Isabelle/Circus : a Process Specification and
Verification Environment

Abderrahmane Feliachi, Marie-Claude Gaudel and Burkhart Wolff

! Univ. Paris-Sud, Laboratoire LRI, UMRS8623, Orsay, F-91405, France
2 CNRS, Orsay, F-91405, France
{Abderrahmane.Feliachi, Marie-Claude.Gaudel, Burkhart.Wolff}@lri.fr

Abstract. The Circus specification language combines elements for com-
plex data and behavior specifications, using an integration of Z and CSP
with a refinement calculus. Its semantics is based on Hoare and He’s
unifying theories of programming (UTP).

‘We develop a machine-checked, formal semantics based on a “shallow em-
bedding” of Circus in Isabelle/UTP (our semantic theory of UTP based
on Isabelle/HOL). We derive proof rules from this semantics and imple-
ment tactic support that finally allows for proofs of refinement for Circus
processes (involving both data and behavioral aspects).

This proof environment supports a syntax for the semantic definitions
which is close to textbook presentations of Circus.

Keywords: Circus, denotational semantics, Isabelle/HOL, Process Al-
gebras, Refinement

1 Introduction

Many systems involve both complex (sometimes infinite) data structures and
interactions between concurrent processes. Refinement of abstract specifications
of such systems into more concrete ones, requires an appropriate formalisation
of refinement and appropriate proof support.

There are several combinations of process-oriented modeling languages with
data-oriented specification formalisms such as 7Z or B or CASL; examples are
discussed in [3,10,17,14]. In this paper, we consider Circus [18], a language for
refinement, that supports modeling of high-level specifications, designs, and con-
crete programs. It is representative of a class of languages that provide facilities
to model data types, using a predicate-based notation, and patterns of interac-
tions, without imposing architectural restrictions. It is this feature that makes
it suitable for reasoning about both abstract and low-level designs.

We present a “shallow embedding” of the Circus semantics enabling state
variables and channels in Circus to have arbitrary HOL types. Therefore, the en-
tire handling of typing can be completely shifted to the (efficiently implemented)
Isabelle type-checker and is therefore implicit in proofs. This drastically simpli-
fies definitions and proofs, and makes the reuse of standardized proof procedures

possible. Compared to implementations based on a “deep embedding” such as
[19] this significantly improves the usability of the resulting proof environment.

Our representation brings particular technical challenges and contributions
concerning some important notions about variables. The main challenge was to
represent alphabets and bindings in a typed way that preserves the semantics
and improves deduction. We provide a representation of bindings without an
explicit management of alphabets. However, the representation of some core
concepts in the unifying theories of programming (UTP) and Circus constructs
(variable scopes and renaming) became challenging. Thus, we propose a (stack-
based) solution that allows the coding of state variables scoping with no need
for renaming. This solution is even a contribution to the UTP theory that does
not allow nested variable scoping. Some challenging and tricky definitions (e.g.
channels and name sets) are explained in this paper.

This paper is organized as follows. The next section gives an introduction to
the basics of our work: Isabelle/HOL, UTP and Circus with a short example of a
Circus process. In Section 3, we present our embedding of the basic concepts of
Circus (alphabet, variables ...). We introduce the representation of some Circus
actions and process, with an overview of the Isabelle/Circus syntax. In Section 4,
we show on an example, how Isabelle/ Circus can be used to write specifications.
We give some details on what is happening “behind the scenes” when the system
parses each part of the specification. In the last part of this section, we show how
to write proofs based on specifications, and give a refinement proof example. A
more developed version of this paper can be found in [9].

2 Background

2.1 Isabelle, HOL and Isabelle/HOL

Isabelle [12] is a generic theorem prover implemented in SML. It is based on
the so-called “LCF-style architecture”, which makes it possible to extend a small
trusted logical kernel by user-programmed procedures in a logically safe way.
New object logics can be introduced to Isabelle by specifying their syntax and
semantics, by deriving its inference rules from there and program specific tactic
support for the object logic. Isabelle is based on a typed)-calculus including a
Haskell-style type-system with type-classes (e.g. in « :: order, the type-variable
ranges over all types that posses a partial ordering.)

Higher-order logic (HOL) [7,1] is a classical logic based on a simple type sys-
tem. It provides the usual logical connectives like _ A _, _ = _ = _ as well as the
object-logical quantifiers Vx e P x and 3z e P z; in contrast to first-order logic,
quantifiers may range over arbitrary types, including total functions f : : a = (.
HOL is centered around extensional equality — = _: : a = a = bool. HOL is
more expressive than first-order logic, since, e. g., induction schemes can be ex-
pressed inside the logic. Being based on some polymorphically typed \-calculus,
HOL can be viewed as a combination of a programming language like SML or

Haskell and a specification language providing powerful logical quantifiers rang-
ing over elementary and function types.

Isabelle/HOL is an instance of Isabelle with higher-order logic. It provides a
rich collection of library theories like sets, pairs, relations, partial functions lists,
multi-sets, orderings, and various arithmetic theories which only contain rules
derived from conservative, i. e. logically safe definitions. Setups for the automated
proof procedures like simp, auto, and arithmetic types such as int are provided.

