from determinism.

Example 2.2: Infinite Chatter

Consider the infinite process

µ X. a → X

which performs an infinite stream of a's. If one now conceals the event a in this pro-
cess by writing

(µ X. a → X) \ a (3)

it no longer becomes possible to distinguish the behaviour of this process from that
of the deadlock process Stop. We would like to be able to make such a distinction,
since the former process has clearly not stopped but is engaging in an unbounded
sequence of internal actions invisible to the environment. We say the process has
diverged, and introduce the notion of a divergence set to denote all sequences events
that can cause a process to diverge. Hence, the process Stop is assigned the divergence
set {}, since it can not diverge, whereas the process (3) above diverges on any
sequence of events since the process begins to diverge immediately, i.e. its divergence
set is Σ* , where Σ* denotes the set of all sequences with elements in Σ. Divergence is
undesirable and so it is essential to be able to express it to ensure that it is avoided.

2 . 3 The Original Version of CSP-Semantics

The Semantic Domain. In the model of CSP presented in [BR 85] a process
communicates with its environment by engaging in events drawn from some alphabet
Σ. In the failure-divergence semantics a process is characterised by:

• its failures — these are sets of pairs (s,X), where s is a possible sequence of
events a process can engage in (a trace), and X is the set of events that process
can refuse to engage in (the refusals) after having engaged in s,

• its divergences — these are the traces after which a process may diverge.
Processes are therefore represented by pairs (F,D), where F is a failure set and D is a
divergence set.

The failures and divergences of a process must satisfy six well-definedness condi-
tions (following [Ros 88]): (i) the initial trace of a process must be empty, (ii) the
prefixes of all traces of a process are themselves traces of that process, i.e. traces are
prefix-closed, (iii) a process can refuse all subsets of a refusal set, (iv) all events
which are impossible to perform in the next step can be included in a refusal set, (v) a
divergence set is suffix closed, and (vi) once a process has diverged, it can engage in,
or refuse, any sequence of events.
More formally, given a (possibly infinite) set of events Σ and sets F and D such that:

F ⊆ Σ* × P(Σ)
D ⊆ Σ*

then using a set theory and predicate calculus notation similar to that adopted in
[Ros 88], the above six well-definedness conditions for processes are stated as:

is_well_defined(F,D) ⇔
def

(ãñ,{}) ∈ F (i)
∧ ∀s,t. (s ^ t, {}) ∈ F ⇒ (s, {}) ∈ F (ii)
∧ ∀s,X,Y. (s, X) ∈ F ∧ Y ⊆ X ⇒ (s, Y) ∈ F (iii)
∧ ∀s,X,Y. (s, X) ∈ F ∧ (∀c∈Y. ((s ^ ãcñ, {}) ∉ F)) ⇒

(s, X ∪ Y) ∈ F (iv)
∧ ∀s,t. s ∈ D ⇒ s ^ t ∈ D (v)
∧ ∀s,t. s ∈ D ⇒ (s ^ t, X) ∈ F (vi)

where ãñ denote the empty trace, and the notation s ^ t is used to represent the conca-
tenation of two traces s and t.

In the model originally presented in [BR 85], the converse of (iii) is also a well-
definedness condition. This condition, which is shown formally below, states that a
set is refusable if all its finite subsets are refusable:

(∀Y∈F(X). (s,Y) ∈F) ⇒ (s,X) ∈F (4)

In [Ros 88], Roscoe explains that this condition can in fact be omitted from the defi-
nition of process, but if this is done, a coarser, more complex ordering on processes
must be defined since the ordering used in [BR 85] is no longer a complete partial
order otherwise. This ordering will be called process ordering.

We prefer to use the process ordering of [Ros 88] (extended in [RB 89]), since we
plan to investigate combinations of Z and CSP. In such a combination, Z is used to
specify system-transitions via pre-and postconditions. Therefore we need a model that
can cope with unbounded nondeterminism. In such a setting, a separation of the
process-ordering from the refinement ordering seems unavoidable (see the detailed
discussion of the counter examples in [Ros 88]). We will show in chapter 5 how one
can live with two orderings from a proof theory point of view.
The semantics of the operators. We will consider the set of well-formed pro-
cesses over alphabet Σ as a type process Σ. Then the language of CSP can now be
given by the following signature (using infix notation):

Stop, Skip : process Σ
→ : Σ × process Σ → process Σ (* prefix of single event *)

p_:_→_ : P Σ × (Σ→process Σ) → process Σ (* multi-prefix of events*)

__ : process Σ × P Σ → process Σ (* hide *)

p, _é_, (* det. & non-det. choice *)

_ ;_ : process Σ × process Σ → process Σ (* seq. composition*)
µ _ : (process Σ → process Σ)→process Σ (* recursion *)
...

The signature above is the precise equivalent of the "grammar" in [BR 85] in higher-

order abstract syntax. We will write px : A → P x for (p_:_→_) A (λx.P x).

In the traditional CSP-literature, a distinguishable particular element √ ("tick") within
Σ is required. It is used to indicate the termination of a process. It is crucial that it has
not been distinguished on the level of the definition of the semantic domains.

Let D be the projection into the divergences and F be the projection into the
failures of a process. The semantics for the CSP-operators can now be given
following the lines of the example below:

D(P;Q) = D P ∪ { s ^ t | tick-free(s) ∧ s ã̂√ñ ∈ traces(F P) ∧ t ∈ D Q}

F(P;Q) = {(s, X) | tick-free(s) ∧ (s, X ∪{ √}) ∈ F P}

∪ {(s ^ t, X) | (s ã̂√ñ,{}) ∈ F P ∧ tick-free(s) ∧ (t,X) ∈ F Q)

∪ {(s, X) | s ∈ D P)}
where traces denotes the projection into the traces and the predicate tick-free
discriminates traces not containing tick.

