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Abstract . We present an approach to integrate several existing tools and
methods to a technical framework for correctly developing and executing
program transformations. The resulting systems enable program deriva-
tions in a user-friendly way.
We illustrate the approach by proving and implementing the
transformation Global Search on the basis of the tactical theorem prover
Isabelle. A graphical user-interface based on the X-Window toolkit Tk
provides user friendly access to the underlying machinery.

1 Introduction

Development by transformation is a prominent approach in formal program develop-
ment (CIP [Bau+85], PROSPECTRA [HK 93], KIDS [Smi 90]). Many case studies
have proven its feasibility and demonstrated how much more abstract and user-oriented
developments could be achieved than using usual post-verification approaches (funda-
mental for systems like PVS [OSR 93]). One recent case study is [KW 95]; and a
prominent one is [SPW 95] where a strategic transportation scheduling algorithm is
developed which is 200 times faster than the ones in practical use today. Unfortuna-
tely, implementations of transformation systems tend to be complicated and insecure.
The correctness issue of transformation rules is usually not treated at the implementa-
tion level of existing systems.

In contrast to this, there is a family of "tactical theorem provers" in the tradition
of LCF available with systems like HOL [GM 93] and Isabelle [Pau 94a], that are
both well-designed and powerful. Coming with an open system-design going back to
Milner, they allow for user-programmed extensions in a logically sound way. But
there is recent prominent criticism that these provers, because of their "academic
(ivory tower) origins", have "historically placed more emphasis on logical
foundations and less on usability" [Gor 95]. This is clearly one of the reasons for the
small acceptance of these provers in industry up to now.

In this paper, we demonstrate a technique to combine these two approaches. It re-
sults in a simple implementation design, in proven correct transformations which are
easy to extend and to modify, and in a graphical user-interface that allows developers
to profit from the abstraction of the transformational approach. We claim that our

1 This work has been supported by the BMBF projects UniForM  [Kri +95] and
ESPRESS.



technique is applicable in a fairly wide range of problems, simply by modifying and
extending our prototype implementation.

Our work integrates three existing and well documented public domain tools —
the tactical theorem prover Isabelle based on Standard ML [HMM 86] and the X-
Window toolkit Tk [Ous 94]. As object-language, we chose higher-order logic (HOL)
which is one instantiation of the generic system Isabelle with an object logic  and  is
delivered with the standard package. A subset of HOL formulas can easily be
translated into functional programs (e.g. ML).

The basic idea of our approach is to separate the logical core of a transformation
from the pragmatics of its application. As a synthesis theorem it can be proven cor-
rect independently in the logics of the object language, while the tactical sugar, which
often highly system dependent, is concerned with the concrete application in a deve-
lopment context, i.e. the construction of suitable substitutions, "hard-wired"
quantifier eliminations and standard simplifications, together with user interaction to
control this process. The distinction between synthesis theorem and tactical sugar
establishes an important separation of concerns.

We illustrate our approach by the transformation Global Search [Smi 87] that
converts a non-constructive specification into a constructive one. This complex trans-
formation has the character of a "design tactic" [Smi 90] or "design method" [HK 93].
Other transformations like Divide-and-Conquer or Split of Postcondition and elemen-
tary transformations like recursion removal or fusion also fit into our framework.

We proceed as follows: after introducing the idea of synthesis theorems and a brief
presentation of Isabelle, we present Global Search as a synthesis theorem and prove it
correct within Isabelle/HOL. We sketch several possibilities of tactical programs for
our synthesis theorem. The resulting system is embedded into a user interface. Lastly,
a small application example demonstrates the use of the resulting prototype system.

2 Transformations as Synthesis Theorems

2.1 The Concept

The core of our presentation is a general scheme of synthesis theorems, i.e. of  logical
formulas. The automatic construction of substitutions and other  deduction-technical
machinery, for short — the tactical sugar — is discussed in section 3.5.