2.2 Advanced Specification Constructs in Isabelle/HOL

Constant definitions. In its easiest form, constant definitions are definitional
logical axioms of the form ¢ = E where c is a fresh constant symbol not occurring
in F which is closed (both wrt. variables and type variables). For example:

definition upd:: (a=/f)=a=0F= (a=/) M_(= ==)"
where upd f x v =)\ z. if x=z then v else f z
The pragma ("_(_ := _)") for the Isabelle syntax engine introduces the nota-

tion £(x:=y)) for upd £ x y. Moreover, some elaborate preprocessing allows for
recursive definitions, provided that a termination ordering can be established.
Such recursive definitions are thus internally reduced to definitional axioms.

Type definitions. Types can be introduced in Isabelle/HOL in different ways.
The most general way to safely introduce new types is using the typedef con-
struct. This allows introducing a type as a non-empty subset of an existing type.
More precisely, the new type is specified to be isomorphic to this non-empty
subset. For instance:

typedef mytype = "{x::nat. x < 10}"

This definition requires that the set is non-empty: 3x. x€{x::nat. x<10},
which is easy to prove in this case:

by (rule_tac x = 1 in exI, simp)

where rule_tac is a tactic that applies an introduction rule, and exI corresponds
to the introduction of the existential quantification.

Similarly, the datatype command allows the definition of inductive datatypes.
It introduces a datatype using a list of constructors. For instance, a logical com-
piler is invoked for the following introduction of the type option:

datatype « option = None | Some «

which generates the underlying type definition and derives distinctness rules
and induction principles. Besides the constructors None and Some, the following
match-operator and his rules are also generated:

case r of None = ... | Somea = ...

Extensible records. Isabelle/HOL’s support for extensible records is of par-
ticular importance for our work. Record types are denoted, for example, by:

record T = a::T;
b::Ty

which implicitly introduces the record constructor (a:=e;,b:=es) and the up-
date of record r in field a, written as r(a:= x). Extensible records are represented
internally by cartesian products with an implicit free component ¢, i.e. in this
case by a triple of the type Ty X Ty x d. The third component can be referenced
by a special selector more available on extensible records. Thus, the record T can
be extended later on using the syntax:

record ET =T + c::T3

The key point is that theorems can be established, once and for all, on T types,
even if future parts of the record are not yet known, and reused in the later
definition and proofs over ET-values. Using this feature, we can model the effect
of defining the alphabet of UTP processes incrementally while maintaining the
full expressivity of HOL wrt. the types of Ty, Ty and Tj3.

2.3 Circus and its UTP Foundation

Circus is a formal specification language [18] which integrates the notions of
states and complex data types (in a Z-like style) and communicating parallel
processes inspired from CSP. From Z, the language inherits the notion of a
schema used to model sets of (ground) states as well as syntactic machinery to
describe pre-states and post-states; from CSP, the language inherits the concept
of communication events and typed communication channels, the concepts of
deterministic and non-deterministic choice (reflected by the process combinators
POP and P M P’), the concept of concealment (hiding) P\ A of events in A
occurring in in the evolution of process P. Due to the presence of state variables,
the Circus synchronous communication operator syntax is slightly different frome
CSP: P n | ¢ | n']P' means that P and P’ communicate via the channels
mentioned in ¢; moreover, P may modify the variables mentioned in n only, and
P’ in n’ only, n and n’ are disjoint name sets.

Moreover, the language comes with a formal notion of refinement based on
a denotational semantics. It follows the failure/divergence semantics [15], (but
coined in terms of the UTP [13]) providing a notion of execution trace tr, re-
fusals ref, and divergences. It is expressed in terms of the UTP [11] which makes
it amenable to other refinement-notions in UTP. Figure 1 presents a simple Cir-
cus specification, FIG, the fresh identifiers generator.

Predicates and Relations. The UTP is a semantic framework based on an
alphabetized relational calculus. An alphabetized predicate is a pair (alphabet,
predicate) where the free variables appearing in the predicate are all in the al-
phabet, e.g. ({z,y},z > y). As such, it is very similar to the concept of a schema
in Z. In the base theory Isabelle/UTP of this work, we represent alphabetized
predicates by sets of (extensible) records, e.g. {A. x A > y A}.

[1D]
channel req
channel ret, out : ID

process FIG = begin

state S == [idS : P ID]

Init = 4dS =0

— Out —_ Remove

‘ AS AS

‘ vl ID z?: ID

vl ¢ idS idS’ = idS \ {z7}
|

idS" = idS U {v!}

o [nit; var v:ID e
(n X o (req — Out; outlv — Skip O ret?z — Remove); X)
end
Fig. 1. The Fresh Identifiers Generator in (Textbook) Circus

An alphabetized relation is an alphabetized predicate where the alphabet is
composed of input (undecorated) and output (dashed) variables. In this case the
predicate describes a relation between input and output variables, for example
({z,2',y,vy'}, 2’ = x+y) which is a notation for: {(A,A’).x A’ = x A + y A},
which is a set of pairs, thus a relation.

