Correct Code-Generation
in a Generic Framework

Burkhart Wolff' and Thomas Meyer?

! Institut fiir Informatik, Albert-Ludwigs-Universitit Freiburg
wolff@informatik.uni-freiburg.de
? Bremen Institute of Safe Systems (BISS), FB 3, Universitit Bremen
tm@informatik.uni-bremen.de

Abstract. One major motivation for theorem provers is the development
of verified programs. In particular, synthesis or transformational develop-
ment techniques aim at a formalised conversion of the original specification
to a final formula meeting some notion of executability. We present a frame-
work to describe such notions, a method to formally investigate them and
instantiate it for three executable languages, based on three different forms
of recursion (two denotational and one based on well-founded recursion) and
develop their theory in Isabelle/HOL. These theories serve as a semantic in-
terface for a generic code-generator which is set up for each program notion
with an individual code-scheme for SML.

1 Introduction

This paper is concerned with the combination of specification notations and pro-
gram notions, or more precisely, data-view oriented specification formalisms and
functional programming languages. While many specification formalisms (such as
B, KIV/VSE, but also COQ [3,5,2]) come with a built-in notion of program or
executability, formalisms like CASL, Z or HOL[1, 20, 15] do not. For them, there is
a need to fill the gap to programs and their verification — in fact, our original mo-
tivation for this work has its roots in our interest in generic formal transformational
development and its implementation in the TAS-system [13].

Still, the question arises, why not simply using a specification formalism with a
built-in program notion? We see three major reasons for this: First, there are several
choices in setting up a program notion — why should a general purpose language
like HOL impose just one? Second, with a flexible technique of integrating arbitrary
program notions, one can choose one very close to a particular programming lan-
guage paving the way for the verification of language-specific optimisations. Third,
we are concerned with the correctness of the compilation; in the past, many code-
generators of tools with built-in program notions turned out error-prone, indicating
that the task has been underestimated.

Thus, we are interested in a method to establish and formally investigate concrete
program notions, together with their compilation to code. Our program notions
will have the property that the question “is it a program?” — often deliberately
left to a non-formalised meta-level — is decidable. Since code-generators in formal

development environments serve as a bridge between a theorem prover and the
outside world, it is not completely possible to verify a code-generator inside a logic;
the proof must be extended by meta-logical arguments, which are preferably as
minimal and simple as possible. Finally, we are interested in a technical framework
supporting the method, providing a prototypical evaluator inside the logic and a
code-generator for external code that is intended to produce the same result as
the evaluator. The technique should support datatype and higher-order function
declarations.

We provide a formal and (in its crucial parts) formally provable method for
defining and investigating program notions and such a technical framework for cor-
rect code-generation inside HOL. The choice for HOL — being largely equivalent to
Z (see [18] for details) — is motivated by its greater flexibility to embed other for-
mal methods, such that there is a greater potential for reuse of this work for these
embeddings. In this paper, we will exemplify this framework for three different
program notions and its code-generation for languages (and compilation schemes)
with increasing semantic complexity. The first language is the language of well-
founded recursion Wf without exceptions; this language is particularly interesting
since many library definitions in various HOL-systems can thus be converted into
code yielding implementations for end systems or animations of specifications. The
second language Fiz is a call-by-name functional programming language with (one)
exception — here, the subtle issues between lazy and eager evaluation have to be
covered during the code-generation. Third, we use the relational language Lfp; this
language is designed as an executional fragment of the specification language Z (see
(20}, [12]).

On the technical side, our framework is supported by a generic implementation
in form of an SML functor that allows the reuse of common functionality in code-
generators. As target language, we chose SML. The motivation for this choice is
both conceptual and pragmatic. Conceptually, SML has the advantage of a formally
defined semantics [14] that can be used (although in a massaged form) as a basis
for correctness proofs. Pragmatically it is most compelling to have an SML code-
generator since most HOL implementations are based on SML. In particular, we
picked Isabelle/HOL as our implementation basis.

2 The Conceptual Framework for Correct Code-Generation

2.1 Fundamentals

The following diagram may illustrate the basic concepts of our work in more detail.
Here, with logic we denote the set of terms of our programming or specification
language — in our case, this will be higher-order logic (HOL) including some con-
servative extensions such as library theories or specification language encodings. A
subset of these terms will be abstract programs which again will be a superset of
the abstract values.

The logic is mirrored by the corresponding sets of (concrete) programming lan-
guage terms and its subset of (concrete) values. Both worlds are connected by the

code-generation function convert that is required to be total on the domain of ab-
stract programs and has the term set code as range.

The two relations —+4 and — ¢ represent
the operational semantics of the two languages;

we require that they represent partial functions logic [programming|
from programs to values. We define a program language
notion as a configuration consisting of a con- code
crete set of abstract program terms and abstract convert

value terms, a set of target programs and con- e
crete value terms, the two fixed evaluation re-

lations =4 and — ¢ and the function convert. convert

If all components of one program notion include velues

all components of another, we will say that the

former has a greater coverage than the latter Fig. 1. Basic Concepts

(we owe this terminology to [6]). We will call the

code-generation for a program notion correct if

the above diagram commutes, i.e. iff convert((—a)t) = (= ¢)(convert t). Note that
both — 4 and — ¢ should be undefined for the same t. Provided we have a correct
program notion, we can thus convert an abstract program into code and compute
the value of program terms outside of our theorem prover, which can be significantly
more efficient and should be just the final product of a formal program development
we are interested in.