Of course, for any operator it has to be shown that the results of D and F, when
composed to a pair, form in fact an object of type process, i.e. it remains to be shown
that failures and divergences produced by an operator according to definitions above
respect the well-formedness condition of the semantical domain, i.e. is_well_de-
fined(F P, D P). (Theorem 1 in [BR 85]).

In fact, this is not possible for the sequential operator.

2 . 4 The Problem

The problem is that from the definition one can not prove the following part of
is_well_defined:

(s ^ t,{}) ∈ F(P;Q) ⇒ (s,{}) ∈ F(P;Q)

Consider the following case:

• (s ^ t, {}) ∈ F(P;Q) and

• s ^ t ∈ D P and

• s ∉ D P and

• s is not tick-free, i.e there exist s' and s'' such that s = s' ^ ã√ñ ^ s''
From the definition for ; and the is_well_defined we can only prove that:

(s',{}) ∈ F(P;Q)

but we can say nothing about (s,{}).
The problem is independent from axiom (4).

Conceptually, this is a consequence of an incoherent treatment of tick-freeness in
divergence sets and failure sets. Although this is extremely ugly, our intuition that
ticks "can appear only at the end of a trace" ([Hoa 85], pp.57, paragraph 1.9.7) has to
be formally represented in the notion of well-formedness (which was, to our know-
ledge, never done in the CSP-Literature).

This means that the sequential operator of CSP in the sense of the definition does
not form a process. This problem has meanwhile been recognised by other researchers
of the CSP community ([Ros 96]), together with the fact that the problem ranges
over "traditional CSP literature". Roscoe independently found this error recently and
proposes a solution similar to ours.

3 Isabelle/HOL

3 . 1 Higher Order Logic (HOL)

In this section, we will give a short overview of the concepts and the syntax. Our
logical language HOL goes back to [Chu 40]; a more recent presentation is
[And 86]. In the formal methods community, it has achieved some acceptance, espe-
cially in hardware-verification. HOL is a classical logic with equality formed over the
usual logical connectives ¬, ∧, ∨, ⇒ and = for negation, conjunction, disjunction,
implication and equality. It is based on total functions denoted by λ-abstractions like
"λx.x". Function application is denoted by f a. Every term in the logic must be
typed, in order to avoid Russels paradox. Isabelle's type discipline incorporates
polymorphism with type-classes (as in Haskell). HOL extends predicate calculus in
that universal and existential quantification ∀x. P x rsp. ∃x. P x can range over
functions.

I3 .2 Conservative Extensions in HOL

The introduction of new axioms while building a new theory may easily lead to
inconsistency. Here, a theory is a pair of a signature Σ and a set of formulas Ax (the
axioms). A theory extension can be characterised by a relation on theories:

(Σ, Ax) k (Σ ∪ ∆Σ, Ax ∪ ∆Ax)

Fortunately there are a number of syntactic schemes for theory extensions that
maintain the consistency of the extended one — such schemes are called conservative
extensions schemes. (For a more formal account the reader is referred to [GM 93]; one
may also find a proof of soundness there). Some syntactic schemes for theory-incre-
ments ∆Σ and ∆Ax are:

• the constant definition c ≡t of a fresh constant symbol c and a closed expres-
sion t not containing c and not containing a free type variable that does not
occur in the type of c,

• the type definition (a set of axioms stating an isomorphism between a non-
empty subset S ={x ::R | P x} of a base-type R and the type T to be defined),

Abs_T

Rep_T

T

R

Abs_T(Rep_T(x)) = x

x S Rep_T(Abs_T(x)) = x∈ ⇒

S={x | P x}

Rep_T x S∈

• a set of equations forming a primitive recursive scheme over a fresh constant
symbol f.

The basic idea of these extension schemes is to avoid logical paradoxes by avoiding
general recursive axioms provoking them. Desired properties have to be derived from
conservative extensions. We will build up all theories by the above extension
schemes, which constitutes a consistency proof w.r.t. HOL.

3 . 3 Isabelle

Isabelle is a generic theorem prover that supports a number of logics, among them
first-order logic (FOL), Zermelo-Fränkel set theory (ZF), constructive type theory
(CTT), the Logic of Computable Functions (LCF), and others. We only use its set-
up for higher order logic (HOL). Isabelle supports natural deduction style. Its princi-
pal inference techniques are resolution (based on higher-order unification) and term-re-
writing. Isabelle provides syntax for hierarchical theories (containing signatures and
axioms).

In the sequel, all Isabelle input and output will be denoted in this FONT
throughout this paper — enriched by the usual mathematical notation for ∀, ∃,...
instead of ASCII-transcriptions.2

Isabelle belongs to the family of LCF-style theorem provers. This means it is a
set of data types and function definitions in the ML-environment (or: "data-base").
The crucial one is the abstract data type "thm" (protected by the ML type discipline)
that contains the formulas accepted by Isabelle as theorems. thm-objects can only be
constructed via operations of the logical kernel of Isabelle. This architecture allows to
provide user-programmed extensions of Isabelle without corrupting the logical kernel.

Technically, the proofs were done by ML-scripts performing sequences of kernel
operations. These scripts were attached to the theory documents that constitute a
larger system of theories, "the CSP-theory" in our case. While Isabelle is loading the
theory documents and checking the proof-scripts, Isabelle can produce an HTML-
document allowing to browse the CSP-theory.

4 Formalising CSP Semantics in HOL

Our formalisation of CSP profits from the powerful logical language HOL in several
aspects:

• Higher order abstract syntax leads to a more compact notation avoiding
auxiliary instruments like environments, updates, substitutions and process-and
alphabet-variables. These issues were handled uniformly and precisely by the
type-discipline.

• The data type invariant is_process (corresponding to is_well_defined in 2.3.1)
can be encapsulated within a HOL-type. This leads to explicit treatment of
notational assumptions and makes them amenable to static type checking.

