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Abstract. We present a semantic representation of the core concepts of
the specification language Z in higher-order logic. Although it is a
"shallow embedding" like the one presented by Bowen and Gordon, our re-
presentation preserves the structure of a Z specification and avoids
expanding Z schemas. The representation is implemented in the higher-
order logic instance of the generic theorem prover Isabelle. Its parser can
convert the concrete syntax of Z schemas into their semantic representation
and thus spare users from having to deal with the representation explicitly.
Our representation essentially conforms with the latest draft of the Z
standard and may give both a clearer understanding of Z schemas and inspire
the development of proof calculi for Z.

1 Introduction

Implementations of proof support for Z [Spi 92, Nic 95] can roughly be divided into
two categories. In direct implementations, the rules of the logic are directly represen-
ted by functions of the prover's implementation language. Since hundreds of rules are
needed to reason about the mathematical toolkit of Z which defines relations,
functions, data types, etc., these implementations are error-prone and tend to be
difficult to modify. Moreover, they often lack implementations of advanced deduction
techniques like, e.g., higher-order rewriting or resolution.

In contrast to direct implementation, one can choose to semantically embed Z in a
logical framework. An implementation within a "tactical theorem prover" in the tra-
dition of LCF like HOL [GM 93] or Isabelle/HOL [Pau 94] is particularly attractive:
large libraries, e.g. for set theory, that are proven consistent with the kernel logic can
be used to implement and enhance the mathematical toolkit of Z. The machinery of
the Isabelle prover, in particular, supports deriving new rules and allows the
systematic development of proof calculi for Z. Coming with an open system design
going back to Milner, these systems allow for safe user-programmed extensions to
support tedious proof tasks often arising in explicit (predicative) type checking or in
transformational program development over specifications [KSW 96].

1 This work has been supported by the BMBF projects UniForM and ESPRESS.
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1.1 The Challenge

A lot of criticism from other scientific communities on Z is related to the fact that Z
defines itself as a notation on the basis of set theory. The essential vehicle to
structure Z specifications at the level of concrete syntax is called a schema. Schemas
have significantly more syntactic flavour than, for example, the notion of a
"parameterised abstract data type" used in the algebraic specification community
[EM 85].

A purely syntactical understanding of structuring would in fact neither be
satisfying for theoretical nor for practical purposes. It would mean that structured
specifications would have to be expanded (flattened) before any semantic treatment. As
a consequence, the schema calculus and reasoning at the structural level would be
impossible. The resulting formulas would get so large that the advantage of
structuring specifications would disappear at the moment where reduction of complex-
ity is of vital importance— namely when reasoning about specifications.

In our approach, schemas are represented as boolean valued functions. On the
syntactic side, a schema declaration introduces an identifier of a particular class of
types together with a particular signature that is used for parsing and pretty-printing
purposes. On the semantic side, a schema declaration is a constant definition and may
be unfolded during proofs at will. Since schemas are represented as first-class objects
of the object logic, the schema calculus of Z can be represented and structured
reasoning over specifications is possible.

The major contribution of this paper is to clarify the distinction between syntactic
and semantic facets of schemas, at least from a HOL perspective. The practical
consequences lie in the implementation of parsing- and pretty-printing machinery as
well as in proof support at the level of schemas.

1.2 A Z-Journey Through Related Approaches

Since Z represents a particularly attractive goal for an encoding, several attempts to
represent Z in logical frameworks and in particular in higher-order logic have been
undertaken. Before we discuss some of them, let us briefly introduce the concepts of
Z, crucial for such an embedding. We base the paper on the draft standard [Nic 95],
which we will call "The Z Notation" (TZN) hereafter. An alternative would have been
to refer to "The Z Reference Manual" (ZRM) [Spi 92], but we felt it more appropriate
to follow the proposal for a future ISO standard for Z, although it may still evolve.

Central Concepts of Z. The semantics of Z given in TZN is based on
Zermelo-Fränkel set theory (ZF) — which is untyped — but nevertheless Z is a
strongly typed language. Each "given set" of a Z specification is associated with a
primitive type. Type constructors for power-set types, product types, and schema
types correspond to the respective set theoretic constructions. Type correctness with
respect to these types is checked by Z type checkers like fuzz [Spi 92a]. In the
following, we use the term "type" for Z types while "HOL-type" shall refer to types
of higher-order logic. Types are not explicitly denoted in Z specifications. Instead, a
declaration  x : S  is a membership statement interpreted as x ∈ S  that implicitly
declares x to have the — unique — type of the members of S.