2.2 Correct Code-Generation: A Critique

There are some fundamental problems with the provability of correctness in the
sense of the previous section. Since code-generators serve as a bridge between a
theorem prover and the outside world, it is not completely possible to verify a
code-generator inside a logic; the proof must be based on meta-logical arguments.
However, we will show how the first principle of LCF-style theorem prover design,
namely the enclosure of extra-logical machinery in a minimal kernel, can be adopted
to the construction of external code in order to increase the trustworthiness of such
a code-generation. We propose two technical design principles to increase trustwor-
thiness of code-generation:

— convert should be implemented as a primitive, one-to-one converter
— from the definition of — 4, a number of theorems should be derived that mirror
the rules of — ¢ (as given in the definition of our language) syntactically.

Of course, this syntactic correspondence of the rules of -4 and —¢ does not
formally guarantee that they are identical because its symbols are interpreted in
different contexts. Moreover, correspondence between — 4 and —¢ does not guar-
antee the correct implementation of —¢ (i.e. compiler correctness with respect to
— ¢ — its specification — is assumed throughout this paper). Still, both design prin-
ciples together force a shift of many compilation oriented activities in the overall
translation into tactic theorem proving based on derived rules and thus into the
safe core of an LCF-style theorem prover.

3 Preliminaries: SML, AbstractSML and Isabelle

Clearly, the direct use of the formal operational semantics of SML described in
[14] would be most convincing for our goal of bridging the gap between a logic
and a programming language. Unfortunately, since SML is a very rich language,
a presentation of the formal semantics is still too complex even if restricted to
the relevant language fragment; this is mostly due to the fact that SML contains
imperative constructs which are out of the scope of this paper. Instead, we use the
more ”vanilla” operational semantics of an eager language following closely [22]. We
consider the task of bridging the gap between "Real-SML” in the sense of [14] and
our language — which we call AbstractSML — as routine.

3.1 Expressions of AbstractSML

The key ingredient of this operational semantics is an inductively defined subset of
all terms, the so called set of canonical forms. The judgment ¢t € C; states that ¢
is a canonical form of type 7:

Ground type: Cine ={...,-2,-1,0,1,2,...} and
b € Croor = {true, false}

Product type: pairs of canonical forms are canonical, i.e. (t1, %) € Cr, s,
ifty € Cr, and & € Cr,

Function type: closed abstractions are canonical forms, i.e.
(fnz=>t)€ Crsn if (fnz=1t):7 — 72 and ¢ closed

We can now give the rules for the evaluation relation of the form
t—cc

where t is a typable term and c¢ is a canonical form, meaning ¢ evaluates to ¢. In
the following, ¢, ¢1, ¢z and c3 range over canonical forms.

c—cc (identity)

h—ca b e
ti op th ¢ c1 Op o (operations)

i —>c true t2 —c 2
IF ¢4 THEN t, ELSE {3 —¢ o (ite-true)

ty =¢ false t3 ¢ co
IF t; THEN ¢, ELSE t; —¢ ¢ (ite-false)

h >cca t2—c c
(t1, t2) = c (c1, €2) (product)

th—cca t2—cc
fSt(tl, tg) —c C1 (fSt)

h—ca ta—cc
snd(ty, t2) = ¢ c2 (snd)

oo Mmz=>t oo tr:=c]—cc
hth—=cc (function)

t1 ¢ 1 tg[.’E = Cl] —c C
LETz=t IN & —¢c ¢ (let)

RECy. (fnz = ...z, = t) ¢
fnz = .. .2 t[y:=RECy. (fnz = ...z, = t)] (rec)

With these rules, we also implicitly introduce the syntax of our target language.

3.2 Declarations in AbstractSML

In order to scale up to larger units, a programming language comprises mechanisms
to extend the set of initially defined operator symbols, also called the basic envi-
ronment, by user defined ones. We will make this more precise and formally define
an environment I' as a set of type judgments x::7 assigning to an identifier z a
type 7. For AbstractSML, the base environment Iy comprises judgments such as
—2 i ant, true 2 bool or + :: int x int — int. A term t conforms to I, if all free
identifiers in ¢ are declared in I" and if ¢ is typable. The effect of a declaration:

VAL z =1t (ValDec)

is to extend the implicit environment I’ (on which we make the assumption that
t must conform to I' and therefore have some type 7) to the environment I =
I'\{z :: _}U{z :: 7}. Moreover, the evaluation relation — ¢ is extended by the rule:

t—cc
T —ccC (Unfold)

For datatypes, we proceed analogously. The declaration
DATATYPE s =con; =7 | ... | cony, =7y (TypeDecl)

produces the new environment I = (I'\{con; :: _}) U {con; :: 7;}. For a legal
datatype declaration, we assume s to be a fresh type and the 7; to have either the
type s or 7; = s. Moreover, I'" will be extended by an additional constant symbol
CASE, (case distinction) for which the evaluation relation is extended by rules of
the following scheme:

fi—cc
CASE; con; fi...fp 2¢c ¢ (CaseMatchCon)

t—=occa fit—coce
CASE; (con; t) fi...fn =c €2 (CaseMatchFun)

Note that we also introduce a new set of canonical forms C;.

This concludes the definition of the ”dynamic” part of our target language Ab-
stractSML. From here, we can already foresee the major technical requirements for
our code-generator: It must be

— able to deduce the underlying datatypes from a sequence of input theorems

— find a sequence of the input theorems that corresponds to a series of declarations

— able to convert each of the input theorems to declarations, i.e. check that the
expressions on the right hand side of the declaration are indeed an AbstractSML
expression.

Below, we turn to the logical environment (implemented in SML) in which our
programming languages will be represented and in which the non-trivial conversion
into code will be performed.