Standard predicate calculus operators are used to combine alphabetized pred-
icates. The definition of these operators is very similar to the standard one, with
some additional constraints on the alphabets.

Designs and processes. In UTP, in order to explicitly record the termination
of a program, a subset of alphabetized relations is introduced. These relations
are called designs and their alphabet should contain the special boolean obser-
vational variable ok. It is used to record the start and termination of a program.
A UTP design is defined as follows in Isabelle:

PFQ =X (A,A°). (ck AAP (A,A)) — (ok A7 ANQ (A,A))

Following the way of UTP to describe reactive processes, more observational
variables are needed to record the interaction with the environment. Three ob-
servational variables are defined for this subset of relations: wait, tr and ref.
The boolean variable wait records if the process is waiting for an interaction
or has terminated. tr records the list (trace) of interactions the process has
performed so far. The variable ref contains the set of interactions (events) the
process may refuse to perform. These observational variables defines the basic
alphabet of all reactive processes called “alpha_rp”.

Some healthiness conditions are defined over wait, tr and ref to ensure that
a recative process satisfies some properties [6] (see Table 2 in [9]).

A CSP process is a UTP reactive process that satisfies two additional health-
iness conditions(all well-formedness conditions can be found in [9]). A process
that satisfies these conditions is said to be CSP healthy.

3 Isabelle/Circus

Process ::= circusprocess Tpar® name = PParagraph®™ where Action

PParagraph ::= AlphabetP | StateP | ChannelP | NamesetP | ChansetP | SchemaP
| ActionP

AlphabetP ::= alphabet [vardecl®]

vardecl| :'= name :: type

StateP ::= state [vardecl™]

ChannelP ::= channel [chandecl®]

chandecl ::=name | name type

NamesetP ::= nameset name = [name™]

ChansetP ::= chanset name = [name™]

SchemaP ::= schema name = SchemaExpression

ActionP ::= action name = Action

Action ::= Skip | Stop | Action ; Action | Action [J Action | Action 1 Action

| Action \ chansetN | var := expr | guard & Action | comm — Action
| Schema name | ActionName | i var e Action | var var e Action
| Action [namesetN | chansetN | namesetN]| Action

Fig. 2. Isabelle/ Circus syntax

The Isabelle/ Circus environment allows a syntax of processes which is close to
the textbook presentations of Circus (see Fig. 2). Similar to other specification
constructs in Isabelle/HOL, this syntax is “parsed away”, i.e. compiled into
an internal representation of the denotational semantics of Circus, which is a
formalization in form of a shallow embedding of the (essentially untyped) paper-
and-pencil definitions by Oliveira et al. [13], based on UTP. Circus actions are
defined as CSP healthy reactive processes.

In the UTP representation of reactive processes we have given in a previous
paper [8], the process type is generic. It contains two type parameters that
represent the channel type and the alphabet of the process. These parameters
are very general, and they are instantiated for each specific process. This could
be problematic when representing the Circus semantics, since some definitions
rely directly on variables and channels (e.g assignment and communication). In
this section we present our solution to deal with this kind of problems, and our
representation of the Circus actions and processes.

We now describe the foundation as well as the semantic definition of some
process operators of Circus. A distinguishing feature of Circus processes are ex-
plicit state variables which do not exist in other process algebras like, e.g., CSP.
These can be:

— global state variables, i.e. they are declared via alphabetized predicates in
the state section, or Z-like A operations on global states that generate
alphabetized relations, or

— local state variables, i. e. they are result of the variable declaration statement
var var e Action. The scope of local variables is restricted to Action.

On both kind of state variables, logical constraints may be expressed.

3.1 Alphabets and Variables

In order to define the set of variables of a specification, the Circus semantics
considers the alphabet of its components, be it on the level of alphabetized
predicates, alphabetized relations or actions. We recall that these items are rep-
resented by sets of records or sets of pairs of records. The alphabet of a process is
defined by extending the basic reactive process alphabet (cf. Section 2.3) by its
variable names and types. For the example FIG, where the global state variable
idS is defined, this is reflected in Isabelle/Circus by the extension of the process
alphabet by this variable, i.e. by the extension of the Isabelle/HOL record:

record « alpha = « alpha_rp + idS :: ID set

This introduces the record type alpha that contains the observational variables
of a reactive process, plus the variable idS. Note that our Circus semantic rep-
resentation allows “built-in” bindings of alphabets in a typed way. Moreover,
there is no restriction on the associated HOL type. However, the inconvenience
of this representation is that variables cannot be introduced “on the fly”; they
must be known statically i.e. at type inference time. Another consequence is
that a ”syntactic” operation such as variable renaming has to be expressed as a
”semantic” operation that maps one record type into another.

Updating and accessing global variables. Since the alphabets are repre-
sented by HOL records, i.e. a kind binding ”name +— value”, we need a certain
infrastructure to access data in them and to update them. The Isabelle repre-
sentation as records gives us already two functions (for each record) “select” and
“update”. The “select” function returns the value of a given variable name, and
the “update” functions updates the value of this variable. Since we may have
different HOL types for different variables, a unique definition for select and
update cannot be provided. There is an instance of these functions for each vari-
able in the record. The name of the variable is used to distinguish the different
instances: for the select function the name is used directly and for the update
function the name is used as a prefix e.g. for a variable named “x” the names of
the select and update functions are respectively x of type a and x_update.