• As we will see in the next chapter, HOL can cope with the issue of admissibi-
lity (as a prerequisite for fixpoint induction) in an extremely elegant way.

4 . 1 A Corrected Version for CSP Semantics

Whenever we changed a definition or a theorem, we will mark this by * in the sequel.

The modified process invariant reads as follows3:

2 We do not distinguish quantifications and implications at the different logical levels
throughout this paper; see [Pau 94].

3 In his "Notes on CSP" [Ros 96], Roscoe proposes two additional conditions. We have
also proved formally that the CSP-theory is consistent on this basis.

is_process(F, D) ⇔
def

∧ (ãñ,{}) ∈ F (i)

∧ ∀s,X. (s,X) ∈ F ⇒ front-tick-free(s) (*)

∧ ∀s,t. (s ^ t, {}) ∈ F⇒ (s, {}) ∈ F (ii)

∧ ∀s,X,Y. (s, X) ∈ F∧ Y ⊆ X ⇒ (s, Y) ∈ F (iii)

∧ ∀s,X,Y. (s, X) ∈ F∧ (∀c∈Y. ((s ^ ãcñ,{}) ∉ F)) ⇒ (s, X ∪ Y) ∈ F (iv)

∧ ∀s,t. s ∈ D ∧ tick-free(s) ∧ front-tick-free(t) ⇒ s ^ t ∈ D (v*)

∧ ∀s,t. s ∈ D ⇒ (s, X) ∈ F (vi)

The condition * requires all traces to be front-tick-free (i.e. √ can occur at most at the
end of a trace). Note that from (v *) and (vi) follows also front-tick-freeness for all
divergences.

4 . 2 The Type Process

The encapsulation of the data type invariants is_process of the previous section
within a type is accomplished by a type definition (see section 3.2). Note that
Isabelle's notation for type constructor instances differs from the one used throughout
this paper.

We introduce a type abbreviation trace Σ as synonym for (Σ ⊕ {√})∗ where ⊕
denotes the disjoint sum on sets. Further, a type abbreviation p Σ will be used for the
product of failures and divergences:

p Σ =
def

 P(trace Σ × P (Σ ⊕ {√})) × P (trace Σ)

The set of all these tuples of p Σ represents the base type R of the type definition
scheme. According to this extension scheme, fresh constant symbols are introduced:

Abs_process : p Σ → process Σ
Rep_process : process Σ → p Σ

together with the new axioms:

Rep_process X : {p. is_process p} (Rep_process)
Abs_process(Rep_process(X)) = X (Abs_inverse)
is_process X ⇒ Rep_process(Abs_process(X)) = X (Rep_inverse)

In Isabelle, this whole instance of the conservative extension scheme is abbreviated
with the following statement in the theory ProcessType:

subtype (process) process Σ= "{p. is_process p}"

A first important theorem of this extension is4:

is_process (Rep_process P) (is_process_Rep)

4 In fact, the methodology entails a proof obligation that the type is non empty, i.e.
that there is a witness for which is_process holds. This trivial proof is omitted here.

We proceed with the definitions of the projections for failures and divergences:

D P ≡ snd (Rep_process P)

F P ≡ fst (Rep_process P)

where fst and snd are the usual projections into cartesian products.

The encapsulation of well-formedness within a type has the price that the constant
definitions of the semantic operators are slightly unconventional. The definition of
the prefix-operator in Isabelle theory notation, for instance, proceeds as follows:

Prefix = ProcessType +
consts "→ " :: Σ → process Σ → process Σ (infix 75)
defs

Prefix_def " a → P ≡
Abs_process({(s,X) | s = ãñ ∧ ev a ∉ X} ∪

{(s, X) | s ≠ ãñ ∧ hd s = ev a ∧ (tl s,X)∈ F P},

{d | d ≠ ãñ ∧ hd d = ev a ∧ tl s ∈ D P})"

end

The first line indicates that the theory Prefixis a hierarchical extension of the theory
ProcessType. The pragma (infix 75) sets up Isabelle's powerful parsing machinery
to parse the prefix operator the way it is used throughout this paper. The next axiom
is declared to be a constant definition (Isabelle checks the syntactic side conditions)
containing the abstracted tuple of failures and divergences, where hd and tl are the
usual projection in lists and ev is just the injection of an element into Σ ⊕ {√}.

From this definition, the traditional equations for F and D are derived as
theorems:

D(a → P) = {(ãev añ^s, X) | s ∈ D P}

F(a → P) = {(ãñ,X) | ev a ∉ X}} ∪ {(ãev añ^s,X) | (s,X) ∈ F P}

The proof requires Rep_inverse and hence a proof of is_process for the prefix ope-
rator. We follow this technique to develop conservatively F and D for all operators.

4 . 3 The Semantics of the CSP-Operators

In the sequel, we will omit the technical definitions like Prefix_def and start with a
listing of the derived theorems for the process projections, bearing in mind that they
already subsume the proof of process well-formedness.

D(Bot) = {d | front-tick-free d} (*)

F(Bot) = {(s,X) | front-tick-free s} (*)

D(Skip) = {}

F(Skip) = {(ãñ,X) | √ ∉ X} ∪ {(ã√ñ,X)}

D(Stop) = {}

F(Stop) = {(ãñ,X)}

D(px:A→P x)= {(ãev añ^s, X) | a ∈ A ∧ s ∈ D P}

F(px:A→P x)= {(ãñ,X) | X ∩ ev A = {}}

∪ {(ãev añ^s,X) | a ∈ A ∧ (s,X) ∈ F P}

D(P ; Q) = D P ∪ {s ^ t | s^ã√ñ ∈ traces(F P) ∧ t ∈ D Q} (*)

F(P ; Q) = {(s,X) | tick-free(s) ∧ (s, X ∪{ √}) ∈ F P}

∪ {(s^t,X) | (s^ã√ñ,{}) ∈ F P ∧ (t,X) ∈ F Q}

∪ {(s,X) | s ∈ D(P;Q)} (*)