The most important structuring concept of Z are schemas, like A, B and C below:
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È_ A _______
® x1 :  S1
® . . . 
® xn :  Sn
Ç________
® P1
® . . . 
® Pm
Ð__________

È_ B _______ È_ C ______
® A ® y : A
® x1 :  T ® c : T
Ç________ Ç________
® true ® Q(y.x1) (y.x2) c
Ð__________ Ð__________

A schema consists of a list of declarations and a list of — semantically conjoined —
predicates which are separated by a horizontal line in the concrete syntax.

A schema may be referenced by its name in subsequent schemas and schema-
expressions. This may be as import like A  in B (the declaration parts semantically
are sets of declarations, hence their order and multiple occurrences are irrelevant — but
S1 and T must have the same type) or as a set like in C. Schemas can also serve as
predicates like in  B ⇒ x1 ∈ S1 ∩ T.  Moreover, it is possible to form new schemas

in expressions of the schema calculus like  A ⇒Β  or  ∃ C• Β  where ⇒ is a schema
connective and ∃ is a schema quantifier. It is important to note that the signature of a
referenced schema is unified with the environment on the basis of lexical identity: in
B, the explicitly declared x1 is identified with the corresponding declaration in A.

Approaches to Mechanising Z. Bowen and Gordon's encoding "Z in HOL"
[BG 94] represents A in the syntax of HOL88 by:

x1 IN S1 /\ ... /\ xn IN Sn /\ P1 /\ ... /\ Pm

where Si is a HOL term denoting a set (in HOL set theory) and P1 ... Pm are
boolean terms constituting the schema's predicate. The Si can have different HOL
types. The mathematical toolkit of Z is represented by appropriate constant
definitions based on HOL's set theory. Schema references as imports and sets, and
schema expressions are represented by expansion into the representation above; hence
their structure is "parsed away". Pretty-printing suppresses the printing of the
expanded schemas — this helps the eye, but not the prover.

In Kraan and Baumann's representation "Z-in-Isabelle" [KB 95] a schema A is
represented as a theory  in Isabelle and the variables in the declaration part as
constants:

AA = Toolkit +
consts x1 ::  "S1_t"

...
xn ::  "Sn_t"

translations
"A" == " [ x1 : S1; ...; xn : Sn | P1 ...Pm]"
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Here the Si_t are the types of the Si which are terms denoting a set in an
independent set-theory  based on an implementation of the sequent calculus LK that is
contained in the Isabelle distribution. The interpretation of [..|..] is similar to the one
of "Z in HOL": all parameters are conjoined. The consequence of making the
signatures of schemas globally visible is that all schema expressions have to be
expanded by the parser.

Compiling schemas to (PVS)-theories, the work of [ES 94] is conceptually rather
close to "Z-in-Isabelle". However, due to the introduction of intermediate constants
for predicative parts, it comes very close to our ideal of a structure preserving
encoding — except that lists of equations have to be generated for variables stemming
from different Z schema declarations (like x1 in B). The compilation cannot support
schema-as-sets. Deduction at the level of the schema-calculus is possible in a very
restricted way only. As a consequence of the lacking re-translation (pretty-printing),
intermediate stages in theorem proving cannot easily be reinterpreted as schemas.

ICL's ProofPower [Jon 92] is a commercial product based on a deep encoding.
Schemas are represented as sets of bindings, and schema operations work on these
sets. More information on this work can be found in [BG 94].

The theorem prover Ergo [RS 93] implements an untyped meta-logic in Prolog
on top of which Zermelo-Fränkel set theory and a theory for Z are encoded. The basic
proof mechanism of Ergo is window inference which is augmented by a tactic
language. Because of the lack of an underlying type system, many "typing" subgoals
arise during proofs. Automatically invoked tactics called elves are used to try and
proof these subgoals. If the elves fail, the user has to tackle these subgoals interac-
tively.

Like Ergo, the implementation of Z in EVES [Saa 92, MS 95] incorporates the
mathematical toolkit of Z and uses theorems about it as rewrite rules. The basic proof
commands of EVES are specialised on syntactic categories of formulas, e.g.
"eliminate a quantifier". Proven theorems are automatically used by more complex
rewriting and simplification procedures.

JigsaW [Mar 94] is a deep encoding done in 2OBJ for W, a logic proposed for Z
[WB 92], which it faithfully encodes. Since there are no meta-variables in 2OBJ,
general theorems about Z cannot be expressed schematically. Proof procedures that
produce proofs for each instance of the schematic theorem have to be coded instead.
Reasoning in a deep encoding in this way reduces performance considerably.
Furthermore, Maharaj has encoded Z in type-theory using LEGO [Mah 90].