Since a variable is characterized essentially by these functions, we define a
general type (synonym) called var which represents a variable as a pair of its
select and update function (in the underlying state o).

types (B, o) var = "(o0 =) * (8 =0) =0 = o))"

For a given alphabet (record) of type o, (£, the type o)var represents
the type of the variables whose value type is 5. One can then extract the select
and update functions from a given variable with the following functions:

definition select :: "(83, o) var =0 = ("
where select f = (fst f)

definition update :: "(83, o) var = = 0 = o"
where update f v =(snd £f) (A _ . v)

Finally, we introduce a function called VAR to implement a syntactic trans-
lation of a variable name to an entity of type var.

syntax "_VAR" :: "id = (3, o) var" ("VAR _")
translations VAR x => (x, _update_ name x)

Note that in this syntactic translation rule, _update_ name x stands for the
concatenation of the string _update_ with the content of the variable x; the
resulting _update_x in this example is mapped to the field-update function
of the extensible record x_update by a default mechanism. On this basis, the
assignment notation can be written as usual:

syntax

"_assign" :: "id =(o =p) = (a, o) action" ("_ ‘:=" _")
translations

"x ‘:=‘ E" => "CONST ASSIGN (VAR x) E"

and mapped to the semantics of the program variable (x,x_update) together
with the universal ASSIGN operator defined later on, in Section 3.3.

Updating and accessing local variables. In Circus, local program variables
can be introduced on the fly, and their scopes are explicitly defined, as can
be seen in the FIG example. In textbook Circus, nested scopes are handled by
variable renaming which is not possible in our representation due to the implicit
representation of variable names. We represent local program variables by global
variables, using the var type defined above, where selection and update involve
an explicit stack discipline. Each variable is mapped to a list of values, and not
to one value only (as for state variables). Entering the scope of a variable is
just adding a new value as the head of the corresponding values list. Leaving a
variable scope is just removing the head of the values list. The select and update
functions correspond to selecting and updating the head of the list. This ensures
dynamic scoping, as it is stated by the Circus semantics.

Note that this encoding scheme requires to make local variables lexically
distinct from global variables; local variable instances are just distinguished from
the global ones by the stack discipline.

3.2 Synchronization infrastructure: Name sets and channels.

Name sets. An important notion, used in the definition of parallel Circus ac-
tions, is name sets as seen in Section 2.3. A name set is a set of variable names,
which is a subset of the alphabet. This notion cannot be directly expressed in
our representation since variable names are not explicitly represented. Thus its
definition relies on the characterization of the variables in our representation. As
for variables, name sets are defined by their functional characterization. They
are used in the definition of the binding merge function MSt below:
Voe (veEmnsl=v"=(1w)A(vens2=1v =(2v) A (venslUns2= v =v).
The disjoint name sets nsl and ns2 are used to determine which variable
values (extracted from local bindings of the parallel components) are used to

update the global binding of the process. A name set can be functionally defined
as a binding update function, that copies values from a local binding to the
global one. For example, a name set NS that only contains the variable x can
be defined as follows in Isabelle/Circus:

definition NS 1lb gb = x_update (x 1b) gb

where 1b and gb stands for local and global bindings, x and x_update are the
select and update functions of variable x. Then the merge function can be defined
by composing the application of the name sets to the global binding.

Channels. Reactive processes interact with the environment via synchroniza-
tions and communications. A synchronization is an interaction via a channel
without any exchange of data. A communication is a synchronization with data
exchange. In order to reason about communications in the same way, a datatype
channels is defined using the channels names as constructors. For instance, in:

datatype channels = chanl | chan2 nat | chan3 bool

we declare three channels: chanl that synchronizes without data , chan2 that
communicates natural values and chan3 that exchanges boolean values.

This definition makes it possible to reason globally about communications
since they have the same type. However, the channels may not have the same
type: in the example above, the types of chan1, chan2 and chan3 are respectively
channels, nat = channels and bool = channels. In the definition of some
Circus operators, we need to compare two channels, and one can’t compare for
example chanl with chan2 since they don’t have the same type. A solution
would be to compare chanl with (chan2 v). The types are equivalent in this
case, but the problem remains because comparing (chan2 0) to (chan2 1) will
state inequality just because the communicated values are not equal. We could
define an inductive function over the datatype channels to compare channels,
but this is only possible when all the channels are known a priori.

Thus, we add some constraint to the generic channels type: we require the
channels type to implement a function chan_eq that tests the equality of two
channels. Fortunately, Isabelle/HOL provides a construct for this kind of restric-
tion: the type classes (sorts) mentioned in Section 2.1. We define a type class
(interface) chan_eq that contains a signature of the chan_eq function.

class chan_eq =
fixes chan_eq :: "o =« = bool"
begin end

43

Concrete channels type must implement the interface (class) “ chan_eq” that
can be easily defined for this concrete type. Moreover, one can use this class
to add some definition that depends on the channel equivalence function. For
example, a trace equivalence function can be defined as follows:

fun tr_eq where
tr_eq [[] = True | tr_eq xs [] = False | tr_eq [] ys = False
| tr_eq (x#xs) (y#ys) = if chan_eq x y then tr_eq xs ys else False

It is applicable to traces of elements whose type belongs to the sort chan_eq.