Our intuition of "performing a program transformation" motivates several key no-
tions (cf. [HK 93]). A transformation is composed of an input pattern I which is
matched against an application context of a specification. This pattern is designed to
be as general as possible and at the same time to be best supportable by automatic
matching procedures (which belong to the tactical sugar). From the result of matching
I against the specification at a specific position, an instance of the output pattern O is
constructed automatically. All side conditions that can not  be treated by automatic
procedures and require theorem proving are  collected in the applicability condition V.
Usually, the output pattern contains function symbols that are introduced by the
application of the transformation. They represent the design decisions of the whole
transformation step, i.e. auxiliary functions whose definitions have to be provided by
the user. These items are called the parameters  P1 …Pn  of the transformation.

On the logical side, these items can be organised as a conditional equation:

∀P1 ..Pn. V  ⇒  Ι  k Ο



where k is a transitive binary operator that typically stands for

logical equality or equivalence in case of symmetric transformations or

the implication ⇐ in case of classical refinement (the input pattern has to
follow from the output; in algebraic jargon: the model class of the output
specification is included in the model class of the input specification) or

the Scott-definedness ordering  in case of "robust implementations"
using object-logics like LCF (see [Pau 94a]).

This scheme is strong enough to capture a large variety of transformations —
from "Filter Fusion" [BM 93] to "Split of Postcondition" [HK 93]. These have been
presented in [KW 95]. The synthesis theorem for Global Search is discussed later.

The separation into synthesis theorem and tactical sugar has the following conse-
quence for the soundness of a transformation: The logical core can be proven within
the logic in which it is represented. This can be done by showing that the synthesis
theorem follows from the basic axioms of the logic — or, in other words, the synthe-
sis theorem follows from a conservative extension of the core logic (see below).

2.2 Introduction to Isabelle

Isabelle is a generic  theorem prover that supports a family of logics, e.g. first-order
logic (FOL), Zermelo-Fränkel  set theory (ZF), constructive type theory (CTT), the
Logic of Computable Functions (LCF), and others. We only use its set-up for higher-
order logic (HOL). Isabelle supports natural deduction style. Its principal inference
techniques are resolution (based on higher-order unification) and term-rewriting.
Isabelle provides syntax for hierarchical theories (containing signatures and axioms).

As an example, let us create the theory List0 from the theory HOL that contains
the basic rules of the logic. All input in the form of UNIX files or user input will be
denoted with this FONT — enriched by the usual mathematical notation for ∀, ∃,...
instead of ASCII-transcriptions.2 We define the unary type constructor list, its con-
structors ([], #) and the concatenation @:

List0 = HOL + 
types list 1
arities list :: (term)term
consts " [ ] " :: "α  list" ( " [ ] " )

" # " :: "[α , α  list] →  α  list" (infixr 70)
"@" :: "[α  list, α  list] →  α  list" (infixl 60)

rules
app_mt "[]@m = m"
app_cons "(a#n)@m = a#(n@m)"

end

Here, list belongs to the type universe term of HOL and accepts types from
term. This construct is a tribute to the genericity of Isabelle. "→" is the function
space constructor, and the brackets denote curried functions: [α, α list] → α list is
equivalent to α→α list→α list. The equality "=" stems from HOL, while "≡" is

2 We do not distinguish quantifications and implications at the different logical levels
throughout this paper; see [Pau 94a].



used to denote the definitional equality. The comments ("[]") and (infixl 70) are
pragmas setting up the parsing and pretty-printing machinery of Isabelle.

2.3 The Logic HOL

In this section, we will give a short overview of the concepts and the syntax. Our
object-language HOL goes back to [Chu 40]; a more recent presentation is [And 86].
In the formal methods community, it has achieved some acceptance, especially in
hardware-verification. HOL is a classical logic with equality. It is based on total
functions denoted by λ-abstractions like "λx.x". Function application is denoted by
f a. Although its type discipline incorporates polymorphism with type-classes (as in
Haskell), in this paper we only use Milner-Polymorphism (as in ML).