There are also direct implementations for dialects of Z, e.g. Balzac [Har 91,
Jor 91] and CADiZ [TH 95] allowing at least for single step inferences. CADiZ is
based on a sequent calculus that is applied using a proof procedure called "Gentzen". It
also incorporates a decision procedure for integers, and is currently being extended
with a tactic language.

1.3 Overview of this Paper

This paper proceeds as follows: TZN identifies the following hierarchy of syntactic
categories: expressions, predicates, schema-expressions, paragraphs and theories. In
Section 2, we present our encoding bottom-up, successively giving a semantic
representation for each of these categories and demonstrate its consequences for Z. In
Section 3, we discuss proof support for our encoding "Z in Isabelle/HOL".
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2 Representing Z in Isabelle/HOL

2.1 Conformance with TZN

For any embedding of a logic, the question of a "faithful encoding of one calculus in
another" has to be raised. The question is moot here, since a Z calculus is not availa-
ble now: the draft definition of a calculus in Appendix F of TZN is very rudimentary.
Our embedding conforms to Z in the sense of TZN (p. 2):

A specification conforms to the standard for the Z notation, if and only if the
formal text is written in accordance with the syntax rules and is well-typed.
A deductive system for Z conforms to the standard, if and only if its rules are
sound with respect to the semantics.

The core of TZN consists of the definition of two partial functions : òτ and : òM
that assign to an element of each syntactic category a type and a value (meaning).
Therefore a calculus conforms to the standard if it reflects the semantic function where
it is defined. The semantic functions are interpreted in an untyped universe of Zerme-
lo-Fränkel set theory. Thus, in the semantic universe, objects like {0, {0}} may occur
that are illegal in the typed set theory of HOL. This does not mean that {0, {0}} is
legal in Z; in fact, one of the major objectives of : òτ  is to rule out such
expressions.

The following figure outlines the semantic situation: Let HOLτ be the set of
HOL-terms of type τ. Moreover, let Zτ denote the set of Z-expressions of a type τ,
and ZF the class of sets in ZF-theory into which all elements of Zτ are mapped.
Since the universe into which Z is interpreted is a ZF-set that is closed under cartesian
products and P ([Nic 95],pp.17) — technically speaking it is a set of ordinality
ωω—, this universe is isomorphic to the set in which HOL is interpreted via the
semantic function described in [GM 93]: the set closed under function construction
A→B and the type bool. The parser discribed in this paper maps all terms in Zτ to
specific ΗOLτ-terms, such that the diagram below commutes up to isomorphism for
all τ.

Sem [GM 93]

[Nic 95]: ò 
Z ZF

HOL

M

Z-Parser �

This meta-proof shows that the encoding of the typed set-theory (for which the
parser is the idenitity) conforms to the draft standard. It is perhaps surprising to disco-
ver that the semantic basis of Z as described in the rather compact mathematical nota-
tion in TZN is just an equivalent to the standard model of the typed λ-calculus. It re-
mains to show how the syntactical, "notational" facet of Z can be handled by our Z-
Parser.
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2.2 Syntactic Issues

Previous Z encodings cope differently with the question of Z syntax. Most of them
try to encompass the LaTeX presentation of the Z syntax, e.g. [BG 94, KB 95].
Since lexical issues are very important for both presentation and readability, we deci-
ded to remain close to the Z syntax as presented in TZN. The draft standard proposes
several ASCII-based representations of Z. The interchange format is based on SGML,
while the email format is primarily conceived as a human readable lightweight inter-
change format, rather than for processing by tools. In the email format the character
% is used to flag special strings, to disambiguate them from others.

Concerning the lexical representation, our encoding supports the email format.
The following table gives an impression of how our representation relates to the va-
rious lexical representations:

Z operator Email Format Z in Isa/HOL Meaning

 ; %; %; compose

o %o %o functional compose
r <: <: domain restrict
Â >-->> >-->> bijection

Below we present the exceptions made necessary in order to cope with HOL types:

Z operator Email Format Z in Isa/HOL Meaning
: : :: type membership
e %e : set containment

Parsing is done at two different levels, interleaved by a conversion phase. For the e-
mail format level, we introduce a theory file Zproto.thy providing the necessary syn-
tax and translation rules. The second level is the semantic representation level. ML-
functions convert the abstract syntax parsed by the e-mail format level to the latter. A
short excerpt of Zproto.thy is shown below:

Zproto = HOL +
syntax
...
Schema::[DeclParts, bool] => Zschema 
"_sch3"::[Name, DeclParts] => Zschema ("+--_/---_/---")
"_sch4"::[Name, DeclParts, Predicate] => Zschema ("+--_/---_/|--_---")
...
"_sch7"::[Name,Formals,DeclParts,Predicate]=>Zschema  ("+--_[_]/---_/|--_---")
translations
"+-- N --- D ---" == " N = Schema D True"
"+-- N --- D  |-- P ---" == "(N = (Schema D P)"
"+-- N [M] --- D  |-- P ---" == "(N = (%M. Schema D P)"

In Isabelle, syntactic sorts like Name or DeclParts can be introduced that are
treated as non-terminals of a grammar (adapted from TZN), while constant declarations
like _sch3 can have the character of a grammar rule, with the pragma ("+--_/--
-_/---") introducing alternative mixfix syntax where the / informs the pretty-
printer where to place optional linebreaks. Translation rules may successively trans-
form such raw-syntax-trees into trees where only symbols occur for which semantic
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information is available. Schema is such a function that takes a declaration and a
predicate and returns a Z schema (of the type Zschema).

According to Zproto.thy, the example of schema A can be presented as follows:

"+-- A --- 
x1:S1;
...;
xn:Sn 

 |-- P1 &
...  & 
Pm 

 ---"

All schemas are parsed according to the signature of Zproto.thy. After computing
its signature, a schema is translated to the semantic level, where the right binders
with the right scope are generated. The pretty-printing will, according to a user-
controlled variable pretty_level, partially or completely perform the retranslation.
In the sequel, we focus on the description of the semantic representation level.

2.3 Expressions

The predicate logic of Z uses the usual connectives and quantifiers with their standard
semantics. We therefore model Z predicates as Boolean functions P::'a => bool. Con-
sequently, we can directly map the logical connectives of Z to the ones provided by
HOL. Representing the set theory of Z is similarly simple, since Z is strongly typed.
In particular, all elements of a set must have a common type. It follows that there is
a universal set for each type that contains all elements of that type. This is why there
is no need to explicitly refer to types in the Z language. From these observations, we
conclude that the set theory of HOL is convenient to represent Z sets. The set con-
structor 'a set models the powerset operator P of Z at the level of types, and the set
operations of Z directly translate to the corresponding operations of HOL.

Primitive Operations and the Mathematical Toolkit. The mathemati-
cal toolkit is introduced as an Isabelle theory ZMathTool. It is a conservative extension
of some theories from the HOL library just as all constants of the toolkit in TZN are
defined by the core language of Z:

ZMathTool = Finite + Integ + Arith +
types ('a,'b) "<=>" = "('a*'b) set"     (infixr 20)

A pivotal type in the mathematical toolkit is the relation which is defined as an infix
type constructor <=>. This type will be used to shape all sorts of function spaces.

According to our lexical principles, we are now able to present the toolkit as a
suite of constant definitions (the technique is equivalent to [BG 94]). On the right-
hand side of the type definition some parsing information is given together with the
binding values.

consts
...
rel ::"['a set, 'b set] => ('a <=> 'b) set" ("_ <-->_" [5 ,4]4)
partial_func ::"['a set,'b set] => ('a <=> 'b) set" ("_ -|-> _" [5,4]4)
total_func ::"['a set,'b set] => ('a <=> 'b) set" ("_ ---> _" [5,4]4)
partial_inj ::"['a set,'b set] => ('a <=> 'b) set" ("_ >-|-> _" [5,4]4)
total_inj ::"['a set,'b set] => ('a <=> 'b) set" ("_ >--> _" [5,4]4)
...
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defs
... 
rel_def "A <--> B == Pow (A %x B)"
partial_fun_def "S -|-> R == {f. f:(S<-->R) & (ALL x: y1 y2. 

    (x,y1):f & (x,y2):f-->(y1=y2))}"
total_func_def "S ---> R == {f. f:(S -|-> R) & (dom f) = S }"
partial_inj_def "S >-|-> R == {f. f:(S -|-> R) & 

(ALL x1:dom f x2:dom f. 
((f %^ x1)=(f %^ x2)) --> (x1 = x2))}"

total_inj_def "S >--> R == (S >-|-> R) Int (S ---> R)"
end

Conformance of the toolkit with TZN is easy to verify: Just compare the definitions
in ZMathTool to the ones in TZN. Furthermore, the laws given in [Spi 92] can be
derived as theorems from ZMathTool. Especially the theorem:

x:{}
∩  P(x) = {y. true}

holds, in contrast to ZF where the result of this intersection over the empty index set
is defined equal to {} because there are no universal sets in this untyped theory. In
typed set theories like in Z or in HOL, the complement of a set is always defined.