3.3 Isabelle

Isabelle [10] is a generic theorem prover that supports a number of logics, among
them first-order logic (FOL), Zermelo-Fr”ankel set theory (ZF), constructive type
theory (CTT), the Logic of Computable Functions (LCF), and others. We only use
its set-up for higher order logic (HOL). Isabelle supports natural deduction style.
Its principal inference techniques are resolution (based on higher-order unification)
and term-rewriting. Isabelle provides syntax for hierarchical theories (containing
signatures and axioms).

Isabelle belongs to the family of LCF-style theorem provers. This essentially
means that the abstract data type "thm” (protected by the SML type discipline)
contains all the formulas accepted by Isabelle as theorems. thm-objects can only be
constructed via operations of the logical kernel of Isabelle. This architecture allows
for user-programmed extensions of Isabelle without corrupting the logical kernel.

In the sequel, all Isabelle input and output will be denoted in this font through-
out this paper. For the mathematical symbols V, 3, A and V we use the Isabelle
notations !, ?, & and |.

3.4 Higher Order Logic (HOL)

In this section, we will give a short overview of the concepts and the syntax. Our
logical language HOL goes back to [7]; a more recent presentation is [4]. HOL is
a classical logic with equality formed over the usual logical connectives -, A, V, =
and = for negation, conjunction, disjunction, implication and equality. It is based
on total functions denoted by A-abstractions like A z.z. Function application is de-
noted by f a. Every term in the logic must be typed, in order to avoid Russels
paradox. Isabelle’s type discipline incorporates polymorphism with type-classes (as
in Haskell). HOL extends predicate calculus in that universal and existential quan-
tification Vz.P z rsp. 3z.P x can range over functions.

Most HOL-systems were used in a particular methodology: Since adding arbi-
trary axioms to a basic logical system like HOL is extremely untrustworthy, these
systems support particular schemes of axioms — so called conservative extensions —
that ensure consistency when building up larger libraries (see [15]). Following com-
mon usage, we will use the term HOL-theory also for all its conservative extensions.

4

The Generic Framework

In this section, we will explain the overall structure of our generic coding scheme in
more detail. The technical aspects of our generic coder are discussed later in section
5. As a starting point,we will refine the diagram of Fig. 1 and develop a separation

of our coding scheme into different phases.
In accordance to Fig. 1, we subdivide ab-
stract programs into two languages (X) Lang

and (X)AbstractSML — here, X stands as optimiseLang[|ogic sstransiate
a placeholder for concrete program notions C objectify
(such as Wf, Fiz, Lfp to be discussed later). " <X>Lang N

(X)Lang is the language that is the source
of the coding process. Since we instantiate
our target language with SML throughout optimiseSML
this paper, we use (X)AbstractSML, which
is the semantic interface to our target lan-
guage SML. The abstract operational se-
mantics —¢ must only be established for
(X)AbstractSML. In such a setting, the cod-

convert

ing process can now be described as a se- Fig. 2. The redefined coding scheme

quence of six compilation phases. Except for
the last one, the phase convert already dis-

cussed in the introduction, they consist of tactics based on derived rules. In more

detail, the five phases are:

— objectify attempts to convert an arbitrary term of our logic in a term of our pro-

gramming language. This phase is the key-ingredient for increasing the coverage
of the coder.

optimiseLang is used for language-dependent compiler optimisations, e.g. data
type dependent rules like the associativity of concatenation of lists, which im-
proves the efficiency of the evaluation since (a @ b) @ c is usually more ex-
pensive than a @ (b @ c).

ss-translate is a source-to-source translation preparing the next phase called
translate. We allow ss-translate to produce terms that contain language con-
structs belonging to the (X)AbstractSML-language.

translate maps (impure) (X)Lang-terms to (X) AbstractSML.

optimiseSML can be used as code-optimisation on the AbstractSML-level.

In the next chapter, we will describe three instantiations of our generic scheme

mapping X to Wf, Fiz and Lfp, representing a program notion for total functions,
functional programming and logic programs.

5

The Instances WF, FIX and LFP

We are now ready for our main task, the representation of three different program-
ming languages in HOL, their proof of correctness in our sense, and the development
of derived rules and tactics that perform the major part of the coding.

We will demonstrate our technique in most detail for the first language, which
is also the simplest one. In the theory WFLang, besides the syntax, we define the
semantics of the operators and language constructs of our language in terms of HOL.
Subsequently, in the theory WFSML, the semantics of language constructs of SML in
terms of WFLang. Due to the deliberate simplicity of WF (that is designed to form a
reasonable subset of HOL-formulas that should be converted into SML-code), these
two language mappings are mostly trivial, resulting in a correctness proof (i.e. a
derivation of — ¢ that is extremely simple).

The language mappings in the subsequent instances will contain more and more
complexity demonstrating the flexibility of our concepts. FIX will introduce ex-
ception and recursion partiality into the language, while LFP extends it by some
controlled form of backtracking. Intuitively speaking, the ”distance” expressed in
the mapping between (X)Lang and (X)SML grows during the sequence of these
instantiations.

5.1 The instance WF

The theory WFLang is based on HOL-theories providing basic semantics for boolean
and numerical operators:

WFLang = WF + ... +

consts

(* library of basic operations *)
TRUE :: bool

ZERO :: nat

Analogously, we declare the operator symbols FALSE, NOT, AND, OR, ONE, TWO, SUC,
LEQ, etc. These constant symbols represent the sets of canonical forms Cy,, and
Chqt- Note that the constant € x.True (also called arbitrary) cannot be included
in the set of canonical forms since the Hilbert-Operator is interpreted by definition
differently in any model of an HOL-formula; correct code, however, will have to
produce values that exist in all models. On top of the denotations for canonical
forms, we will now define the operators of our language such as:

LESS :: [nat,nat] -> bool
LESS ab=a<b

As a consequence of the fact that arbitrary is not a canonical form, we must rule
out partial operators like div or hd (on lists) from the language WF. A special case
for the operators is the equality, which is declared polymorphically for all canonical
terms, but has to be constrained to a class EQ of base types and cartesian products
over them, ruling out the function types, for which — ¢ cannot be used to compute
EQ and is therefore also ruled out in SML:

EQ :: [’a:EQ,’a] —-> bool

The definition of these constructs one-to-one corresponds to the HOL operations,
as a consequence of the design of WF:

TRUE_def "TRUE = True"

ZERO_def "ZERD

Oll

Next, we define the basic datatypes unit and pair: the operators UNIT, PAIR, FST,
and SND that were trivially represented by their HOL-counterparts (), (_,_), fst
and snd respectively.