Logical rules of HOL like:

P Q P ∧ Q
                            

(conjI)
                            

(conjunct1)
P ∧ Q    P

will be represented in Isabelle by

[| ?P ; ?Q |]  ⇒  ?P ∧ ?Q    ?P ∧ ?Q  ⇒  ?P

where variables prefixed by a question mark are called meta-variables. Their exact
meaning in the deduction process is discussed later.

2.4 Proving in Isabelle

Isabelle as a system is a set of function definitions in the ML-environment (or: "data-
base"). They represent a collection of function- and data type definitions. Most
notable are the three mutually dependent data types: tactic, thm and (internal)
proof_state.
Isabelle supports two styles of theorem proving: forward proof and backward proof.

Backward proving in Isabelle. The general scheme of a backward proof con-
sists of three steps:
(1) The initialisation of the internal "proof-state" with the formula to be

proven (the "goal"). It is done by the operation:

 goal: theory -> string -> thm list

where the string contains the textual representation of the formula 
to be type-checked and proved within theory.

(2) A refinement of the proof-state. It is performed with the operation:

 by : tactic -> unit
This refinement can be seen as a transformation of the proof-state by means of
tactics and already proven theorems. Two of these are the following pivotal
built-in tactics 

 atac: int -> tactic rtac: thm -> int -> tactic
The integer parameters specify the subgoal to which the tactic is applied. They
encapsulate the Isabelle meta-inferences assumption (basically "A" implies "A"
modulo unification) and resolution  (essentially "A ⇒  B" and "B ⇒  C"
implies "A ⇒ C" modulo unification)



(3) The extraction of a theorem produced out of a proof-state with no subgoals:
result: unit -> thm;

returns a value that can be bound to an arbitrary ML-identifier.
By composition of these operations on the proof-state, large proof-scripts can be

organised in the *.ML files that are executed automatically when loading a theory.
Forward proving in Isabelle. Forward reasoning mimics the classical way

of constructing proof trees. The combination of two rules, say conjI and conjunct1
given above, can be done by using the resolution combinator (involving unification):

RS : thm * thm -> thm

in the form:

conjI RS conjunct1

which is evaluated by Isabelle to the derived rule:

[| ?P; ?Q |] ⇒  ?P

As simple example for higher-order unification, we consider the specialisation rule:

∀ x. ?P x ⇒ ?P ?x (spec)

With this HOL rule it is possible via forward proving in a theorem, say
∀ y. y = a, to eliminate the quantification and to replace the bound variable y by
the meta-variable ?x. The resulting formula would be ?x = a. We can interpret the
meta-variable ?x as a "hole" in the formula that can be filled later by substitutions
(usually produced as a consequence of unification inside atac and rtac). This
possibility of "postponing substitutions" and of transforming theorems in a
programmed, but logically sound way, is important for our approach.

Isabelle provides substantially more machinery, especially for people who want to
set-up their own logic or who yearn for a higher degree of automatisation. However,
with the subset presented here, extended by some variants, it is already possible to
perform substantial proofs and to describe the relevant operations in this paper.

2.5 Conservative Extension in HOL

The introduction of new axioms ("rules" in case of List0) while building a new
theory is an extremely dangerous method, since the resulting theory may easily be in-
consistent. Hence it is necessary to recall that there is a number of syntactic schemes
for specification-extension that maintain the consistency of the extended one. (For a
more formal and very readable account on "conservative extensions schemes" the
reader is referred to [GM 93]). Some schemes are:
• the constant definition "c ≡ t" or "c x ≡ t x" of a fresh constant symbol c by a

closed expression t not containing c,

• the type definition (a set of axioms stating an isomorphism between a non--
empty subset of a base-type and the new type to be defined),

• a set of equations forming a primitive recursive scheme  over a fresh constant
symbol f,

• a set of equations forming a well-founded recursive scheme over a fresh symbol f.
The basic idea of these extension schemes is to avoid general recursion. Instead,

they introduce axioms only in a controlled way. The desired properties have to be de-
rived from these. Building up large theories by methodically using conservative exten-
sions used to be a quite tedious enterprise, but recent advances in the Isabelle  imple-
mentation have substantially improved the support for this approach [Pau 94b].