D(P é Q) = D P ∪ D Q

F(P é Q) = F P ∪ F Q

D(P p Q) = D P ∪ D Q

F(P p Q) = {(ãñ,X) | (ãñ,X) ∈ F P ∩ F Q}

∪ {(s,X) | s ≠ ãñ ∧ (s,X) ∈ F P ∪ F Q}

∪ {(ãñ,X) | ãñ ∈ D P ∪ D Q}

D (P \ A) = {s | ∃ t u.front-tick-free u ∧ s=(hide t(ev A))^u ∧
(t ∈ D P ∧ (u = ãñ ∨ tick-free t) ∨
(∃ M. M ∉ F {x.True} ∧ t ∈ M ∧
(∀ w∈M ,w'∈M.t≤w ∧ (w≤w' ∨ w'≤w)) ∧
(∀ w ∈ M. hide w (ev A) = hide t (ev A) ∧

 w ∈ traces(F P))))} (*)

F (P \ A) = {(s, X) | ∃ t. s = hide t (ev A) ∧
(t, X ∪ ev A) ∈ F P}

∪ {(s, X) | s ∈ D (P\A) } (*)

D(P [|A |] Q) = {s | ∃ t u r w. front-tick-free w ∧

(tick-free r ∨ w=ãñ) ∧ s = r^w ∧
r inter((t,u),(ev A) ∪ {√ }) ∧
(t ∈ D P ∧ u ∈ traces(F Q) ∨

 t ∈ D Q ∧ u ∈ traces(F P))} (*)

F(P [|A |] Q) = {(s,R) | ∃ t u X Y. (t,X) ∈ F P ∧ (u,Y) ∈ F Q ∧

s inter ((t,u), (ev A) ∪ {√}) ∧
R=((X∪Y) ∩ ((ev A) ∪ {√})) ∪ X ∩ Y}

∪ {(s,R) | s ∈ D(P [|A |] Q)} (*)

hide t A yields the trace obtained from t when concealing all events contained in A.
The expression r inter ((t,u),A) means that r is obtained from t and u by synchro-
nising their events which are contained in A and interleaving those which are not.

We adopt the more recent concept of the parallel interleave operator P[|A |]Q from
the CSP-literature and define the parallel operator and the interleave operator as special
cases:

P ||| Q ≡ P[| {} |] Q P || Q ≡ P [|{x | True}|] Q

4 . 4 The Generic Theory of Fixpoints

The keystone of any denotational semantics is its fixpoint theory that gives semantics
to systems of (mutual) recursive equations. Meanwhile, many embeddings of denota-
tional constructions in HOL-Systems have been described in the literature; in the Isa-
belle/HOL world alone, there is HOLCF [Reg 94]. However, HOLCF is a logic of
continuous functions, while the fixpoint-theory is only a very small part of it. In
contrast to HOLCF, we aim at a more lightweight approach that is parameterized
(generic) with the underlying domain-theory (here: processes). Beyond the advantage
of a separation of concerns, this paves the way for the reuse of this theory in other
problem domains and for a future combination of CSP with pure functional program-
ming. It is also possible with little effort to exchange the fixpoint-theory by another,
for example, based on metric spaces via Banach-fixpoints.

Our formalisation of fixpoint theory in HOL will use a particular concept of Isa-
belle/HOL, namely polymorphism with (axiomatic) type classes. This is a constraint
on a type variable (similar to the functional programming language Haskell) restric-
ting it to the class of types fulfilling certain syntactic and semantic requirements.

For example, the type class α :: po (partial ordering) can restrict the class of all
types α to those for which there is a symbol ≤ : α × α → bool that enjoy the pro-
perty x ≤ x (refl_ord), x ≤ y ∧ y ≤ x ⇒ x = y (antisym_ord) and x ≤ y ∧ y
≤ z ⇒ x ≤ z (trans_ord). Showing that a particular type (say nat with its standard
ordering ≤) is an instance of this type-class, i.e. nat::po is a legal type assertion, re-
quires the proof of the above properties follow from the definition of ≤ : nat × nat →
bool. Once this proof has been done while establishing the instance judgement,
Isabelle can use this semantic information during static type checking.

We apply this construction to the class cpo that is an extension of po. It requires
the symbol : α::cpo and the semantic properties ≤ x (least) and directed X ⇒
X≠{} ∧ ∃b. X <<| b (complete). Here, directed : (a::po) set → bool and "is least
upper bound" _<<|_:(a::po)set → a → bool are defined in the usual way for the
class of partial orderings, together with lub : (a::po)set → α defined as lub S ≡
εx. S <<| x. For the class of cpo's, the crucial notions for continuity cont : (α::cpo
→ β::cpo) → bool and the fixpoint operator fix : (α::cpo → α) → α are defined
in the usual way.

From the definition of continuity it is easy to show several proof-rules like
cont(λx.x) (cont_id) and cont(λx.c) (cont_const_fun), stating the identity or
any constant function to be continuous.

The first key result of the fixpoint theory is the proof of the fixpoint theorem:

cont f ⇒ fix f = f(fix f)

from the definition of fix f ≡ lub(i∈N
∪

 fi). The second key result is the fixpoint

induction theorem, that can be used as general proof principle (see chapter 5).

A third result consists in the fact that the definitions x ≤ y ≡ fst x ≤ fst y ∧
snd x ≤ snd y and ≡ (,) extend cpo's to product cpo's. From these definition
the instance judgement for the type constructor "×" itself can be proved:

instance "×" : (cpo,cpo)cpo

On this basis Isabelle's parser can parse mutual recursive definitions of the scheme:

letrec x1 = E1(x1,...,xn)

. . .

xn = En(x1,...,xn)

in F(x1,...,xn)

as let(x1 ,...,xn)=fix λ (x1 ,...,xn).(E1(x1 ,...,xn),...,En(x1 ,...,xn)) in F(x1 ,...,xn) .
Note that the necessary inference that (x1,...,xn) forms a cpo is done by Isabelles
type inference and not by tactical theorem proving.

