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Abstract. SecureUML is a security modeling language for formalizing
access control requirements in a declarative way. It is equipped with a
uml notation in terms of a uml profile, and can be combined with arbi-
trary design modeling languages. We present a semantics for SecureUML
in terms of a model transformation to standard uml/ocl. The transfor-
mation scheme is used as part of an implementation of a tool chain
ranging from front-end visual modeling tools over code-generators to
the interactive theorem proving environment hol-ocl. The method-
ological consequences for an analysis of the generated ocl formulae are
discussed.

1 Introduction

Security is a major concern in the development, implementation and mainte-
nance of many distributed software systems like Web services, component-based
systems, or database systems. In traditional software engineering practice, the
development of a design model (business logic) and of a security model are
treated as completely different tasks; as a consequence, security features are
built into an existing system often in an ad-hoc manner during the system ad-
ministration phase. While the underlying motivation of this practice, a desire
for a separation of concerns, is understandable, the conflict between security re-
quirements and availability of services cannot be systematically analyzed and
reasonably balanced in this approach.

An integration of these two aspects into one unified methodology is necessary,
ranging from the modeling over the implementation to the deployment and the
maintenance phase of a system. To meet this challenge, in [1], a model driven
approach has been suggested, which is built upon the SecureUML language.
SecureUML is an embedding of a security language for access control into uml

class diagrams and statecharts. SecureUML allows for specifying system models
and security models within the same visual modeling tool. Subsequent model
transformations translate a combined secured system model (enriched by a busi-
ness model implementation) into code including a security infrastructure, e.g., a
configuration of policy enforcement points or other access control mechanisms.

While in previous work [1], the semantics of SecureUML has been given in
mathematical paper-and-pencil notation for logic and set theory, in this paper,

O. Nierstrasz et al. (Eds.): MoDELS 2006, LNCS 4199, pp. 306–320, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Model Transformation Semantics and Analysis Methodology 307

we present its semantics as a model transformation into a secured system model
described in plain uml/ocl. In this approach, we take the semantic features of
the ocl logic into account (such as undefinedness and three-valuedness), both
on the side of the design as well as the security model. Besides the advantage
of a seamless integration of SecureUML into the semantic foundations of uml,
the approach is the basis of an implementation for a tool-chain for SecureUML
ranging from visual modeling tools such as ArgoUML to both code-generators
and analysis tools such as the proof environment hol-ocl [4].

The goal of SecureUML is to provide means for a fine-grained specification of
access-control requirements like “principals of role r may never access an object
of class A” or “method m may never be called on an object of class A satis-
fying condition c.” These properties are essentially temporal safety properties,
in the sense that “never something bad will happen.” By stating them as re-
quirements, and enforcing them by suitably configured access-control points in
an implementation, they may obviously conflict with liveness properties such
as “eventually the user will get a result, provided he has permission to it.” We
show several proof-obligations that are generated for the secured system model
to check if it satisfies such desirable properties. These proof-obligations can then
be transferred to hol-ocl and verified by tactic scripts.

Related Work. With UMLsec [6] we share the conviction that security models
should be integrated into the software engineering development process by using
uml. However, UMLsec provides a formal semantics, but does not provide any
tool support, neither for code-generation nor for (formal) model analysis.

M. Koch and F. Parisi-Presicce [7] presented an approach for specifying and
analyzing access control policies in uml diagrams. They define an access control
semantics using graph transformations into attributed graphs. However, their
analysis methodology only considers conflicts, safety, etc. of the security policy
itself. In contrast, one of our main contributions is the possibility to reason about
the relationship between the security model and the design model.

The Plan of the Paper. After a general introduction into the technical and
theoretical foundations, we present the three main contributions: In Section 3, we
describe the translation of SecureUML models into standard uml/ocl models
(thus providing a translation semantics for the security aspects of a system), in
Section 4 we present details over the system architecture and our implementation
in a tool chain, and in Section 5, we present several relevant proof obligations
representing desirable properties for the secured system model.