Now may now turn to the core of WFLang, i.e. the main language constructs.
Again, the constant definitions are straight-forward mappings to standard opera-
tions:

~! :: (Pa=>’b) => ’a =>"b

f ! x == f x
Lam :: (Pa => ’b) => (’a => ’b)
Lam f ==
IF :: [bool, ’a, ’al] => ’a
(IF a THEN bl ELSE b2) == (if a then bl else b2)
LET :: [’a, ’a => ’b] => ’b
LET s £ =f “! s
REC i (Ca * ’a)set => ((Pa=>’b) => (’a=>’b)) => ’a => ’b
REC(m) (f) == wfrec m £

The characterising feature of each program notion is the notion of recursion, i.e.
some instance of the general scheme:

YF = F(YF) , where F must fulfill some requirement 4

The ”workhorse” for most definitions of total functions in the library of HOL is the
well-founded recursion. Even the definitions of primitive recursive functions such as
concatenation on lists is internally mapped to well-founded recursion. Thus, it is
suggestive to define REC,,, (parameterized by a well-founded ordering m) in WFLang
by

wfrec :: (’a * ’a)set => ((’a=>’b) => (Pa=>’b)) => ’a => b

developed in the theory WF in the library in Isabelle/HOL. The main result of the
theory of well-founded recursion is:

wf(r) = wfrec r Ha =H (cut (wfrec r h) r a) a [wfrec]

where the predicate wf : (’a * ’a)set —> bool states the well-foundedness of
a relation and where cut f r x constructs a function that is identical to £ for all
smaller values than x w.r.t. the ordering r and undefined (i.e. ex.True) for all larger
values.

wfrec is already close to our desired recursion scheme. The missing link is the
concept of coherence:

'a. H (cut (wfrec r H) r a) a = H (wfrec r H) a

which essentially states that the body H uses the function wfrec r H (hence the
recursive "call”) always with smaller arguments. Well-foundedness and coherence to-
gether establish the desired fixpoint property for wfrec along [wfrec]. The problem
with our representation of REC,, is that we need well-foundedness and coherence,
i.e. additional semantic information for each occurance of REC,, in an abstract
program assuring that the fixpoint property holds — this problem will reappear in
different form in our other program notions. This leads to the definition of a kind of
SML-like statement that contains the code plus the semantic information necessary
to establish the fixpoint property of the recursor:

WFProg :: [(a * ’a)set, ’c, ((’a => ’b) => (’a => ’b)),
(’a => ’b) => ’c] => bool
WFProg m f F E == (f = (let x = (wfrec m f) in (E x)
& (wf m)
& ('a. cut(wfrec m F) m a = (wfrec m F))))

The following syntactic sugar paraphrases this complex definition as an SML-like
statement annotated with semantic information:

val £ = let fun F in E measure m

This completes the definition of WFLang. We turn now to our semantic interface to
SML, called WFSML, which is defined as a theory extension of WFLang.

WFSML = WFLang +

and provides definitions of operators TRUE’, FALSE’, NOT’, ..., ZERQ’, ONE’, ...,
LESS’, ..., UNIT’, PAIR’, ..., all defined identical to their unprimed counterparts
from WFLang. Here, we only show the definitions for the core language constructs:

~ :: (Pa=>’b) => ’a =>"’b
f "1 x==1£f "!x
Lam’ :: (Pa => ’b) = (’a => ’b)
Lam’ f ==
IF’ :: [bool, ’a, ’al] => ’a
(IF’ a THEN’ bl ELSE’ b2) == (IF a THEN bl ELSE b2)
LET’ :: [’a, ’a =>’b] => 'b
LET’ s £ == LET s £
REC’ :: (Pa * ’a)set => ((’a=>’b) => (Pa=>’b)) => ’a => b
REC’ == REC

As a next step, we show the correctness of our language representation for SML,
i.e. that we can derive the operational semantics of AbstractSML rules (in the sense
of chapter 2). First, we define the evaluation relation — 4 by the semantical equality:

WFSML_CT = WFSML +

constdefs eval :: [?a,’a] => bool
eval s t == (s = t)

syntax -A-> :: [’a,’a] => bool

translations s -A->t == eval s t

end

The predicate cf ¢ (c is a canonical form) is simply set to true in WF since we leave
this check to the meta-level. Now we derive the operational semantics:

[l c¢f c1; cf c2; t1 -A-> cl; t2 -A-> c2 |] ==
(LESS’ t1 t2) -A-> (cl < c2)
[l cf c2; t1 -A-> TRUE’; t2 -A-> c2 |] ==
(IF’ t1 THEN’ t2 ELSE’ t3) -A-> c2
[l c¢f c2; t1 -A-> FALSE’; t3 -A-> c2 |] ==
(IF’ t1 THEN’ t2 ELSE’ t3) -A-> c2
[l cf c1; cf c2; t1 -A-> cl1; t2 -A-> c2 |] ==
PAIR’ t1 t2 -A-> (cl1,c2)
[l cf cl; cf c2; t1 -A-> cl; t2 -A-> c2 |] ==
FST’ (PAIR’> t1 t2) -A-> cil
[l c¢f c1; cf c2; t1 -A-> cl; t2 -A-> c2 |] ==
SND’ (PAIR’ t1 t2) -A-> c2
[l cf ¢; cf c2; t1 -A-> (LAM’ x. t x); t2 -A-> c2;
(t(c2)) -A->c |] ==
(t1 ~!1? t2) -A->c
[l ¢f c; cf c1; t1 -A-> c1 ; (t2(cl)) -A-> c |] ==
LET’ t1 (%x. t2 x) -A-> c
[l ' a. cut (wfrecm f) ma = (wfrecm f); wfm |] ==
RECm (% X. (LAM’ x1. £ X x1)) -A-—>
(LAM’> x1. £ (RECm (%X. (LAM’ x1. f X x1))) x1)

and we are home and dry! By syntactical correspondence, we check that our derived
formal rules for — ¢ correspond to the rules — ¢ in chapter 3.1.

The remaining steps are merely technical: First, the code-generator has to be
set up to generate the definitions for the implicit CASE’-rules (cf. section 3.2) and
to generate code for datatypes including the involved recursors. Second, we have to
describe the compilation phases in the sense of chapter 4. For WF, these phases are
fairly trivial — for ss-translate and optimiseSML we use just the identity and for
optimiseLang just a simplification tactic for some set of equations like associativity
on lists. For translate we use a simplification tactic that folds all definitions of
WFSML from right to left. In this setting, the preparational objectify is the most
complex phase. We use it to convert equations from primitive recursive definitions
like the following for the concatenation of lists (drawn from the Isabelle/HOL-
library):

primrec "op Q" list

[l eys =ys
(x#xs)Q@ys = x # (xs @ ys)

into the term of the abstract programming language:

val (op @) = let fun f x ys = CASE x OF
[0 =>ys
| (x #xs) =>x# (£ ! xs ~! ys)
in f measure length

Constructing this representation also requires reasoning over the internal rep-
resentations of datatypes and subterm orderings used in Isabelle/HOL’s datatype
package.

5.2 The instance FIX

The language WF, constrained to total functions, had to rule out values like hd [] or
3 div 0. When admitting partial functions, there is the well-known choice for the
semantics of function application reflecting call-by-value evaluation or call-by-name
evaluation (cf. [22]) . An appropriate semantical framework for tackling these issues
is denotational semantics, which we use as basis for our second program notion FIX.

There are many known formalisations of denotational semantics in HOL-systems.
For Isabelle/HOL, there is most notably HOLCF [17]. Instead, we will use the
generic theory of Scott-cpo’s Fix.thy described in [21]. Both theories have much
in common and could be exchanged in this context with minor effort; we preferred
our own version mostly due to its lightweightness.

In the following, we briefly review Fix.thy and its pivotal definitions. cpo’s are
introduced by a sequence of aziomatic class definitions, i.e. an extension of the
Haskell class system with semantic constraints in Isabelle. For instance, the class of
partial order types order is defined by the statement:

axclass order < ord
le_refl x <= X
le_trans [l x<=y; y<=2z |] => x <=z
le_antisym [| x <= y; y<=x] =>x =7y

After the usual definitions for bottom _L, directed sets, upperbounds, least upper-
bounds etc., the class order is extended to the class cpo. In this class, the predicate
for continuity cont::(’a::cpo -> ’b::cpo) -> bool and the fixpoint operator
fix::(Pa::cpo —> ’a) -> ’a (defined as least upperbound of the directed set of
function iterations) were defined and provide as main result:

cont f => fix f == f (fix f) [knaster-tarskil

which will give semantics to our recursor REC in our program notion FIX defined in
FixLang.thy:

FixProg f F == f = fix F & cont F

Having settled the fundamental questions, we turn now to the basic datatype rep-
resentations bool and nat. In order to embed them into cpo’s, we employ the
well-known lifting technique into flat domains by defining the type constructor:

datatype ’a up = lift ’a | down

After identifying down with L and providing the usual ordering, the fact that each
instance of type-constructor up is of class cpo is made explicit to Isabelle’s type-
system:

instance up :: (term)cpo

Analogously, pairs and function spaces are shown to be instances of cpo provided
that both arguments resp. the last argument of the type-constructors are instances
of cpo. The basic types Bool, Nat and Unit in FixLang were defined by lifting the
underlying corresponding types of the HOL-library via up. The definitions of the
basic operations are straight-forward as strict extensions of the underlying HOL-
operations. In contrast to WF, however, we can define partial functions analogously
to DIV:

constdef DIF :: [Nat, Nat] -> Nat
DIV == strictify(/x::nat. strictify(%y.
if y=0 then UU
else lift(x div y)))

The definition of the language constructs of our functional language FixLang is
also straight-forward in denotational terms of our cpo-theory Fix. As example, we
only show the application, that is directly mapped to the HOL-application since we
already have proven that the standard function space has cpo-structure:

constdef ! :: (a => ’b:i:icpo) -> ’a -> ’b
F ! x ==F x"

At this point, we conclude our presentation of FixLang and turn to the semantical
interface FixSML of our call-by-value target language. Here, a crucial point is an
adequate denotational representation of abstractions that were treated as closures
in the operational semantics. In order to distinguish LAM x. l::’b, that is equal
to the least element in the function space L::’a—’b, from LAM’ x. 1, that is the
closure of the computation yielding L (as in SML) and hence a canonical form or
a value, LAM’ must lift any function (see also [22], pp.188). Thus, it is suggestive to
introduce an own type constructor for the lifted function space —! and define:

FixSML = FixLang +

types (’a,’b) M=y = n(;a => ’b) llp"
constdefs
~ :: [?a=>’b::cpo,’al] => ’b
F "! x == if x = UU then UU

else if F = UU then UU
else (drop F) x
Lam’ :: (Pai:icpo =>’b::cpo) => (’a =>! ’b)
Lam’ £ == lift £

where drop is just the inverse to 1ift. The definitions for IF’, LET’, REC’ etc. are
straight-forward and omitted together with the mappings of the FixLang-operators
to the FixSML-operators, which are just appropriate liftings w.r.t. —!.