Set Expressions, Function Application and Abstraction: On the
basis of ZMathTool, it is straight-forward to represent declarations by membership
predicates, for example the declaration of a partial injective function f:

f : N >-|-> N

Here ":" is the usual set membership operator of HOL set theory and N is the set
of all natural numbers. The type of f,  P(Z × Z)  is modelled by

f :: nat set <=> nat set

This type is automatically inferred from the predicate. As a consequence of model-
ling functions as binary relations, we need a new application operator to apply f

"%^":: ['a set <=> 'b set, 'a] => 'b

which is defined by the Hilbert operator (as in [BG 94]):

f %^ x == (@y. (x,y) : f)

This treatment of partiality again conforms to TZN, where this extension of the
semantic function is explicitly justified (p. 36):

An example is the definition of application: for example, in function
application, when the argument is outside the domain of the function, then no
meaning is explicitly given. Different interpretations of Z can ascribe different
meanings to an ill-formed function application.

There is a lively debate on the issue of partiality in the Z community and in the
specification community in general. TZN's approach of using partial semantic
functions allows designers of proof support systems to resolve issues like partiality
the way it suits them best. Although counter-intuitive propositions like 1/0 = 1/0 are
indeed provable by reflexivity in our encoding — in contrast, e.g., to [KB 95] — we
believe that our model of function application considerably simplifies deduction while
still conforming to the semantics of Z. Since the semantics of Z is partial, specifiers
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cannot rely on any semantics of function applications outside their domain.
Reasoning about expressions like "1/0" cannot provide them with any information
about their specification. On the other hand, modelling the partiality of the semantics
function, e.g. by making "%^" partial, would only complicate deduction.

Abstraction is defined analogously2::

consts LAM :: ['a => bool, 'a => 'b] => 'a <=> 'b set
defs LAM S E == { (x,y) . S x & y = E x }

The general type of schemas which are introduced in the next section is 'a => bool.
Thus LAM takes a schema S and an expression E in the signature of S and returns the
desired relation.

Schema Expressions. The core problem of shallow Z-embeddings is the treat-
ment of the declarations defined in a schema. They are called the signature  of a sche-
ma and is computed in TZN via the already mentioned partial function : òτ. Our ex-
ample B of schemas as imports demonstrates the delicate fusion of a schema's signa-
ture with the signature of its context: identifiers with equal names in the declaration
part of the imported schema A and in the surrounding declarations of B are identified

Our approach suggests making this dependency explicit and considering a schema
S  as a boolean-valued function on the sub-signature of the context. It is the task of
the parser to keep track internally of the signature of schemas and schema
expressions. It must hence substitute a schema references S in a schema context by an
application S x, where x represents the variables of the surrounding context that have
to be identified with the ones declared in S. Note that the  construction of signatures
will always assure that the signature of the context will contain the elements of x.

However, the type-scheme 

τ = α1 → ... → αn → bool

for the representation of a schema is inappropriate because, in some places, we need
an Isabelle type-scheme that subsumes all types of schema representations. This is
necessary to represent schemas-as-sets and to deal with expressions of the schema
calculus, as well. For this reason, we use the uncurried version of the type scheme
above:

τ' = α1 × ... × αn → bool

This type-scheme can be generalised to the type  α → bool.  This means that
schemas are basically represented as predicates over tuples of variables in our
encoding.

The fundamental mechanism to define representations of schemas are schema
binders that are defined as follows3:

consts SB0  :: "('a => bool) => ('a => bool)" (binder "SB0" 10)
SB   :: "(['a, 'b] => bool) => (('a * 'b) => bool)" (binder "SB" 10)

defs  SB0_def  "SB0 P == P"
SB_def   "SB P   == (% (x,y). (P x y))"

2Since functional abstraction is not defined in the current version of TZN, we use the
definition of [Spi 92] to justify the conformity of our encoding.
3In our implementation, the situation is slightly more complex for purely syntactic
reasons.
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The pragma (binder "SB" 10) tells Isabelle to treat SB like a quantifier and provide it
with additional syntax. The term:

SB x1.  ... SB xn-1. SB0 xn. P x1 ... xn

has the type τ' iff P has the type τ. We call such a term a schema lifter over P of
length n.