2 Technical Background

2.1 SecureUML

SecureUML is a security modeling language based on rbac [5, 12] with some
generalizations. The abstract syntax of SecureUML is defined by the metamodel
shown in Figure 1. In particular, SecureUML supports notions of users, roles
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Fig. 1. SecureUML Metamodel

and permissions, as well as assignments between them: Users can be assigned
to roles, and roles are assigned to specific permission. Users acquire permissions
through the roles they are assigned to. Moreover, users are organized into a
hierarchy of groups, and roles are organized into a role hierarchy. In addition
to this rbacmodel, permissions can be restricted by Authorization Constraints,
which are conditions that have to be true (at run-time) to allow access.

Permissions specify which Role may perform which Action on which Resource.
SecureUML is generic in that it does not specify the type of actions and resources
itself. Instead, these are assumed to be defined in the design modeling language
which is then “plugged” into SecureUML by specifying (in a SecureUML dialect)
exactly which elements of the design modeling language are protected resources
and what actions are available on them. A dialect may also specify a hierarchy
on these actions, so that more abstract actions, like reading a class, can be
expressed in terms of lower-level actions, like reading an attribute of the class
or executing a side-effect free method. Furthermore, a dialect specifies a default
policy, i.e., whether access for a particular action is allowed or denied in the case
that no permission is specified. Usually, and so do we in this paper, one specifies
a default policy of allow to simplify the security specification.

In previous work, we have presented two dialects: One for a component-based
design modeling language, and one for a state-machine based modeling language.
Due to limitations of space, we will not address the issue of dialect definitions
much further in this paper, and refer to [1] for more details. Instead we will
assume as given, without presenting it in detail, a SecureUML dialect definition
for uml class diagrams in the spirit of the ComponentUML dialect. This means
that the dialect specifies classes, attributes and operations to be resources. The
dialect also specifies, among others, the actions create, read, update, and delete
on classes, read and update on attributes, and execute on operations.

SecureUML features a notation that is based on uml class diagrams, using
a uml profile consisting of custom stereotypes. Users, Groups and Roles are
represented by classes with stereotypes �secureuml.user�, �secureuml.group�,
and �secureuml.role�. Assignments between them are represented by ordinary
uml associations, whereas the role hierarchy is represented by a generaliza-
tion relationship. Permissions are represented as association classes with stereo-
type �secureuml.permission� connecting the role and a permission anchor. The
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Fig. 2. Access Control Policy for Class Meeting

attributes of the association class specify which action (the attribute’s type) on
which resource (the attribute’s name) is permitted by this permission. Autho-
rization constraints are (ocl) constraints attached to the association class. Note
that attributes or operations on roles as well as operations on permission have
no semantics in SecureUML and are therefore not allowed in the uml notation.

Figure 2 and 3 show a uml model of a simplified group calendar application
together with an exemplary access control policy, which we will use as a running
example in this paper.

The left part of Figure 2 shows the access control policy for the class Meeting,
whereas the right part shows the design model of the application. The design
model consists of Meetings, Rooms, and Persons. Meetings have an owner, par-
ticipants, and may take place in a particular room. The three association classes
specify (from top to bottom) the following access control policy:

1. owners of meetings may delete them, or change the meeting data,
2. ordinary users may read meeting data and create new meetings,
3. administrators may cancel meetings (involves notifying its participants), and
4. technicians may only read meeting data.

For example, the topmost association class (OwnerMeeting) has two attributes
with type update resp. delete. This specifies that the associated role (UserRole)
has the permission to update and to delete meeting objects. According to the pol-
icy, however, only owners of meetings should be able to do so. The property of be-
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ing an owner of a meeting cannot be easily specified using a pure rbacmodel. It is
therefore specified using the authorization constraint caller = self .owner.name.
For this purpose, we introduced a new keyword caller of type String into the ocl

language that refers to the name of the authenticated user making the current
call. Attaching this authorization constraints to the permission thus restricts the
permission to system states where the name of the owner of the meeting matches
the name of the user making the request.

The name of the attribute of the association class is used to navigate from
the permission anchor, i.e., the classifier associated to the association class, to
the actual protected resource. This is necessary because we can only associate
classifiers in uml, not operations or attributes. E.g., the permission AdminCancel
in Figure 2 refers to the operations cancel() and notify () of the class Meeting.