3 Global Search Transformation

We use the approach sketched in section 2 to implement a transformation based on
the theory of Global Search algorithms that has been developed at Kestrel Institute
and implemented in the Kestrel Interactive Development System (KIDS) [Smi 87,
Smi 90]. After presenting the basic idea of global search, we show how the theory
can be formalised in Isabelle/HOL. We prove a synthesis theorem under the resulting
theory, and finally provide a tactic program (the sugar) converting the synthesis theo-
rem into an executable transformation.

3.1 The Algorithm Design Theory Global Search

The global search theory characterises a large class of algorithmic problems that are
solvable by search or optimisation algorithms. It covers problems typically solved,
e.g., by backtracking, branch-and-bound, or simplex algorithms.

For the purpose of this paper, we closely stick to the notation used in [Smi 87].
There, algorithms are described by input / output predicates. A problem specification
is a quadruple P = 〈D,R,I,O〉 where D is the input domain and R is the output range
of the function f to synthesise.  The predicate I  describes the admissible inputs, and
O describes the input / output behaviour of f.  Hence, f is a solution to P if

� ∀ x:D.  I(x) ∧ y = f(x) ⇒ O(x, f(x))

A design theory extends a problem specification by additional functions. It states
sufficient properties of these functions to formulate a schematic algorithm that solves
the problem correctly. The basic idea of global search is to associate inputs x with
search spaces that initially contain all solutions z with O(x,z). Search is then perfor-
med by splitting search spaces into "smaller" ones until solutions are directly extrac-
table. This idea is captured in the design theory of Figure 3.1.1.

sorts D , R, R'
operations

I : D → Bool Satisfies : R × R' → Bool
O : D × R → Bool Split : D × R' × R' → Bool
I'  : D × R' → Bool Extract : R × R' → Bool
r'0 : D → R' < : R' × R' → Bool

axioms
GS0 I(x) ⇒ I'(x,(r'0(x))
GS1 I(x) ∧ I'(x,r') ∧ Split(x,r' ,s') ⇒ I'(x,s') ∧ s' < r'
GS2 I(x) ∧ O(x,z) ⇒ Satisfies(z,r'0(x))
GS3 I(x) ∧ I'(x,r') ⇒ Satisfies(z,r') = (∃ s'. Split* (x,r' ,s') ∧ Extract(z,s'))
GS5 < is a well-founded ordering on R'

Figure 3.1.1: Global Search Theory.3

The sort R' is the type of search space descriptors, I' defines legal descriptors. For
an input x, r'0 and Split describe the search tree for solutions z with O(x,z): its root is

3 In [Smi 87], axiom GS4 deals with necessary filters, which we do not consider in this
paper. Still, we call our last axiom GS5 to stay consistent with the literature.



r'0(x), the initial search space; a descendant relation on nodes is given by Split:
Split(x,r' ,s') is true if s' is a (direct) subspace of r'  for an input x. Split*  is defined by

Split* (x,r' ,s') = (∃ k:N. Splitk(x,r' ,s'))

Split0(x,r',s') = (r' = s')

Splitk+1(x,r' ,s') = (∃ t'. Split(x,r' ,t') ∧ Splitk(x,t',s'))

The possible solutions that can be extracted from a node r' are Extract(z,r').

Axioms GS0 and GS1 ensure that all considered search spaces are legal. Axiom
GS1 additionally ensures that search spaces can be split only finitely often, i.e. that
the search tree has a finite depth. GS2 requires the initial search space to contain all
feasible solutions.

By axiom GS3, Satisfies(z,r') describes the solutions z contained in a search space
r'  that can be found with finite effort: there must exist a finite path in the search tree
from r' to a search space s' from which z can be extracted.