Schema lifters are intended to be suppressed by the pretty-printer. The conversion-
phase within the parser generates lifters that are lexically sorted because schemas with
permutated declarations are semantically identical.

Simple Schemas. Schema binders only model the binding structure of
schemas. Simple declarations in Z not only declare a new variable but also contain
membership constraints. These are reflected by the schema declaration DECL. DECL
corresponds to the operator symbol Schema of the syntax (see section 2.2) and re-
places it during the conversion phase of the parser.

consts DECL :: [ bool, bool ] => bool (" _ |--- _ " ...)
defs DECL_def   "P |--- Q   == P & Q"

This enables us to represent a schema
È_ S _______
® x : N
® y : Z
® f : Z Ä Z
Ç________
® P x f y
Ð__________

in Isabelle as:

consts S:: "int <=> int * int * int => bool".
def S == SB f. SB x. SB0 y. x : N  & y : Z & f: Z >-->Z  |---  P x f y

Semantically, a simple schema is just the conjunction of the two parameters. The
new constructor DECL is needed to reflect the structure of schemas in the representa-
tion. Thus, the pretty-printer can reproduce the concrete syntax of a schema. In parti-
cular, the user-defined ordering of the declarations in a schema and the distinction bet-
ween membership propositions in declarations and predicates can be reconstructed.
The schema binders are not printed at all, and the sorting of declarations remains
internal. However, the parser has to store the lexical names of the variables in the
signature so the pretty-printer can hide the effects of α-conversions on schema
binders.

Generic Schemas. The representation of simple schemas naturally extends to
the case of generic schemas by abstracting the body schema S in the form: λM:: α
set. S.  The generic schema

È_ P[R] _______
® x : R § Z
Ç________
® T x
Ð___________

is converted by the parser to

consts P:: "'a set => ( 'a set <=> 'int set ) => bool"
defs P == % R . SB0 x .  x : R -|-> Z  |---  T x
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The polymorphism of P in 'a models exactly the type constraints of Z that are
checked by type-checkers like fuzz. How the parameter set R is instantiated depends on
the particular application context: if R is not instantiated explicitly, the universal set
{x :: 'a. true} over the parameter type 'a can be used.

Schema-as-import, Schema-as-sets. We recall the structures B  and C
from the introduction:

È_ B _______ È_ C ______
® A ® y : A
® x1 : T ® c : T
Ç________ Ç________
® true ® Q(y.x1) (y.x2)(c)
Ð__________ Ð__________

hat are consequently represented by:

defs
B == SB x1. ... SB0 xn. A(x1,...,xn) & x1 :  S1  |---  true
C == SB y. SB0 c.  y : {z. A z} & c : T |--- Q (fst y) ((fst o snd) y) (c)

Schema Expressions. The expressions of the schema calculus closely
resemble predicate logic formulas. There are the usual connectives as well as universal
and existential quantification, and, as one expects, their intuitive semantics can be
based on the understanding of predicate logic.

The construction of schema lifters mimics the construction of signatures of
schemas in TZN. Hence, logical connectives and quantifiers can be lifted to the
corresponding schema expressions using an appropriate schema lifter.

In the case of the schema connectives, the signature of schema expressions is the
union of the signatures' operands if the variables in the intersection of the signatures
have identical types. Otherwise, the schema expression is ill-formed. For example,
the schema-conjunction  N ê S ∧ R,  where the signature of S is  (s, u)  and the one
of R is  (t, u, v)  is represented by the following lifter over the conjunction:

defs "N == SB s t u. SB0 v.  (S (s,u) & (R (t,u,v))"

As with simple schemas, the pretty-printer can decide on the basis of the predicate
following the schema lifters which schema expression is represented, and print it
accordingly.

2.4 Z Paragraphs and Sections

The formal text of a Z specification consists of a sequence of paragraphs which gra-
dually introduce the given types, global variables, and schemas of the specification.
The paragraphs forming a specification can be organised as a collection of named sec-
tions. Each paragraph can augment the environment by declarations of constants or
schemas.

In our encoding, Z paragraphs and sections are represented as Isabelle theories. The
way new schemas are introduced, by the key word defs, ensures a conservative
construction of these theories. This guarantees that the representation process of Z
into Isabelle does not introduce inconsistencies.
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3 Proof Support

Since our encoding preserves the structure of specifications, two possibilities for
structured reasoning about specifications arise. First, we can combine theorems about
single schemas in a controlled way, and second, we are able to lift theorems of predi-
cate logic to the level of schema expressions, and thus come to a truly mechanised
schema calculus.