Person

+name : String

<<secureuml.role>>
UserRole

<<secureuml.role>>
AdministratorRole

<<secureuml.permission>>
UserReadPerson

+Person : read

<<secureuml.permission>>
FullAccessPerson

+Person : fullaccess

Fig. 3. Access Control Policy for Class Person

In addition to Figure 2, Figure 3 specifies the following access control policy
for the class Person: 1. ordinary users may read person data 2. administrators
have arbitrary access on person.

Note that technicians have no permissions on person objects. Also note that
we left out the specification of users, groups and their role assignments in this
example to simplify the presentation.

2.2 HOL-OCL

hol-ocl [4] is an interactive proof environment for uml/ocl. It defines a
machine-checked formalization of the semantics as described in the standard for
ocl 2.0. This is implemented as a conservative, shallow embedding consisting of
ocl into the hol instance of the interactive theorem prover Isabelle [10]. This in-
cludes typed, extensible uml data models supporting inheritance and subtyping
inside the typed λ-calculus with parametric polymorphism. As a consequence of
conservativity wrt. hol, we can guarantee the consistency of the semantic model.
Moreover, hol-ocl provides several derived calculi for uml/ocl that allows for
formal derivations establishing the validity of uml/ocl formulae. Automated
support for such proofs is also provided.
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3 Transformation

The transformation is based on the idea of substituting the security model,
which is specified with SecureUML, with a model of an explicit enforcement
mechanism, which is specified in pure uml/ocl. This enforcement mechanism
consists of a constant part, i.e., this part is independent of the design model, and
a part that varies with the design model. We call the constant part “authorization
environment” and explain it in more detail in Section 3.1.

The basic idea of this enforcement mechanism is to model every action on a
protected resource by a uml operation and to transform the access control policy
into ocl constraints on these operations. Because there are actions on resources
that are not operations in the original design model, for example reading or
updating an attribute value, we have to transform the design model accordingly.
This design model transformation is described in Section 3.2.

Section 3.3 describes the security model transformation, i.e., how the access
control policy specified using SecureUML is transformed into ocl constraints.

3.1 Authorization Environment

The basis for our model transformation is a model of a basic authorization
environment, as shown in Figure 4.

Context Principal

+isInRole(s : String) : Boolean

Identity

+name : String

Role

+getRoleByName(s : String) : Role

+name : String

1 10..*

+principal

0..*

+identity

0..* 0..*

+roles

Fig. 4. Basic Authorization Environment

All protected resources get a reference to a Context object, which in turn has
a reference to a Principal object. Principal objects represent the authenticated
users of the system, i.e., the information of the system user together with au-
thentication information. They are associated with their corresponding identity
object, which represent the actual system users. To check role membership and
user identities, the principal contains an operation isInRole (s : String ):Boolean.
The class Identity holds information about the system user(s), which in our case
is just its name and its roles. The distinction between Principal and Identity al-
lows a certain flexibility in the treating of authenticated users. For example,
they can hold information about the authentication method they used. Also, it
allows users to authenticate for a session using only a subset of their assigned
roles (which is currently not supported in SecureUML). In the simplified model
presented here, the principal object does not hold any extra information, and
system users will always have all their assigned roles. This is done by imposing
the following constraint:

context Principal :: isInRole (s : String) : Boolean
post: result = self . identity . roles .name−>includes(s)
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This environment is minimal on purpose, but sufficient to express authoriza-
tion requirements. In particular, we do not consider authentication here.

3.2 Design Model Transformation

The model transformation is split into two parts: transforming the design model,
and transforming the security model. Transforming the design model is necessary
to allow the expression of security policies as ocl constraints. The transforma-
tion itself consists of first copying the input design model, adding the autho-
rization environment to it, and adding new (access controlled) operations to
the model. In particular, all invariants, preconditions and postconditions of the
original design model are preserved, and new constraints are only imposed on
generated classes and operations.

For the addition of the authorization environment, we associate each permis-
sion anchor with the context class from the authorization environment. Further-
more, all access controlled actions have to be represented as operations in the
target model. Table 1 gives an overview over the operations that are generated
in this step, and how their semantics is specified using ocl postconditions.