3.3 Actions and Processes

The Circus actions type is defined as the set of all the CSP healthy reactive
processes. The type (a,0)relation_rp is the reactive process type where «
is of channels type and o is a record extensions of action_rp, i.e. the global
state variables. On this basis, we can encode the concept of a process for a family
of possible state instances. We introduce below the vital type action:

typedef (Action)

(a::chan_eq,0) action = {p::(«a,0)relation_rp. is_CSP_process p}
proof - {...}
qed

As mentioned before, a type-definition introduces a new type by stating a set. In
our case it is the set of reactive processes that satisfy the healthiness-conditions
for CSP-processes, isomorphic to the new type.

Technically, this construct introduces two constants definitions Abs_Action
and Rep_Action respectively of type («,0) relation_rp = («,0) action and
(a,0)action = («a,0)relation_rp as well as the usual two axioms express-
ing the bijection Abs_Action(Rep_Action(X))=X and is_CSP_process p =
Rep_Action(Abs_Action(p))=p where is_CSP_process captures the healthi-
ness conditions.

Every Circus action is an abstraction of an alphabetized predicate. In [9], we
introduce the definitions of all the actions and operators using their denotational
semantics. The environment contains, for each action, the proof that this predi-
cate is CSP healthy. In this section, we present some of the important definitions,
namely: basic actions, assignments, communications, hiding, and recursion.

Basic actions. Stop is defined as a reactive design, with a precondition true
and a postcondition stating that the system deadlocks and the traces are not
evolving.

definition
Stop = Abs_Action (R (true F)(A, A’). tr A’ = tr A Await A’))

Skip is defined as a reactive design, with a precondition true and a post-
condition stating that the system terminates and all the state variables are not
changed. We represent this fact by stating that the more field (seen in Section
2.2) is not changed, since this field is mapped to all the state variables. Note
that using the more-field is a tribute to our encoding of alphabets by extensible
records and stands for all future extensions of the alphabet (e.g. state variables).

definition Skip = Abs_Action (R (true)\ (A, A’). tr A = tr A
A - wait A’ A more A = more A’))

10

The universal assignment action. In Section 3.1, we described how global
and local variables are represented by access- and updates functions introduced
by fields in extensible records. In these terms, the ”lifting” to the assignment
action in Circus processes is straightforward:

definition
ASSIGN::"(8, o) var =(o0 =) = (a::ev_eq, o) action"
where
ASSIGN x e = Abs_Action (R (true FY))
where
Y =)\(A, A’). tr A’ = tr A A —wait A’ A
more A’ = (assign x (e (more A))) (more A)

where assign is the projection into the update operation of a semantic variable
described in section 3.1.

Communications. The definition of prefixed actions is based on the definition
of a special relation do_I. In the Circus denotational semantics [13], various
forms of prefixing were defined. In our theory, we define one general form, and
the other forms are defined as special cases.

definition do_I ¢ x P = X < wait o fst > Y
where
X=((4, A?). tr A =tr A AN ((c “P) N ref A?) = {})
and
Y=(\ (A, A’). hd ((tr A’) - (tr A)) € (c ‘P) A
(c (select x (more A))) = (last (tr A’)))

where c is a channel constructor, x is a variable (of var type) and P is a pred-
icate. The do_I relation gives the semantics of an interaction: if the system is
ready to interact, the trace is unchanged and the waiting channel is not refused.
After performing the interaction, the new event in the trace corresponds to this
interaction.

The semantics of the whole action is given by the following definition:

definition Prefix ¢ x P S = Abs_Action(R (true FY)) ; S
where
Y=doIcxPA (\ (A, A’). more A’ = more A)

where c is a channel constructor, x is a variable (of type var), P is a predicate and
S is an action. This definition states that the prefixed action semantics is given
by the interaction semantics (do_I) sequentially composed with the semantics
of the continuation (action S).

Different types of communication are considered:

Inputs: the communication is done over a variable.

Constrained Inputs: the input variable value is constrained with a predicate.
— Outputs: the communications exchanges only one value.

Synchronizations: only the channel name is considered (no data).

11

The semantics of these different forms of communications is based on the
general definition above.

definition read ¢ x P = Prefix ¢ x true P
definition writel ¢ a P =Prefix ¢ (As. a s, (\ x.)\y. y)) true P
definition write0 ¢ P = Prefix (_.c) (_._, (A x. \y. y)) true P

where read, writel and writeO respectively correspond to inputs, outputs and
synchronization. Constrained inputs correspond to the general definition.