Similarly, the usual extension of cpo's to function spaces can be constructed.
This adds arbitrary abstractions to an instance of the fixpoint theory with a concrete
language; for CSP, this means an optional extension to "Higher Order CSP"
allowing the expression of process schemes within this language (similar algorithmic
schemes like map and fold in functional programming languages).

4 . 5 The Process Instance of the Fixpoint Theory

The crucial point of the instantiation is the definition of the process ordering. As al-
ready mentioned, instead of the usual refinement ordering (which is a partial ordering):

P × Q ≡ F P ⊇ F Q ∧ D P ⊇ D Q
we use the more complex process ordering of [Ros 88] since otherwise the operators
will not be continuous in presence of unbounded nondeterminism. A prerequisite is
the definition "refusals after" R: process Σ → trace Σ → P(P (Σ⊕{√})):

R P s ≡ { X | (s,X) ∈ F P}

Then the process ordering is introduced as:

P ≤ Q ≡ D P ⊇ D Q
∧ s ∉ D P ⇒ R P s = R Q s

∧ µ(D P) ⊆ traces F Q
where µ T denotes the set of minimal elements of a set T of finite traces. The diffe-
rence between these orderings is that ≤ orders just approximation, but not non-deter-
minism, i.e.:

Bot ≤ a→Bot ≤ a→a→Bot ...

but:

a→Bot ≤\ a→Bot é b→Bot ≤\ a→Bot é b→Bot é c→Bot ≤\ ...

Note that the chain outlined above is ordered w.r.t. ×, however.

The well-known theorem:

P ≤ Q ⇒ P × Q (ord_imp_ref)

expresses that the process ordering is just a coarser ordering than the refinement
ordering.

The definition of ≤ proves to be an instance of po. With Bot identified with ,
the type α process is proven to form an instance of the type class cpo. As a conse-
quence we inherit all definitions and theorems from the generic fixpoint theory. The
CSP-operator µ is just identified with fix:(process Σ → process Σ) → process Σ.

A quite important consequence of ord_imp_ref is that the fixpoints (which are
known to uniquely exist in the generic fixpoint theory) have a very particular form in
the process-instance:

fix f = Abs_process (i∈N
∩ F(fi Bot), i∈N

∩ D(fi Bot)) (fix_eq_lim_proc)

i.e. if a fixpoint exists w.r.t. ≤, than it coincides with the fixpoint w.r.t. ×.
The most complex part of the entire theory is the proof of continuity for the

CSP-operators. The required properties have the following form:

cont F ⇒ cont (λ x. a → F x) (cont_prefix)
cont F ∧ cont G ⇒ cont (λ x. F x p G x) (cont_ndet)
cont F ∧ cont G ⇒ cont (λ x. F x é G x) (cont_det)

cont F ∧ cont G ⇒ cont (λ x. F x ; G x) (cont_seq)
cont F ∧ cont G ⇒ cont (λ x. F x [|A |] G x) (cont_parint)
cont F ∧ finite A ⇒ cont (λ x. F x \ A) (cont_hide)

. . .

Especially the last two theorems can pass as "highly non-trivial" even by mathema-
tically rigorous standards; as formal proofs, they must be considered as hard. Phrases
like "By Königs lemma follows the existence of finitely many traces of the form ... "
required weeks of intensive work.

The collection of the above theorems (together with cont_id and cont_const_-
fun) is used to instantiate Isabelle's simp_tac procedure (see [Pau 94]), that applies
them in a backward-chaining technique similarly to PROLOG-interpreters. This yields
a tactical program that decides the continuity of arbitrary CSP-expressions with finite
hide-sets as required for the application of the Knaster-Tarski theorem or for the
fixpoint induction.

4 . 6 Laws

From the definitions of the CSP-operators the usual CSP-laws can be derived as
formally proven theorems. Among them there is also the list drawn from [BR 85]:

P p P = P P p Q = Q p P
P p (Q p R) = (P p Q) p R P p (Q é R) = (P p Q) é (P p R)
P é (Q p R) = (P é Q) p (P é R) P p Stop = P

a → (P é Q) = a → P é a → Q a → P p a → Q = a→P é a → Q

P é P = P P é Q = Q é P
P é (Q é R) = (P é Q) é R
P || Q = Q || P P || (Q || R) = (P || Q) || R
P || (Q é R) = P || Q é P || R
a → P || b → Q = Stop if a ≠ b a→P || b → Q = a→(P||Q) if a = b
P || Stop = Stop
P ||| Q = Q ||| P P ||| (Q ||| R) = (P ||| Q) ||| R
P ||| (Q é R) = P ||| Q é P ||| R
a → P ||| b → Q = a → (P ||| b → Q) p b → (a → P ||| Q)
Skip ; P = P Stop ; P = Stop
(a → P); Q = a → (P ; Q) P ; (Q ; R) = (P ; Q) ; R
P ; (Q é R) = (P ; Q) é (P ; R) (Q é R) ; P = (Q ; P) é (R ; P)
P \ {a}\ {a} = P \ {a} P \ {a} \ {b} = P \ {b} \ {a}
(a → P)\{b} = a → P\{b} if a ≠ b (a → P) \ {a} = (P \ {a})
(Q é R) \ A = Q \ A é R \ A

Note that the law P ||| Stop = P (as in [BR 85]) does not hold as a consequence of its
definition based on the parallel interleave operator. Instead, we have:

P|||Stop=P;Stop.

5 Proof Support for CSP

Fixpoint theory comes with a general induction principle called fixpoint induction.
We will see that it can be expressed particularly elegant in HOL. Moreover, it will be
shown that fixpoint induction can be used as proof principle for refinement proofs.