Table 1. Overview of generated operations

model element generated operation with ocl constraints
Class C context C::new():C

post: result .oclIsNew() and result −>modifiedOnly()
context C:: delete ():OclVoid
post: self . oclIsUndefined () and self@pre−>modifiedOnly()a

Attribute att context C::getAtt ():D
post: result =self . att
context C:: setAtt(arg :D):OclVoid
post: self . att=arg and self . att−>modifiedOnly()

Operation op context C::op sec (...):...
pre: preop

post: postop = postop[f () �→ f sec (), att �→ getAtt()]

a While self@pre is unsupported by the concrete syntax, it is semantically well-defined.

For example, reading and writing an attribute value has to be represented
by getter- and setter-methods. This means that for each attribute with public
visibility, a public getter and a public setter method has to be generated, and the
visibility of the attribute has to be made private. This transformation is similar
in spirit to what one has to do when generating executable code or code skeletons
from the model, cf. [1] for example. Instead of generating code for these getter
and setter methods, we here have to generate ocl constraints to define their
semantics. As a consequence, we generate the postconditions shown in Table 1.

Also, for each operation op() in the design model, we generate a second oper-
ation op sec(). The postcondition postop for op sec() is structurally the same as
the postcondition postop for op(), where every occurrence of an attribute call is
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substituted with the corresponding getter operation call, and every occurrence
of an operation call is substituted with the corresponding call of the secured
operation. This substitution ensures that the functional behavior of the secured
operation stays the same, but that it is only “executable” when all security re-
quirements for establishing the postcondition are fulfilled. The reasoning here
is that a caller will need (at least) the permission necessary to establish the
postcondition for performing an operation call. Furthermore, we make the pre-
condition preop specified for op() into a precondition for op sec(), too. For this,
we keep the ocl expression unchanged, i.e., no substitutions are necessary this
time, and only change the context declaration of the ocl constraint.

In the postcondition of setter methods, i.e., C:: setAtt(arg :D):OclVoid, it is
not sufficient to specify that the attribute gets the value of the given argument.
We also need to specify that “nothing else” happens during this operation call.
Using standard ocl this is difficult or even impossible for arbitrary methods: one
has to specify that the whole system stays unchanged except for this attribute.
Therefore, hol-ocl provides an extension of ocl for specifying frame properties
within postconditions: Set(T)::modifiedOnly():Boolean. This allows for specify-
ing explicitly the set of object instances that the system can change during state
transition. For example, we can now define C:: setAtt(arg :D):OclVoid using the
postcondition self . att = arg and self . att−>modifiedOnly().

Analogous transformations are done for association ends, i.e., they are handled
as they were attributes. Also, operations for constructing and deleting objects
are created, with the given constraints specifying their semantics.

Figure 5 shows the generated authorization environment together with the
transformed permission anchors of the running example.

Context Identity

+name : String

Role

+getRoleByName(s : String) : Role

+name : String

Principal

+isInRole(s : String) : Boolean

Person

+getName() : String
+setName(arg : String) : OclVoid
+new() : Person
+delete() : OclVoid

-name : String

1 1

Meeting

+getStart() : Date
+setStart(arg : Date) : OclVoid
+...()

-start : Date
-duration : Time

1

1

0..* 0..*

+roles

0..*

+principal

0..*

+identity

+ctxt

0..*0..*
+ctxt

Fig. 5. Authorization Environment with Permission Anchors

3.3 Security Model Transformation

Role Hierarchy First, we transform the role hierarchy of the security model
into ocl invariant constraints on the classes of the authorization environment.
The total set of roles in the system is specified by enumerating them:

context Role inv : Role. allInstances (). name=Bag{<List of Role Names>}
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The inheritance relation between roles is then specified by an ocl invariant
constraint on the Identity class:

context Identity inv : self . roles .name−>includes(’<Role1>’) implies
self . roles .name−>includes(’<Role2>’)

Given this, role assignments to identities can then be stated by further ocl

invariant constraints on the Identity class:

context Identity inv : self .name = ’<userName>’ implies
self . roles .name=Bag{<List of Role Names>}

We denote by invsec the conjunction of these invariants. We have to ensure that
invsec is consistent, i.e., that situations like the following do not arise:

context Role
inv : Role. allInstances (). name=Bag{’UserRole’,’AdministratorRole’,’TechnicianRole’}

context Identity inv : self .name = ’Alice’ implies self . roles .name=Bag{’Spy’}

Security Constraints The main part, however, of the security model transfor-
mation is the generation of the security constraints for the operations generated
during the design model transformation. The existing constraints on the gener-
ated operations are transformed according to Table 2.