We configure the Isabelle syntax-engine such that it parses the usual com-
munication primitives and gives the corresponding semantics:

translations
c?p —P == CONST read c (VAR p) P
c?p: b —P == CONST Prefix ¢ (VAR p) b P
c!p—P == CONST writel c p P
a —P == CONST writeO (TYPE(_)) a P

Hiding. The hiding operator is interesting because it depends on a channel set.
This operator P \ cs is used to encapsulate the events that are in the channel set
cs. These events become no longer visible from the environment. The semantics
of the hiding operator is given by the following reactive process:

definition
Hide ::"[(«, o) action , a set] = («a, o) action" (infixl "\")
where

P \ cs = Abs_Action(R()\ (A, A’).
Js. (Rep_Action P)(A, A’(tr :=s, ref := (ref A’) U cs|)
A (tr A’ - tr A) = (tr_filter (s - tr A) cs))); Skip

The definition uses a filtering function tr_filter that removes from a trace
the events whose channels belong to a given set. The definition of this function
is based on the function chan_eq we defined in the class chan_eq. This explains
the presence of the constraint on the type of the action channels in the hiding
definition, and in the definition of the filtering function below:

fun tr_filter::"a::chan_eq list —a set =a list" where
tr_filter [] cs = []
| tr_filter (x#xs) cs = (if (- chan-in_set x cs)
then (x#(tr_filter xs cs))
else (tr_filter xs cs))

where the chan-in_set function checks if a given channel belongs to a channel
set using chan_eq as equality function.

“w,

Recursion. To represent the recursion operator “u” over actions, we use the
universal least fix-point operator “Ifp” defined in the HOL library for lattices
and we follow again [13]. The use of least fix-points in [13] is the most substantial

12

deviation from the standard CSP denotational semantics, which requires Scott-
domains and complete partial orderings. The operator Ifp is inherited from the
“Complete Lattice class” under some conditions, and all theorems defined over
this operator can be reused. In order to reuse this operator, we have to show that
the least-fixpoint over functionals that enrich pairs of failure - and divergence
trace sets monotonely, produces an action that satisfies the CSP healthiness
conditions. This consistency proof for the recursion operator is the largest con-
tained in the Isabelle/ Circus library.

Therefore, we must prove that the Circus actions type defines a complete
lattice. This leads to prove that the actions type belongs to the HOL “Complete
Lattice class”. Since type classes in HOL are hierarchic, the proof is in three
steps: first, a proof that the Circus actions type forms a lattice by instantiating
the HOL “Lattice class”; second, a proof that actions type instantiates a subclass
of lattices called “Bounded Lattice class”; third, proof of the instantiation from
the “Complete Lattice class”. More on these proofs can be found in [9].

Circus Processes. A Circus process is defined in our environment as a local the-
ory by introducing qualified names for all its components. This is very similar to
the notion of namespaces popular in programming languages. Defining a Circus
process locally makes it possible to encapsulate definitions of alphabet, chan-
nels, schema expressions and actions in the same namespace. It is important for
the foundation of Isabelle/Circus to avoid the ambiguity between local process
entities definitions (e.g. FIG.0Out and DFIG.Out in the example of Section 4).

4 Using Isabelle/Circus

We describe the front-end interface of Isabelle/Circus. In order to support a
maximum of common Circus syntactic look-and-feel, we have programmed at
the SML level of Isabelle a compiler that parses and (partially) pretty prints
Circus process given in the syntax presented in Figure 2.

4.1 Writing specifications

A specification is a sequence of paragraphs. Each paragraph may be a declara-
tion of alphabet, state, channels, name sets, channel sets, schema expressions or
actions. The main action is introduced by the keyword where. Below, we illus-
trate how to use the environment to write a Circus specification using the FIG
process example presented in Figure 1.

circusprocess FIG =
alphabet = [v::nat, x::nat]
state = [idS::nat set]
channel = [req, ret nat, out nat]
schema Init = idS := {}
schema Out = Ja. v’ = a Av’ ¢ idS A idS’ = idS U{v’}

13

schema Remove = x ¢ idS A idS’ = idS - {x}
where var v - Schema Init; (u X -(req —Schema Out; out!v —Skip)
O (ret?x —Schema Remove); X)

Each line of the specification is translated into the corresponding semantic opera-
tor given in Section 3.3. We describe below the result of executing each command
of FIG:

— the compiler introduces a scope of local components whose names are qual-
ified by the process name (FIG in the example).

— alphabet generates a list of record fields to represent the binding. These
fields map names to value lists.

— state generates a list of record fields that corresponds to the state vari-
ables. The names are mapped to single values. This command, together with
alphabet command, generates a record that represents all the variables (for
the FIG example the command generates the record FIG_alphabet, that con-
tains the fields v and x of type nat list and the field idS of type nat set).

— channel introduces a datatype of typed communication channels (for the FIG
example the command generates the datatype FIG_channels that contains
the constructors req without communicated value and ret and out that
communicate natural values).

— schema allows the definition of schema expressions represented as an al-
phabetized relation over the process variables (in the example the schema
expressions FIG.Init, FIG.Out and FIG.Remove are generated).

— action introduces definitions for Circus actions in the process. These defi-
nitions are based on the denotational semantics of Circus actions. The type
parameters of the action type are instantiated with the locally defined chan-
nels and alphabet types.