3.1 Structured Theories about Z Specifications

Complex Z specifications are usually structured as follows: first, axiomatic
declarations introduce the constants which the rest of the specification is based upon
(the "model" of the specification). Afterwards, simple schemas provide the basic
notions relevant for the system to specify. Finally these are combined, possibly in
several steps, to schemas that provide "the" system specification. For sequential
systems, for example, a common approach is to combine several schemas describing
"substates" of the system to the final state schema, and to provide schemas specifying
different aspects of an operation, e.g. various cases of normal behaviour and behaviour
in error cases, that are combined, using the schema calculus, to a schema specifying
"the" operation.

Since we can refer to schemas as first-class objects in our encoding, we have an
elegant way to form "local theories" about single schemas and augment schema
references with the information provided by these theories. A theorem P about schema
A can be expressed as an implication of the Isabelle meta-logic

A (x1,...,xn) ==> P x1 ... xn

This theorem can be used to extend the predicate of

B == SB x1. ... SB0 xn. A(x1,...,xn) & x1 :  S1  |---  true

Another possibility to reason about schemas is to successively transform them
into equivalent representations by equational reasoning. One starts with an equation
whose right-hand side is a meta-variable

A (x1,...,xn) = ?X

Using transitivity of equality and Isabelle's simplifier or other suitable tactics one
can now gradually instantiate the metavariable ?X and prove

A (x1,...,xn) = Asimp

where Asimp is a simplified version of A. This equation can now be used — possibly
again using the simplifier — to replace references to A in other schemas by Asimp.

Given the explicit representation of schema references, these transformations are
technically simple. Still, they provide the possibility to develop the theory of a spe-
cification in "layers", starting at the layer of the mathematical toolkit and the axiom-
atic declarations, and ascending via simple schemas to the more complex schema ex-
pressions that finally make up a system description.

First experiences with reasoning about a non-trivial Z specification show the
practical advantage of our structure preserving encoding. We have applied the
technique described above to transform operation schemas of a specification of a sim-
plified embedded controller into disjunctive normal form and used the simplifier —



13

instantiated with rules about the mathematical toolkit — to eliminate unsatisfiable
disjuncts from the normal form. This procedure is part of an approach to generate test
cases from model-based specifications [DF 93].

The major practical problem here is the performance of the prover when faced with
large subgoals. With encodings that do not preserve the structure of specifications, all
schema references in the operation schema to transform are inevitably expanded. This
is neither appropriate nor practically feasible: on one hand, one will want to control
expansion of definitions to come to sensible test cases. On the other hand, each
additional literal in the schema's predicate increases computation time and space
requirements of the prover because the distributivity laws duplicate subformulas and
context-dependent simplification is mandatory to find unsatisfiable disjuncts.

We computed the normal form of our example operation schema in a bottom-up
fashion: first computing the normal form of the state schema and of the operation
schema without expanding schema references, and second combining the results and
computing the normal form of the combination. Simplification helps a lot to control
combinatorial explosion: more than two thirds of the state schema's disjuncts can be
reduced to false, and only 8 of 44 disjuncts of the combined schema are satisfiable and
form the final outcome of the computation. Each disjunct consists of about 20
literals. Just expanding schema references and compute the normal form in one step is
absolutely infeasible: the algorithm did not terminate in an over-night run!

3.2 Lifting Predicate Logic to Schema Expressions

A technically more demanding possibility arising from our encoding of schema
expressions is to lift theorems of predicate logic to the corresponding schema
expressions. The basic idea is to use Isabelle's lifting of meta-variables that occurs
when resolving a theorem with the matrix of the (meta-)universal quantifier "!!".

Consider what happens when resolving the extensionality theorem ext

!! x. ?f x = ?g x ==> ?f = ?g

with a theorem of predicate logic, say and_commute

?A & ?B = ?B & ?A

Forward chaining (and_commute RS ext) results in

%x. ?A x & ?B x = %x. ?B x & ?A x

This means the meta-variables ?A and ?B of and_commute are lifted to
functions in x. We can use this mechanism to lift predicate logic theorems to schema
binders using the theorems SB0_ext and SB_ext:

(!!x. f x = g x) ==> (SBinder0 f) = (SBinder0 g)
(!!x. f x = g x) ==> (SBinder f)   = (SBinder g)

Combining these two in an ML function lift

fun lift th 0 = th
    | lift th 1 = th RS SB0_ext
    | lift th n = (lift th (n-1)) RS SB_ext;

allows us to lift a predicate logic theorem to a theorem about schemas with
signatures of arbitrary length, e.g.
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lift and_commute 3;
val it = "(SB x xa. SB0 xb. ?A x xa xb & ?B x xa xb) =