Table 2. Overview of Transformed Constraints

Effect of the Security Model Transformation
invC �→ invC

preop �→ preop

postop �→ let auth = authop in
if auth then postop

else result . oclIsUndefined () and Set{}−>modifiedOnly() endif

Table 2 applies only to operations generated during the design model trans-
formation. As noted above, the pre-existing model elements of the design model
are preserved. Only the postconditions are changed during this transformation,
i.e., the invariants invC for classes C of the design model and the preconditions
preop for access-controlled operations stay the same. The transformation wraps
the postcondition generated during the design model transformation with an ac-
cess control check using the authorization expression authop, which evaluates to
true if access is granted, and false otherwise. If access is granted, the behavior
of this operation will not be changed. Otherwise, the transformed postcondition
ensures that no result is returned and the system state does not change.

The expression authop is built in the following way: Let perm1, ..., permn be
the permissions for this operation call, and let rolesi be the set of roles, constri

be the authorization constraint associated with permission permi, and

constri = (constri[caller �→ctxt.principal.identity.name])
[f() �→ f@pre(), att �→ att@pre, aend �→ aend@pre]
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be the ocl expression where every occurrence of the non-standard keyword
caller in constri is substituted by the expression ctxt . principal . identity .name,
which evaluates the name of the current caller using the authorization environ-
ment. Operation, attribute, and association end calls are substituted by their
post-state equivalents. authop is then defined as the following ocl expression:

authop := let perm1:Boolean = Set{<list of role names r ∈ roles1>}
−>exists(s|ctxt@pre. principal@pre . isInRole@pre (s))
and constr1

−− analogous for perm2 to permn
perm:Boolean = perm1 or perm2 or ... permn

in perm.oclIsDefined () and perm

We explicitly check the authorization expression for undefinedness, mapping it
to false if it is undefined. This is necessary because undefinedness can be caused
by user-specified authorization constraints, which form a part of authop.

For illustration purpose, we show the final postcondition of the setter opera-
tion Meeting:: setStart () below:

context Meeting:: setStart (arg :Date):OclVoid
post: let auth = let perm1:Boolean = Set{’UserRole’}

−>exists(s|ctxt@pre. principal@pre . isInRole@pre (s))
and ctxt@pre. principal@pre . identity@pre .name@pre

= self .owner@pre.name@pre
perm2:Boolean = Set{’AdministratorRole’}

−>exists(s|ctxt@pre. principal@pre . isInRole@pre (s))
in perm 1 or perm 2

in if auth. oclIsDefined () and auth then true
else result . oclIsUndefined () and Set{}−>modifiedOnly() endif

4 Implementation

The transformation is part of a tool-chain (see Figure 6) that consists of a uml

case tool with an ocl type-checker for modeling software systems, a model
repository, model analyzers and various code generators.

We use the uml case tool ArgoUML (http://argouml.tigris.org) and
combine it with the Dresden ocl2 Toolkit (http://dresden-ocl.sf.net/),
which provides a ocl 2.0 compliant [11] parser and type-checker. Both tools use
the Netbeans Metadata Repository (mdr), which is a model repository support-
ing the omg mof and the Java jmi standards. Using mdr, one can instantiate
arbitrary mof-compliant metamodels, which results in a model extent, a con-
tainer for models compliant with this metamodel. mdr can automatically gen-
erate jmi interfaces from the metamodel so that one can, using these interfaces,
access and manipulate the contents of such a model extent.

Our Java-based transformation tool, su2holocl, uses different mdr extents,
namely: As first step of the transformation we parse the input model using the
SecureUML profile, into a separate model extent based on the SecureUML meta-
model. This gives us the ability to deal with the security part of the model on an

http://argouml.tigris.org
http://dresden-ocl.sf.net/
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Fig. 6. Tool-chain Overview

abstract level. The Dresden ocl Toolkit uses a specialized metamodel combining
the uml 1.5 and the ocl 2.0 metamodel. This results in an upward compati-
ble extension of the uml 1.5 Metamodel: every uml 1.5 model is still a model
of the combined metamodel. We use the ocl type-checker for checking user-
defined constraints that occur in the design-model and for checking the security
constraints that are generated during the transformation. As we currently only
typecheck the transformed ocl constraints, not the original authorization con-
straints, we do not need to extend the Dresden ocl Toolkit, e.g., for supporting
“caller” as a new keyword. The toolkit also provides an ocl expression visitor,
which we use to implement the substitutions for transformed postconditions.