— where introduces the main action as in action command (in the example the
main action is FIG.FIG of type (FIG_channels, FIG_alphabet)action).

4.2 Relational and Functional Refinement in Circus

The main goal of Isabelle/Circus is to provide a proof environment for Circus
processes. The “shallow-embedding” of Circus and UTP in Isabelle/HOL offers
the possibility to reuse proof procedures, infrastructure and theorem libraries
already existing in Isabelle/HOL. Moreover, once a process specification is en-
coded and parsed in Isabelle/Circus, proofs of, e. g., refinement properties can
be developped using the ISAR language for structured proofs.

To show in more details how to use Isabelle/ Circus, we provide a small exam-
ple of action refinement proof. The refinement relation is defined as the universal
reverse implication in the UTP. In Circus, it is defined as follows:

definition Al Cc A2 =(Rep_Action A1) Cutp (Rep_Action A2)

where A1 and A2 are Circus actions, Cc and Cutp stands respectively for refine-
ment relation on Circus actions and on UTP predicate.

14

This definition assumes that the actions A1l and A2 share the same alphabet
(binding) and the same channels. In general, refinement involves an important
data evolution and growth. The data refinement is defined in [16, 5] by backwards
and forwards simulations. In this paper, we restrict ourselves to a special case,
the so-called functional backwards simulation. This refers to the fact that the
abstraction relation R that relates concrete and abstract actions is just a function:

definition Simulation ("_ <_ _") where
A1 <R A2 = Va b.(Rep_Action A2)(a,b) — (Rep_Action A1) (R a,R b)

where A1 and A2 are Circus actions and R is a function mapping the corresponding
A1 alphabet to the A2 alphabet.

4.3 Refinement Proofs

We can use the definition of simulation to transform the proof of refinement
to a simple proof of implication by unfolding the operators in terms of their
underlying relational semantics. The problem with this approach is that the
size of proofs will grow exponentially with the size of the processes. To avoid
this problem, some general refinement laws were defined in [5] to deal with
the refinement of Circus actions at operators level and not at UTP level. We
introduced and proved a subset of theses laws in our environment (see Table 1).

P = P =<5 Q' < ~
oS8 Q/ _S,Q Squ P =5 Q g1 s g2 Grdl
P; P25 Q5 Q &P =5 g2&Q
P=s5Q TS Y P=s5Q TSy
Varl Inpl
varx @ P <g vary e @) clr — P <5cly —Q
P =g P =<5 Q' P = ~
S5 O 25 @ et ELE SCE
PP <sQMNQ cle - P =<scly— Q
[X =5 Y]
PX j'sQY mono P mono Q P =<5 Q P <5 Q'
Mul 7 7 Detl
uXePX<suYeQY POP' <5 QOQ

[Pre sci (S A)] [Pre sci (S A) sca (A, 47))

Pre sca A ser (S 1;17 S A" P =sQ

1
schema sc1 <g schema sco Schl a— P <sa—Q Syne
P=<s@Q P =<5Q ns ~snsi nsy~g nsh
; ; ——— Parl ——— Skipl
Plnsi | es | ns2] P =g Qnsy | s | nss] Q Skip <5 Skip

Table 1. Proved refinement laws

15

In Table 1, the relations “z ~g y” and “g; ~g ¢»” record the fact that the
variable z (repectively the guard g;) is refined by the variable y (repectively by
the guard go) w.r.t the simulation function S.

These laws can be used in complex refinement proofs to simplify them at the
Circus level. More rules can be defined and proved to deal with more compli-
cated statements like combination of operators for example. Using these laws,
and exploiting the advantages of a shallow embedding, the automated proof of
refinement becomes surprisingly simple.

Coming back to our example, let us consider the DFIG specification below,
where the management of the identifiers via the set idS is refined into a set
of removed identifiers retidS and a number max, which is the rank of the last
issued identifier.

circusprocess DFIG =
alphabet = [w::nat, y::nat]

state = [retidS::nat set, max::nat]

schema Init = retidS’ = {} Amax’ = 0

schema Out = w’ = max A max’ = max+l A retidS’ = retidS - {max}

schema Remove = y < max A y ¢ retidS A retidS’ = retidS U {y}
A max’ = max

where var w - Schema Init; (u X -(req —Schema Out; out!w —Skip)
O (ret?y —Schema Remove); X)

We provide the proof of refinement of FIG by DFIG just instantiating the
simulation function R by the following abstraction function, that maps the un-
derlying concrete states to abstract states:

definition Sim A = FIG_alphabet.make (w A) (y A)
({a. a < (max A) Aa ¢ (retidS A)D})

where A is the alphabet of DFIG, and FIG_alphabet.make yields an alphabet of
type FIG_Alphabet initializing the values of v, x and 1dS by their corresponding
values from DFIG_alphabet: w, y and {a. a < max A a ¢retidS}).