The key question for the code-generation in FIX is the translation of the call-
by-name versions of Lam and ~! to their call-by-value counterparts Lam’ and ~!’
respectively (for pairing and projection, the situation is similar). The key for a
solution is the definition of the suspension resp. the forcing functions (see also [9]):

delay :: ’a::cpo => ’a del
delay f == (LAM! x. f)
force :: (Pa::cpo)del => ’a
force f == (£ ~! UNIT)

where ’a del is a type synonym for Unit ->! ’a. Note that delay and force are
already ”pure SML” and can thus be converted easily. These definition leads to the
following derived theorem, that allows the exchange of all lazy applications by eager
ones:

(f °! a) = ((forcify f) ~!’ (delay a)) [lazy2eager]

where forcify is defined by LAM! x. £ (force x)). The translation is possible by
using this rule in all applications in FixLang; however, this technique leads to quite
inefficient code. A remedy to this problem — well known from compiler-construction
[9] — is a strictness-analysis that we mimic in our approach by the following derived
rules:

is_strict £ ==> (f "7 a) = ((1ift f) ~! a)

is_strict (LAM! x. x)

is_strict(%x. UU)

is_strict(strictify f)

is_strict (NOT)

is_strict (SUC)

[l 'a. is_strict £ |] ==> is_strict (Yx. £°! x ~! a)

[l 'a. is_strict (f ~! a) |] ==> is_strict ((lift £f) ~!’ a)
is_strict f ==> is_strict (%x. (IF (£ x) THEN (g x) ELSE (h x)))

where is_strict f is defined by £ L=_1. The first rule of the list above represents
our optimised translation, that requires strictness, while the other rules try to es-
tablish this property (note that the list is incomplete). For all applications, where
this did not succeed, the rule lazy2eager is applied.

We now briefly describe the overall technical organization of the coding in phases:
objectify maps applications, abstractions, and constructs like if_then_else from HOL
to FizLang-terms. optimiseLang and optimiseSML are again set to identity. The
translation from ~! to ~!° (as described above) is a classical source-to-2-translation
and goes to ss-translate. Finally, translate is used to map basic operators from
FixLang to FizSML. A little example may illustrate the steps in more detail:

(¢4 x y. y) (DIV ONE ZERQ) TWO)

| {objectify}
(LAM!x y. y ! (DIV ~! ONE ~! ZERO) ~! TWO)
| {ss_translate}

(LAM!’x. 1ift (LAM!y. y) -1’
delay (1ift(1ift DIV ~!’ ONE) ~!’ ZER0’) ~!’ TWO)

| {translate}
(LAM!’x y. y ~!’ delay (DIV’ ~!’> ONE’ ~!’ ZER0Q’) ~!’ TWO’)

The function %x y. y isstrict in its second, but not in its first argument. Hence,
the evaluation of the first argument must be delayed — which happens to be unde-
fined in this example. For the second argument, no suspension is needed and can
be avoided for efficiency reasons.

Finally, we turn to the question of correctness of this coding scheme. We define
the relation — 4 in FIXSML_CT analogously to WFSML_CT (see previous section) ex-
cept that we define canonical forms cf as "not being 1”. Thus, we consider cases
like DIV ONE ZERO as an ezxception. In FIXSML_CT, we derive all operational rules of
section 5.1. (although they are based for a completely different semantic interpreta-
tion). Additionally, we also have operational rules that cover exceptional behaviour:

[l “cf c1; t1 -A-> c1; t2 -A-> X |] ==> (1 ~!’ t2) -A-> UU
[l “cf c2; t1 -A-> X; t2 -A-> c2 |] ==> (t1 ~!’ t2) -A-> UU

Although these rules do not appear in [22], they can be justified by the ezception
convention (cf. [14], pp. 40) in the SML-standard. With this proof of correctness,
which is still fairly simple in Isabelle/HOL but no longer trivial as in Wf, we
conclude the presentation of the coding scheme for Fix.

5.3 The instance LFP

The language LFP is inspired by the semantic embedding of Z in HOL (see [12])
and previous work on animation tools for Z-specifications (see [6]), [8]). Z is based
on a typed set-theory — as available in HOL — and represents all functions by their
graph, i.e. a set of pairs:

LfpLang = Set + Lfp + EqnSyntax + Arith +
types (’a,’b) "<=>" = (’a*’b) set

LAM :: [’a => ’b] => (’a <=> ’b)
%" :: [Pa<=>’b,’a] => ’b

This results in a formulation of partial functions that is similar to Fiz with respect
to the necessary conversion between call-by-name-semantics in LfpLang to call-by-
value semantics in LfpSML. In the setting of LFP, the recursor REC is based on the
usual least fix-point 1fp::[’a set -> ’a set] -> ’a set enjoying the property:

mono (£) => 1fp(f) = £(1fp(£)) [1fp_Tarski]

which is already established in the Isabelle theory LFP in the library. This is exactly
what we want for our program statements which we define as follows:

LfpProg £f F == f = 1fp F & mono F

Although the semantic foundation — as outlined above — is totally different, the
coding machinery is similar to the one described in FIX. Hence, we will refrain from
a further formal presentation of this program notion and concentrate on the new
aspects here. In this case, there is a new additional basic datatype ’a set, that is
represented by a lazy list ’a seq in AbstractSML and SML (in both languages, ’a
seq can be defined on top of the already introduced language constructs; see [16]).