For interfacing the results of our model transformation with Isabelle and hol-

ocl, which are written in sml, we also developed a data repository: su4sml. This
repository is also implemented in sml and supports the various metamodels we
are using, e.g., uml, ocl, SecureUML. At the moment, su4sml is used for import-
ing uml models into hol-ocl. We also developed a generic code-generator based
on su4sml that generates code from SecureUML models in various SecureUML
dialects, that respects the specified access control policy.

5 Methodology

In this section, we discuss three key issues that arise while adding access control
specifications to an object-oriented system model. In particular, we define sev-
eral well-formedness conditions on the security specification: an access control
aware variant of Liskov’s principle, a data-accessibility condition and a notion
of relative consistency.

5.1 Access Control and Inheritance

In an object-oriented system, inherited methods inherit the access control policy
assigned to the method in the superclass. However, one can assign an access
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control policy to a subclass which is completely independent from the inherited
policy. This leads to the idea of extending Liskov’s principle to access control
policies, i.e., access rights should be preserved along the class hierarchy. This
boils down to the following two well-formedness conditions:

1. all overridden methods must have less or equal role assignments as their
counterparts in superclasses and

2. the security constraints for an overridden operation must imply the corre-
sponding security constraints of the original operation.

A secured system model satisfying these requirements is called overriding-secure.
Note that the implication required here goes in the opposite direction of

Liskov’s principle [8]. We want to rule out security problems caused by over-
ridden methods that have more functionality and therefore need a more restric-
tive access control policy. The overriding-secure property is therefore advisable,
although violations may be adequate in certain situations.

5.2 Accessibility of Data

The following problem comparable to “dead-code-detection” in conventional
compilers may occur in a secured system model. It is not necessarily imply-
ing inconsistency (see next subsection), but indicating bad specification practice
potentially resulting from specification errors.

Using potentially inconsistent security constraints may lead to the situation
that some operation in a class can be accessed by no principal. We call an
operation of this kind inaccessible.

Accessibility of an operation op in class C may be defined as follows:

1. if op has no role assignments, it is accessible by all principals (following our
default-accessibility rule (c.f. Section 2.1)).

2. if op has role-assignments labeled with security constraints SC 1, . . . ,SC n,
then op is accessible iff SC 1 ∨ . . . ∨ SCn holds for all objects of this class.

As a well-formedness condition of a secured system model, we require that all
operations are accessible.

5.3 Relative Consistency

Following general practice, we call a system model consistent iff the conjunction
of all invariants invglobal is invariant-consistent and all operations m are imple-
mentable. An invariant inv is invariant-consistent iff there are satisfying states
(i.e., ∃σ.σ |= inv in the terminology of [11, Appendix A]). An operation m is
implementable iff for all pre-states σpre and all input parameter self , i1, . . . ,
in there exist a post-state σpost and an output result such that the operation
specification of m (consisting of preop and postop) can be satisfied:1

1 We make the implicit binding of the internal free variables self , i1, . . . , in occurring
in the ocl formulae preop and postop explicit.
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∀ σpre ∈ Σ, self , i1, . . . , in. σpre |= preop(self , i1, . . . , in) −→
∃ σpost ∈ Σ, result. (σpre, σpost) |= postop(self , i1, . . . , in, result)

where Σ is the set of legal states (i.e., Σ = {σ|σ |= invglobal}). Our notion of
implementability of an operation is only meaningful for system models where
invglobal is invariant-consistent; otherwise the above definition yields true for the
trivial reason that Σ is empty. Being implementable is also called “non-blocking”
in the literature and can be viewed as a liveness property.