To prove that DFIG is a refinement of FIG one must prove that the main action
DFIG.DFIG refines the main action FIG.FIG. The definition is then simplified,
and the refinement laws are applied to simplify the proof goal. Thus, the full
proof consists of a few lines in ISAR:

theorem "FIG.FIG =<Sim DFIG.DFIG"
apply (auto simp: DFIG.DFIG_def FIG.FIG_def mono_Seq
intro!: VarI Seql Mul DetI SyncI InpI OutI SkipI)
apply (simp_all add: SimRemove SimOut SimInit Sim_def)
done

First, the definitions of FIG.FIG and DFIG.DFIG are simplified and the defined
refinement laws are used by the auto tactic as introduction rules. The second step
replaces the definition of the simulation function and uses some proved lemmas
to finish the proof. The three lemmas used in this proof: SimInit, SimOut and
SimRemove give proofs of simulation for the schema Init, Out and Remove.

16

5 Conclusions

We have shown for the language Circus, which combines data-oriented modeling
in the style of Z and behavioral modeling in the style of CSP, a semantics in
form of a shallow embedding in Isabelle/HOL. In particular, by representing
the somewhat non-standard concept of the alphabet in UTP in form of exten-
sible records in HOL, we achieved a fairly compact, typed presentation of the
language. In contrast to previous work based on some deep embedding [19],
this shallow embedding allows arbitrary (higher-order) HOL-types for channels,
events, and state-variables, such as, e.g., sets of relations etc. Besides, systematic
renaming of local variables is avoided by compiling them essentially to global
variables using a stack of variable instances. The necessary proofs for showing
that the definitions are consistent — i.e. satisfy altogether is_CSP_healthy —
have been done, together with a number of algebraic simplification laws on Circus
processes.

Since the encoding effort can be hidden behind the scene by flexible extension
mechanisms of the Isabelle, it is possible to have a compact notation for both
specifications and proofs. Moreover, existing standard tactics of Isabelle such
as auto, simp and metis can be reused since our Circus semantics is represen-
tationally close to HOL. Thus, we provide an environment that can cope with
combined refinements concerning data and behavior. Finally, we demonstrate
its power — w.r.t. both expressivity and proof automation — with a small, but
prototypic example of a process-refinement.

In the future, we intend to use Isabelle/ Circus for the generation of test-cases,
on the basis of [4], using the HOL-TestGen-environment [2].

6 Acknowledgement

We warmly thank Markarius Wenzel for his valuable help with the Isabelle frame-
work. Furthermore, we are greatly indebted to Ana Cavalcanti for her comments
on the semantic foundation of this work.

References

1. P. B. Andrews. Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. Kluwer Academic, 2nd edition, 2002. now published by Springer.

2. A. D. Brucker and B. Wolff. On theorem prover-based testing. Formal Aspects of
Computing, 2012. To appear.

3. M. Butler. CSP2B: A practical approach to combining CSP and B. Formal Aspects
of Computing, 12:182-196, 2000.

4. A. Cavalcanti and M.-C. Gaudel. Testing for refinement in Circus. Acta Informat-
ica, 48(2):97-147, 2011.

5. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. L. C. Cavalcanti and J. C. P. Woodcock. A Tutorial Introduction to CSP in
Unifying Theories of Programming. In Refinement Techniques in Software Engi-
neering, volume 3167 of LNCS, pages 220 — 268. Springer-Verlag, 2006.

A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5(2):56-68, June 1940.

A. Feliachi, M.-C. Gaudel, and B. Wolff. Unifying theories in Isabelle/HOL. In
UTP 2010, volume 6445 of LNCS, pages 188-206. Springer Verlag, 2010.

A. Feliachi, M.-C. Gaudel, and B. Wolff. Isabelle/Circus : a process
specification and verification environment. Technical Report 1547, LRI,
http://www.lri.fr/srubrique.php?news=33, Univ. Paris-Sud XI, Nov. 2011.

C. Fischer. How to combine Z with process algebra. In 11th Int. Conf. of Z Users
on The Z Formal Specification Notation, pages 5—23. Springer-Verlag, 1998.

C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall
International Series in Computer Science, 1998.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL—A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

M. Oliveira, A.L.C. Cavalcanti, and J.C.P. Woodcock. A denotational semantics
for Circus. Electron. Notes Theor. Comput. Sci., 187:107-123, 2007.

M. Roggenbach. CSP-CASL: a new integration of process algebra and algebraic
specification. Theor. Comput. Sci., 354:42—71, 2006.

A. W. Roscoe, C. A. R. Hoare, and Richard Bird. The Theory and Practice of
Concurrency. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1997.

A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement in
Circus. In FME 2002, volume 2391 of LNCS, pages 451—470. Springer, 2002.

K. Taguchi and K. Araki. The state-based CCS semantics for concurrent Z speci-
fication. In ICFEM’97, pages 283-292. IEEE, 1997.

J. C. P. Woodcock and A. L. C. Cavalcanti. The semantics of Circus. In ZB 2002,
volume 2272 of LNCS, pages 184—203. Springer-Verlag, 2002.

F. Zeyda and A.L.C. Cavalcanti. Encoding Circus programs in ProofPowerZ. In
UTP 2008, volume 5713 of LNCS. Springer-Verlag, 2009.

18