5 . 1 Fixpoint Induction

The idea of this proof principle is to induce a property P over ascending chains in
directed sets. If P is admissible, i.e. if validity of P for all elements of a directed set Y
always implies validity of P for the least upper bound of Y, then the task of proving
a property P for a fixpoint fix f reduces to prove P for all its approximations.

Admissibility is a second order concept and can not be represented inside a first-
order logic. In the days of the late Edinburgh LCF-prover, the task was resolved by
built-in syntactical checks over predicates, the principles of which had been worked
out by meta-theoretic reasoning. These checks were a constant source of errors and an-
noyance since they inherently conflicted with the overall design goal to keep the core
of a theorem-prover small and simple.

o

o

o

o

o

o

o

o

o

x

xa

×

f

g

Y

f''Y

g''Y

In HOL admissibility adm: (α::cpo → bool) → bool is just an ordinary predi-
cate (to our knowledge, the idea of an object-logical representation of admissibility is
due to [Reg 94]) defined by:

adm P ≡ ∀Y. directed Y ⇒ (∀x : Y. P x) ⇒ P(lub Y) (adm_def)

which leads naturally to a list of theorems that implement the reminiscent syntactic
checks in ordinary derived proof-rules inside the logic:

adm (λx.c) (adm_const_fun)
adm P ∧ adm Q ⇒ adm (λx. P x ∧ Q x) (adm_conj)
adm P ∧ adm Q ⇒ adm (λx. P x ∨ Q x) (adm_disj)
cont f ∧ cont g ⇒ adm (λx. f x ≤ g x) (adm_ord)
etc.

Admissibility is used in the fixpoint induction principle in the following way:

|[cont f ∧ adm P ∧ (∀ x. P x ⇒ P(f x)) |] ⇒ P (fix f) (f ix_ind)

The crucial question arises, if the refinement ordering is also admissible. This is vital
for the applicability of fixpoint induction for the highly desirable refinement proofs.
To our knowledge, this question has not been risen so far in the literature.

Of course, such a property cannot be proven in the generic fixpoint theory (as all
theorems above) but only in the process instance.

Proposition: The refinement ordering is admissible, i.e.

 cont f ∧ cont g ⇒ adm (λx. f x × g x) (adm_ref_ord)

Proof-Sketch: Let f and g be continuous, Y be directed and let
(∀x:Y. f x × g x) hold. Let f''Y and g''Y denote the image sets
of Y w.r.t. f and g. Then the figure aside gives an overview over the
situation.

Here x and xa denote the lub's w.r.t. ≤. As a consequence of
ord_imp_ref and of transitivity of ×, both x and xa must be upper
bounds w.r.t. × for f''Y. The question arises if they are also related
via ×. The answer is positive as a consequence of fix_eq_lim_proc
and the definition of ×, i.e. x is also least upper bound w.r.t. ×.

This fact gives us that living with two orders in CSP (as a price for unbounded
nondeterminism) is perhaps inelegant and uncomfortable, but perfectly possible.

5 . 2 Take Lemmas

Fixpoint induction proofs are usually quite ingenious proofs. In this section we will
discuss a more specialised proof-scheme that is more amenable to automated
reasoning. This principle will also shed some light on the potential of model-chec-
king techniques (seen from the perspective of symbolic reasoning).

The principle of take lemmas is enclosed in the take operator _↓_ : process Σ →
nat → process Σ, that cuts a behaviour of a process up to a depth n, for example:

fix (λx. a → x) ↓ 1 = a → Bot.
The definition of this operator along the usual lines yields the characterising
theorems:

F(P ↓ n) = F P ∪ { (s, X) | s ∈ D(P ↓ n)}

D(P ↓ n) = D P ∪ { s ^ t | |s|=n ∧ tick-free s ∧ front-tick-free(t) ∧ s ∈ traces P}

From there the following cutting-rules are derived:

P ↓ 0 = Bot (a → P) ↓ n = a → (P ↓ n-1)
(Q é R) ↓ n = (Q ↓ n é R ↓ n)
...

The principal characteristic of this operator is that it is monotone w.r.t. ≤:

n ≤ m ⇒ P↓n ≤ P↓m
This fact allows us to specialise the fixpoint-induction to the ≤-take-lemma:

∀m ((∀n. n < m ∧ P↓n × Q↓n) ⇒ P↓m × Q↓m) ⇒ P × Q
Note the strong similarity of this rule to Noetherian induction. Using this take-
lemma, we can perform the following backward-proof example:

fix(λx. a → x) × fix(λx. a → x é λx. b → x)
⇐ { by ≤-take-lemma,∀-intro, ⇒-intro}

|[∀n. n < m ∧ fix(λx. a → x)↓n × fix(λx. a → x é λx. b → x)↓n]| ⇒
fix(λx. a → x)↓m × fix(λx. a → x é λx. b → x)↓m

⇐ { by knaster-tarski}
|[...]| ⇒ (a → fix(...))↓m × (a → fix(...) é b → fix(...))↓m

⇐ { by cutting rules}
|[...]| ⇒ a →(fix(...)↓m-1) × a →(fix(...)↓m-1) é b →(fix(...)↓m-1)

⇐ { by refinement projection left}
|[...]| ⇒ a →(fix(...)↓m-1) × a →(fix(...)↓m-1)

⇐ { by refinement monotonicity}
|[∀n. n < m ∧ fix(...)↓n × fix(...)↓n]| ⇒ fix(...)↓m-1 × fix(...)↓m-1

⇐ { by arithmetic and assumption}
True

Even without knowing anything about tactical programming in Isabelle, it is not hard
to see how this proof-technique can be mechanised. The essential difficulties are to
unfold fix-terms only in a controlled way, to "drive inside" the take-operator
occurrences while decreasing their offsets and to control the necessary backtracking for
refinement projection left rsp. refinement projection right.