When implementing a set by a sequence, we require that the sequences must
be duplicate free in order to establish in a simple way evaluation fairness, i.e. any
element of a set will be constructed eventually by the evaluation, provided there
are ”"enough tail selections” into the lazy list. These semantic side conditions has
to be encapsulated similarly to the side-conditions for the recursor in program-
statements. When these side-conditions are fulfilled, it is easy not only to provide a
MAP and FILTER on sequences, but also a UNION as an interleave of two sequences.
The definitions of MAP, FILTER and UNION can be expressed in terms of a program
statement on top of the LfpLang; they do not add extra semantical complexity.
Thus, the set of natural numbers N characterized by 1fp (%X. UNION{ZERO} (MAP
SUC X)) is a program. Moreover, since ZF-expressions like {z : N | even z} can be
seen as an equivalent to a FILTER on N and is consequently also a program. This
turns many definitions in the Z-library, the Mathematical Toolkit into programs,
among them the definition for cartesian products and finite function spaces.

In order to reveal the power of this program notion, we show the example
EightQueens stemming from [11]. In the EightQueens-problem, eight queens must
be placed on a chess board with eight files and eight ranks such that no queen at-
tacks any other, i.e. sits in the same file, rank or diagonal. We use Z-Notation here
in order to keep the presentation compact:

__Lib
up, down : SQUARE — DIAG
Vf:FILE,r : RANK

up(f,?") = T_f
down(f,r)=r+f

__ FightQueens
squares : FILE —» RANK

{squares <1 up, squares <1 down} C SQUARE — DIAG

where FILE and RANK are sets from 1 to 8 and SQUARE is the set of pairs of FILE-
and RANK-positions a queen may sit in. The function definitions for up and down map

to any queen position its up resp. down diagonal number. The set of EightQueen-
solutions is described in the schema FightQuenns: Since SQUARE can be viewed as
a relation, it is possible to require that each concrete solution squares must be a
bijective function —). Moreover, if the functions up and down where constrained to
the positions of a solution squares, they must yield injective functions.

And here is the point: This example of a fairly declarative specification for a
small tricky problem represents a program in LFP. All involved sets (including the
set of bijective functions from FILE to RANK) are representable as combinations of
MAP, FILTER, and UNION, such that the specification above (based on a small library
of LfpLang-programs defining — and < etc.) can be translated into SML-code, that
eventually enumerates the set Queens (patience required!).

6 The Generic Code-Generator

In this chapter we will shortly describe the SML-based implementation of the generic
code-generator. The general idea is to implement the coder as an SML functor.
This functor will be instantiated with three structures that implement our three
programming languages WF, FIX and LFP described in chapter 5. The following
SML signature shows the language dependent interface to the functor:

signature LANGUAGE =

sig
val target : theory; (* semantic interface to SML *)
val lang : theory; (* syntax and semantics of abstract
programming language *)
val objectify : thm -> thm
val optimizeLang : thm -> thm
val ss_translate : thm -> thm
val translate : thm -> thm
val optimizeSML : thm -> thm
val convert : thm -> Absy.absy
end;

Here, target of the Isabelle type theory represents the semantic interface to
SML, i.e. the theory that describes the abstract programming language. The theory
lang represents the source language of the coding process.

The six coding phases described in chapter 4 are implemented by the correspond-
ing functions objectify, optimiselang, ss_translate, translate,
optimiseSML and convert. All these functions get a theorem of the Isabelle datatype
thm that represents a program as argument. Except convert, all functions return
again a theorem. The function convert returns the term of a program in the ab-
stract syntax of SML, where term is the basic Isabelle data structure for terms and
absy the type for the abstract syntax of SML of New Jersey.

The signature also provides functions that get information on datatype declara-
tions based on a arbitrary datatype package. The signature of the functor looks as
follows:

signature CODER =
sig

exception NoCode of string

val coder : string * (thm list) -> ()
end;

This signature provides the main coding function coder. It gets a string rep-
resenting the name of the SML structure to be generated and a list of theorems
that represent the programs to be compiled. There is an exception NoCode that
will be raised if the process of code-generation fails. First, the function coder has
to generate a graph representing the call dependencies of the various programs.
Based on this graph, coder will sort the programs topologically. If any call cycles
are detected the exception NoCode is raised. Then, coder retrieves the datatype
informations and generates the corresponding SML datatypes and recursors. Now
the six coding functions can be called. If the function objectify rejects a program
not to be compilable, again the exception NoCode is raised. Finally, coder generates
the abstract syntax tree of the final program and writes the pretty printed string
to a file.

7 Conclusion

First, we have presented a method to formally investigate the correctness of code-
generation schemes. Second, we have demonstrated its feasibility by instantiating
it for three program notions, ranging from executablility suited for HOL, func-
tional programming and Z. Third, we provide a technical framework for implement-
ing trustworthy code-generators (i.e. in its crucial parts formally proven correct)
based on the set of abstract programs, i.e. the executable sublanguage of HOL,
and AbstractSML, i.e. a semantic interface to the target language. Our technique is
based on a so called shallow embeddings, i-e. no explicit syntax is used to represent
AbstractSML; rather, the semantics is represented via semantic operators directly
embedded in HOL.

We argued that the formal proof of correctness of a code-generation in an abso-
lute sense is impossible — at the very end, extra-logical arguments have to be used
anyway.