The question arises what is the “desirable semantic result” of our model trans-
formation on the design model. In particular, we expect that in case of a security
violation (i.e., authop does not hold) an operation preserves the state and reports
an error. In the other case (i.e., authop does hold, meaning that a principal has
“enough” permissions), we expect that the model transformation preserves the
“functional content” of the operation specification of the system model. These
requirements are captured by a security proof obligation spoop (which is auto-
matically generated for each operation):

spoop := authop implies postop � postop

where x � y is the strong equality yielding true iff x = y (i.e., the strict ocl

equality holds) or x and y are both undefined.
The following example illustrates the role of security proof obligations, and

what sorts of inconsistencies in secured system models they rule out. Assume
that we want to add to the class Meeting the operations:

context Meeting::getNames(): Sequence(String)
post: result = self . participants .name−>asSequence()

context Meeting::getSize (): Integer
post: result = self . participants −>size()

and attempt to give execute permissions for both operations to TechnicianRole.
Recall that this role has no read permissions for objects of class Person and
therefore is not able to access the names of participants. Following the definitions
in Section 3, we have:

postgetNames � result = self . getParticipants (). getName().asSequence()

Since authop and the strong equality ( � ) never reduce to OclUndefined, the
security proof obligation spogetNames boils down to:

σ |= authop −→ (σ, σ′) |= postgetNames � postgetNames

However, under the assumption σ |= authop the caller is in the role Technician-
Role, i.e., has execute permission to Meeting::getNames() in the given concrete
state σ. Because users in the role TechnicianRole do not necessarily have
permission for the accessor Person:: getName(), this operation call may yield
undefined. In this case, postgetNames(self , result) = OclUndefined. For consistent
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design models, however, postgetNames(self , result) is never OclUndefined. There-
fore, the conclusion becomes false and the security proof obligation becomes
invalid: spogetNames = false . This indicates that it does not make sense to
give permissions for the operation Meeting::getNames() to the TechnicianRole
role, as they cannot execute it anyways. In contrast, we can prove spogetSize be-
cause read permission for the association end participants is sufficient to satisfy
the postcondition. As the TechnicianRole has this permission, we can grant the
TechnicianRole role the execute permission for Meeting:: getSize ().

Due to the construction of postop and the accessor functions, the proof or
disproof of spoop is fairly easy and can be automatically supported in the most
common case: a non-recursive postcondition containing just attribute accesses.
For recursive calls induction is needed. An important property of security proof
obligations is illustrated by the following theorem:

Theorem 1. An operation op sec of the secured system model is implementable
provided that the corresponding operation of the design model is implementable
and spoop holds.

Proof. The complete proof can be found in the extended version of this paper [2].

Inaccessible operations (as discussed in the previous section) were transformed
to totally undefined functions. They are clearly implementable operations, albeit
pathological ones.

A class system is called security consistent if all spoop hold.

Theorem 2. A secured system model is consistent provided that the design
model is consistent, the class system is security consistent, and the security model
is consistent.

Proof. By definition of the model transformation, we have invsec-global ≡ invglobal
and invsec. Since the invariant of the security model is consistent, since invglobal is
invariant-consistent by assumption, and since the signature parts of the security
model and the design model are disjunct, there must be states that satisfy both
invariants. The implementability of all methods follows from Theorem 1. �	

These theorems enable modular specifications and reasoning for secure systems,
which is important for large-scale applications.

6 Conclusions

We presented a systematic approach to include access control into data models
given by uml class diagrams. From an integrated design and security model, a
secured system model is generated which can be analyzed for consistency and
liveness properties on the one hand and further transformed to code on the other.

Access control is a necessary means to establish security, but not a sufficient
one: class invariants or implementation details may allow an attacker to infer
implicit secrets of a system. For example, the Name attribute in Person may
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be correlated via class invariants to other attributes that can be accessed by
TechnicianRole. A systematic analysis of this problem on the basis of the secured
system model requires data flow analysis (see [9, Sect. 5], for an overview) which
is out of the scope of this paper, but clearly an interesting line of future research.

Another line of future research is proving that the generated code—including
the code for the methods of the design model—complies to the secured system
model, or that a more concrete secured system model represents a refinement of
a more abstract one. This involves proofs over the correctness of implementation
issues of access control points as well as auxiliary data or different data structures
which need different internal checks to establish the security behavior specified
in the original secured system model. This type of verification problems has
already been addressed [3]; however, it remains to show how they can be applied
to an object-oriented setting and SecureUML.
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