The technique resembles very much the usual graph-exploration techniques in la-
belled transition diagrams (as implemented in FDR). The nodes in the graph corres-
pond to equivalence-classes on take-terms, the edges applications of the refinement
monotonicity. If problematic pathological cases were avoided (so-called non-contrac-
ting bodies of fix like fix(λx.x)), and if graph-regularity can be assured, this tactical
program will be a (proven correct) decision procedure.

6 Example

The following example is drawn from [For 95], pp. 5. It specifies a process COPY
that behaves like a one place buffer. Then an implementation using a separate sender
SEND and receiver processes REC, communicating via a channel mid and an acknow-
ledgement ack. Instead of using model-checking for a known, finite alphabet of
events, we will prove via fixpoint induction for arbitrary alphabets that the
implementation refines the specification. Note, however, that the alphabets must still

be finite because of the hiding operator in SYSTEM, which is known to be
noncontinuous for infinite alphabets (see [BR 86]).

On the top-level of our CSP theory in Isabelle, new syntax for channels has been
introduced. Hence writing c!a→P is represented by (c,a)→P and receiving c?x→P
x is mapped to an appropriate representation with multi-prefixes.

Our can be represented in an Isabelle theory by introducing a data type for all
involved channels. This can be done in an ML-like definition:

datatype channel = left | right | mid | ack

The process COPY : process (channel × Σ) is defined as follows:

COPY ≡ (letrec COPY = left?x → right!x → COPY in COPY (COPY_def)

The definition of the implementation reads as follows:

SYSTEM ≡ (letrec SEND = left?x → mid!x → ack?y → SEND;
REC = mid?x → right!x → ack!x → REC

in SEND [| SYN |] REC) \ SYN) (SYSTEM_def)

where SYN ≡ {x | fst x = mid ∨ fst x = ack}.

Now we can state the desired proof-goal COPY × SYSTEM (under premise P : finite
SYN) with COPY acting as specification of the behaviour of SYSTEM.

In the following presentation of the backward-proof, we suppress the required
proofs of continuity (which were eliminated by an appropriate tactic). For conve-
nience, we introduce G as abbreviation for the often re-occurring term:

(λu. (left?x→mid!x→ack?y→ fst u, mid?x→ right!x→ack!x→snd u))

Then, the main steps of the refinement proof are:

COPY × SYSTEM

⇐ {by COPY_def, SYSTEM_def, fix_ind, adm_ref_ord }

1) Fixpoint induction base:
Bot × SYSTEM

⇐ {by Bot × X }
True

2) Fixpoint induction step:
|[x × (fst (fix G) [| SYN |] snd (fix G)) \ SYN]| ⇒

left?xa → right!xa → x
×

(fst (fix G) [| SYN |] snd (fix G)) \ SYN

⇐ {by knaster_tarski over both fix-terms, fst-snd-simplification}
|[...]| ⇒

left ? xa → right ! xa → x
×

(left?x → mid!x → ack?y → fst (fix G)
[| SYN |]
 mid?x → right!x → ack!x → snd (fix G)) \ SYN

⇐ {by distributive laws of the hiding operator, the
 parallel interleave operator and the Mprefix operator}
|[...]| ⇒

left?xa → right!xa → x
×

left?x → right!x→ ((fst(fix G)|]SYN[|snd(fix G)\SYN)
⇐ {by monotonicity of multiprefix operator w.r.t refinement

 order × and by assumption}
True

The premise P was only used in the proof of admissibility, when applying
adm_ref_ord. A careful analysis of its proof reveals that it can be strengthened to
cont f ∧ mono g ⇒ adm (λx. f x × g x), while on the other hand a proof of
monotonicity for the hide operator with arbitrary sets seems feasible. This seems to
suggest that at least the class of typical refinements fix f × (fix g)\A (provided that
f and g continuous) with one outermost hiding operator hiding away an arbitrary
internal communication channel introduced by the refinement step can be handled also
in the infinite case.

7 Conclusion

We have presented a corrected, shallow embedding of CSP into higher-order logic that
nevertheless preserves the algebraic properties of CSP for which we have formal,
machine-checked proofs. This embedding forms an implementation of a "CSP
Workbench" that allows interactive theorem proving in CSP-specifications with infi-
nite alphabet (complementary to the FDR-tool that allows automatic proofs on spe-
cialised, finite CSP-specifications). The collection of theories has been converted di-
rectly by Isabelle into a "textbook on CSP theory" available under "http://www.
informatik.uni-bremen.de/~bu/isa_doc/CSP/doc/html/index.html".

Some remarks should be given on the amount of verification work. The theory
presented so far required one man year (excluding a first attempt of five man months
invested in a model much closer to [Hoa 85] that turned out to be infeasible). This
effort could probably have been reduced by better expert advice, since our major
problems came from wrong theoretic foundations, gaps in proofs etc. and not from
the technicalities of "embedding" or proving. Although the effort still may be quali-
fied as considerable, we see a need for more machine assisted verification work, since
there is a tendency to dilute the formal core of a research programme, especially a
successful one. In the meantime there are so many different variants of CSP, that they
are very likely to be incompatible. Due to the high publication pressure, authors tend
to modify the definitions according to their needs and cite the proofs from elsewhere
("proof is done analogously to [XY ??]"). In such a situation, research peers can shift
more research effort to canonical theory representations that were verified by machine
assistance.

We are not denying that formal proof activity without mathematical intuition is
blind, but we would like to emphasise that intuition tends to delude more often in
foundational theories of computer science that in other mathematical research areas,
perhaps due to their discrete nature and resulting combinatorial complexity. The tre-
atment of tick is an example for a unintuitive, combinatorically complex part of a
complex theory. Obviously, the situation gets even worse if combinations of formal

methods — as envisaged by the UniForM project [Kri+95] — are undertaken. Never-
theless, such combination-methods are particularly desirable since "there is no single
theory for all stages of the development of software [...]. Ideas, concepts, methods and
calculations will have to be drawn from a wide range of theories, and they are going
to have to work together consistently [...]" (again from Hoare's invited lecture at
FME'96).