By shifting the formalisation of canonical forms partially to the meta-level (in-
cluding appropriate checks on the SML-level in the implementation), it is possible
to stick to shallow embeddings and to make the proofs of correctness substantially
easier. But there is a price to pay: In our approach, the proof of “canonicity” or
normal-formedness is left to extra-logical reasoning. Still, we believe our approach
represents a good compromise in the attempt to minimise the set of extra-logical
assumptions and to base the phases of a code-generation on derived rules controlled
by tactics.

From our experience with the nitty-gritty details of our code-generation schemes,
it is not fully understandable why code-generation is traditionally treated as a side-
issue; bugs in a code-generator are as damaging for the overall correctness than
bugs in the logical engine of a prover. We hope that our technique can contribute

to turn the formal investigation of code schemes used in compilers into a routine
task.

7.1 Related Work

In the literature, there is a large body of papers in compiler verification. Typically,
two explicit abstract syntaxes for the input and output language of the compiler
were defined as data types, then a compiler function connects them. The proof of
correctness is then based on two semantical interpretation functions and their com-
mutability via the compiling function. In contrast to work along this style of repre-
sentation — so called deep embeddings — our work is based on shallow embeddings
for reasons discussed above. Moreover, our work is intended to be a component
of a formal development environment. On the basis of shallow abstract-language
encoding, far more activities can be founded than just compilation — interactive
verification and transformation, for example.

Beyond this classical compiler verification projects, there are attempts to inte-
grate programming- and specification languages. The work of Slind [19] presents a
pure syntactical approach to the representation of programs on the level of the input
of a theorem prover (Isabelle and HOL). The user can define functions in a very
rich and compact functional notation employing powerful pattern-matching, that
is parsed away into an WFREC-style semantic representation when the input-file
is loaded. As a consequence, it is not possible to derive programs during theorem
proving, which was one of our major goals.

In [6], a bridge from code-generation to specification animation is built. Here,
the idea is to represent sets in Z-specifications (corresponding exactly to sets in
HOL) by enumeration functions that produce the elements of a set (animate it) one
by one. In this view, set comprehensions are constructed by powerdomains, such
that the operational view of the animation is deliberately different to the Z standard
semantics.

7.2 Future Work

We will attempt to improve the portability of the code-generator to other SML-
Compilers (such as POLY or Harlekin) and, to a lesser extent, to other SML-based
theorem prover environments like LAMBDA or HOL/HOL. Moreover, our actual
ad-hoc treatment of datatypes should be replaced by a more general mechanism,
possibly better integrated in a future version of Isabelle.

It is worth investigating the increase of genericity with respect to the target
language: It should not be too difficult to develop other converters (or other, more
general intermediate abstract syntaxes) to languages like C++, Java or Haskell;
for the latter, a code-scheme could be conceived supporting some type classes of
Isabelle.

References

o

10.
11.

12.

13.

14.

15.

16.
17.

18.

19.

20.
21.

22.

The common algebraic specification language. http://www.brics.dk/Projects/CoFI/.
The coq project. http://pauillac.inria.fr/coq/biblio-eng.html.

Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

P.B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Stockholm Studies in Philosophy. Academic Press, Stockholm, 1986.
M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. Formal system de-
velopment with kiv. In T. Maibaum, editor, Fundamental Approaches to Software
Engineering., number 1783 in LNCS. Springer, 2000. http://www.informatik.uni-
ulm.de/pm/kiv/tools/index.html.

P.T. Breuer and J.P. Bowen. Towards correct executable semantics for Z. Availiable
online.

A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56— 68, 1940.

W. Grieskamp. A Set-Based Calculus and its Implementation. PhD thesis, Technische
Universitét Berlin, 1999. http://uebb.cs.tu-berlin.de/Wwg/diss.ps.gz.

J. Hatcliff and O. Danvy. Thunks and the lambda calculus. Journal of Functional
Programming, 7:303— 319, 1997.

The Isabelle documentation page. www.informatik.tu-muenchen.de/ nipkow/isabelle.
J. Kacky. The Way of Z - Practical Programming with Formal Methods. Cambridge
University Press, 1997.

Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Isabelle. In
J. von. Wright, J. Grundy, and J. Harrison, editors, Theorem Proving in Higher Order
Logics, number 1125 in LNCS, pages 283 — 298. Springer Verlag, 1996.

C. Liith and B. Wolff. Generic window inference with tas. In Proc. TPHOLs 00, Incs.
Springer — to appear, 2000.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML (revised). MIT
Press, 1997.

M.J.C.Gordon and T.M.Melham. Introduction to HOL: a Theorem Proving Environ-
ment for Higher order Logics. Cambridge University Press, 1993.

L. C. Paulson. ML for the Working Programmer. Cambridge University Press, 1991.
F. Regensburger. HOLCF: FEine konservative Finbettung von LCF in HOL. PhD
thesis, Technische Universitdt Miinchen, 1994.

T. Santen. On the semantic relation of z and hol. In J. Bowen and A. Fett, editors,
Proc. ZUM ’98, number 1493 in Incs, pages 96—115. Springer, 1998.

K. Slind. Function definition in higer order logic. In J. von. Wright, J. Grundy, and
J. Harrison, editors, TPHOLs 96, number 1125 in LNCS. Springer Verlag, 1996.

M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992. 2nd edition.
H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Isabelle/HOL.
In J. Fitzgerald, C.B. Jones, and P. Lucas, editors, Proceedings of the FME ’97 —
Industrial Applications and Strengthened Foundations of Formal Methods, LNCS 1313,
pages 318-337. Springer, Berlin, 1997.

G. Winskel. The Formal Semantics of Programming Languages: An Introduction. MIT
Press, 1993.