 (SB x xa. SB0 xb. ?B x xa xb & ?A x xa xb)" : thm

This lifting mechanism enables us to reason directly about schema expressions
simply by reusing predicate logic theorems. In particular, it is not necessary to —
implicitly or explicitly — expand the schemas of a particular expression and reason at
the level of their (combined) predicates. Because the length of schemas can always be
inferred by auxilliary tactical functions it is possible to hide schema lifting from the
user's view by providing versions of Isabelle's resolution functions like RS or rtac
that implicitly lift predicates to schemas of appropriate length.

4 Conclusion

We have presented a shallow, TZN-conforming encoding of Z into higher-order logic
that nevertheless preserves the structure of specifications. Moreover, our
representation allows deductions at a structural level, i.e. in the schema calculus.
Other approaches to proof assistants for Z either implement a proof tool from scratch
and accept the disadvantages in terms of implementation work, lack of reuse, and
error-proneness to come up with a tool tailor-made for Z, or they encode Z into a
logical framework like HOL or ZF. The latter approaches usually choose a deep en-
coding if they want to deal with the schema calculus, or they sacrifice the structure of
Z specifications and represent only "flattened" specifications where all schema
references are expanded. Providing a shallow encoding that still allows us to deal with
schemas at the logical level is the major contribution of our work.

There is a price to pay for a shallow embedding: we cannot represent all aspects of
the semantics of Z in logical terms, some have to be dealt with at the level of syntax.
We chose to put the dividing line between syntax and logic at exactly the point of the
Z semantics where it gets a very "syntactic" flavour, i.e. where the signatures of
schemas and the binding structure induced by schema references are concerned. The
mechanisms needed here can easily be understood as manipulations of sets of
identifiers, and can hence safely be implemented in a parser by introducing appropriate
schema binders "SB".

An advantage of this approach is that we, unlike deep embeddings like
ProofPower [Jon 92], need not deal with "syntactical" issues in the logic. This also
includes the issue of type checking. Since Z types are handled by the Isabelle parser,
we do not need to reason about them explicitly. Untyped provers like Ergo [RS 93]
must provide specialised tactics to prove type constraints. A first experiment based on
the ZF encoding of Isabelle has shown that the type constraints provided by HOL
greatly enhance efficiency of deduction. Similar proofs of (simple) propositions about
Z schemas as predicates need much more search in ZF than in HOL (we usually had
to use best_tac instead of fast_tac to find a proof).

Depending on the context of their use, schemas can have three different inter-
pretations in Z: as sets, in schema calculus, and as predicates. We picked the latter as
the basis of our embedding because schemas are often used in predicative context and
proof engines like Isabelle are tuned to deal with predicates most efficiently. This
choice lead to the idea of schema lifters and consequently enabled us to come up with
a representation of the schema calculus which, to our knowledge, is the first in a
shallow embedding.
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As did Bowen and Gordon [BG 94], we map the set theory of Z to the one of
HOL. Z is strongly typed and the apparent similarities to the HOL set theory are
much greater than to other set theories like, e.g., ZF. We believe this and the enco-
ding of the schema calculus in higher-order abstract syntax justifies our claim that our
embedding conforms to the Z draft standard.

4.1 Future Work

Many specifications using Z heavily depend on the mathematical toolkit, and conse-
quently many subgoals arising while reasoning about Z specifications are basically
propositions about the toolkit. Such "standard" subgoals may be provable automati-
cally by specialised proof procedures that are based on an extensive collection of
theorems about the toolkit. The generic proof infrastructure of Isabelle, notably the
highly customisable simplifier, provides a means to implement such proof proce-
dures. We are currently investigating what degree of automation can be reached, in
particular for specifications stemming from specific application domains.

For the time being, we have concentrated on representing the most crucial features
of Z — this subset should be augmented and combined with other formal methods as
envisaged in [Kri+95]. The powerful pretty-printer of Isabelle provides much potential
to support other syntactic representation like the TZN interchange format, LaTeX or
Tcl/Tk for the interactive vizualization of mathematical, high-quality notation. In this
way, the elaborate theorem proving facilities of Isabelle are made available to support
practical work with Z such as analyses of specifications, transformational develop-
ment, and test case generation and evaluation on the basis of Z. Refining the theorem
proving support for testing based on formal specifications will be one major focus of
activities in the project ESPRESS (see also [Jäh+95]).
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