7 . 1 Future Work

We will investigate to prove the denotational semantics as described in this paper con-
sistent with the operational semantics of FDR [For 95], i.e. we prove consistency
with the formal specification of this tool (we are not planning to "prove FDR" w.r.t.
this specification). As a result, one can embed the FDR-tool as a proof-oracle
(external decision procedure) within Isabelle in order to build up a logically
consistent, combined environment for the reasoning over CSP. This is particularly
attractive, since both tools deliver complementary deduction support: Isabelle/CSP
provides interactive proof support for infinite CSP, while FDR excels at automatic
refinement proofs for specialised, finite CSP specifications. In such an environment,
general requirements-engineering is possible, followed by a sequence of "massage
steps" that make a specification amenable for FDR, concluded by combined proof-
efforts of FDR and Isabelle/CSP.

We are interested in designing a transformational methodology in CSP. This
means that a collection of "transformation rules" in the sense of [KSW 96a] should be
designed that allow the construction of a CSP-process by identifying and refining
design-patterns.

We work at a safe and semantically clean integration of CSP with other industry-
standard specification languages like Z (whose representation in Isabelle/HOL has
been worked out in [KSW 96b]). First conceptual studies for such an integration are
[Fis 97].

Finally we admit that an encapsulation of the Isabelle/CSP embedding in an inte-
grated tool is of crucial importance for further acceptance in industry. Following the
lines of [KSW 96a], a generic user interface has been developed that can be instantia-
ted with LCF-style theorem-prover in order to encapsulate them as a specialised tool
(see [KLMW 96]). An instance of this technology with Isabelle/CSP has been envisa-
ged. Moreover, an even wider goal of UniForM is to provide a workbench to integrate
these tools and to provide them with inter-tool communication, version-management
and development-management. We believe that this technology should ease the con-
struction of powerful formal methods tools and simplify the technical side of
interchanging information between them.

Acknowledgement. We would like to thank A.W.Roscoe for several hints helping
us to bridge big steps in rigorous mathematical proofs. Prof. Bernd Krieg-Brückner,
Thomas Santen, Sabine Dick, Christoph Lüth and Clemens Fischer read earlier ver-
sions of this paper.

References

[And 86] P.B. Andrews: An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof, Academic Press, 1986.

[BH 95] J. P. Bowen,M. J. Hinchey: Seven more Myths of Formal Methods:
Dispelling Industrial Prejudices, in FME'94: Industrial Benefit of
Formal Methods, proc. 2nd Int. Symposium of Formal Methods
Europe, LNCS 873, Springer Verlag 1994, pp. 105-117.

[BR 85] S.D. Brookes, A.W. Roscoe: An improved failures model for communi-
cating processes. In: S.D.Brookes (ed.): Seminar on Semantics of Con-
currency. LNCS 197, Springer Verlag, pp. 281-305. 1985.

[Cam 91] A.J. Camillieri: A Higher Order Logic Mechanization of the CSP Fai-
lure-Divergence Semantics. G. Birtwistle (ed): IVth Higher Order Work-
shop, Banff 1990. Workshops in Computing, Springer Verlag, 1991.

[Chu 40] A. Church: A formulation of the simple theory of types. Journal of
Symbolic Logic, 5, 1940, pp. 56-68.

[Fis 97] C. Fischer: Combining CSP and Z. Submitted for publication.
[For 95] Formal Systems (Europe) Ltd: Failures-Divergence Refinement: FDR2,

Dec.1995. Preliminary Manual.
[GM 93] M.J.C. Gordon,T.M. Melham: Introduction to HOL: a Theorem Pro-

ving Environment for Higher order Logics, Cambridge Univ. Press,
1993.

[Hoa 85] C.A.R.Hoare: Communication Sequential Processes.Prentice-Hall, 1985
[KLMW96] Kolyang, C. Lüth, T. Meier, B. Wolff: Generic Interfaces for Formal

Development Support Tools. In: Workshop for Verification and Valida-
tion Tools, Bremen. to appear in LNCS.

[Kri +95] B. Krieg-Brückner, J. Peleska, E.-R. Olderog, D. Balzer, A. Baer, :
Uniform Workbench — Universelle Entwicklungsumgebung für formale
Methoden. Technischer Bericht 8/95, Universität Bremen, 1995. See
also the project home-page: http://www.informatik.uni-
bremen.de/~uniform.

[KSW 96a] Kolyang, T. Santen, B. Wolff: Correct and User-Friendly Implementa-
tions of Transformation Systems. Proc. Formal Methods Europe,
Oxford. LNCS 1051, Springer Verlag, 1996.

[KSW 96b] Kolyang, T. Santen, B. Wolff: A structure preserving encoding of Z in
Isabelle/HOL. In J. von Wright, J. Grundy and J. Harrison (eds):
Theorem Proving in Higher/Order Logics — 9th International Con-
ference, LNCS 1125, pp. 283-298, 1996.

[Pau 94] L. C. Paulson: Isabelle - A Generic Theorem Prover. LNCS 828, 1994.
[RB 89] A.W. Roscoe, G. Barett: Unbounded Nondeterminism in CSP. In: M.

Main, A.Melton,M.Mislove,D.Schmidt (eds): 9th International Con-
ference in Mathematical Foundations of Programming Semantics.
LNCS 442,pp. 160-193, 1989.

[Reg 94] F. Regensburger: HOLCF: Eine konservative Einbettung von LCF in
HOL. Phd thesis, Technische Universität München. 1994.

[Ros 88] A.W. Roscoe: An alternative Order for the Failures Model. In: Two
Papers on CSP. Technical Monograph PRG-67, Oxford university
Computer Laboratory, Programming Research Group, July 1988.

[Ros 96] A.W. Roscoe, e-mail communication with the authors.