Under the global search theory, we can use Split and Extract to get an algorithm
schema satisfying the problem specification 〈D,R,I,O〉. Following [Smi 87], we ex-
press the algorithm by input / output predicates.

I(x) ∧ I'(x,r') ⇒ Fgs(x,r',z) = (Extract(z,r') ∧ O(x,z)
∨ (∃ s'. Split(x,r' ,s') ∧ Fgs(x,s',z)))

I(x) ⇒ F(x,z) = Fgs(x,r'0(x),z)

F computes a solution z for some admissible input x by searching in the initial
search space r'0(x). Searching is performed by the auxiliary function Fgs: if z is not
directly extractable from r' this search space is split and its subspaces are searched.

The global search theory described above is relatively simple. More refined ones
incorporate filters to prune search spaces. The most elaborate one stated in [SPW 95]
uses a refinement relation on search spaces and cutting constraints to profoundly ex-
ploit the problem domain and synthesise highly efficient search algorithms.

3.2 Formalisation in Isabelle/HOL

How do we know that a particular application of Global Search is correct, i.e. how
can we be sure that we get a correct implementation of our problem specification
when we instantiate the abstract global search algorithm on the basis of particular I' ,
r'0, Satisfies, Split, Extract and < defined in our problem domain? There are two re-
asons why correctness might be spoiled: we may make a mistake in the particular ap-
plication, e.g. choosing components that do not fulfil the global search axioms, or,
more fundamentally, the implementation of the transformation may be faulty, i.e. the
actually implemented transformation may be unsound. It is not in question here that
"something" like the theory presented in section 3.1 describes a mathematically sound
transformation. But it is a long way from a paper-and-pencil proven "idea" of a trans-
formation to its actual implementation and application. We must make sure that the
transition from idea to implementation is traceable and based on well-understood prin-
ciples, and that it leads to a soundly implemented transformation.

In contrast to the KIDS system which is not based on a general logical framework
but implements transformations like Global Search directly, we have chosen higher-
order logic as implemented in Isabelle. Implementing the transformation in our
system first of all means formalising the description of global search given in



section 3.1 in a Isabelle/HOL theory. The Isabelle theory is sketched in the
following. It is based on the HOL theories of natural numbers and sets.

GlobalSearch  =  Nat + Set +
consts

...
GS3 :: "[δ →  bool,[δ,  ρ '] →  bool,

 [δ, ρ ', ρ '] →  bool,
 [ρ, ρ '] →  bool,[ρ, ρ '] →  bool] →  bool"

...

defs
...
REC_def "REC Fgs I I' Extract Out Split ≡

∀ x r z . I x ∧ I' x r ⇒
Fgs x r z = (Extract z r ∧ Out x z ∨

  (∃ s'.Split x r s' ∧  Fgs x s' z))"

GS3_def "GS3 I I' Split Satisfies Extract ≡
∀ x z r'. I x ∧ I' x r' ⇒
  Satisfies z r' = (∃ s'. rep_s Split x r' s' ∧  Extract z s')"

...
GSA_def "GSTHEORY I Out I' r0 Split Extract subspace Satisfies ≡

GS0 I I' r0 ∧
GS1 I I' Split subspace ∧
GS2 I Out Satisfies r0 ∧
GS3 I I' Split Satisfies Extract ∧
GS5 subspace"

Figure 3.2.1: Isabelle theory of Global Search.

Using the definitional equality ≡, we define higher-order predicates GS1 through
GS5 for the global search axioms. Their conjunction GSTHEORY gives us a predicate
that represents the global search axiomatization. We chose to formalise the parameter
sorts D, R and R' of Figure 3.1.1 by making GS1 through GS5 polymorphic and use
the type variables δ, ρ and ρ', respectively. In this way, we need not explicitly instan-
tiate parameter sorts when applying the Global Search transformation: Isabelle's type
inference system will find suitable sorts for us. The predicates rep_n and rep_s are
defined as primitive recursors on Nat, which construct Splitk and Split*  from a given
Split. REC provides an abbreviation of the characteristic equation for Fgs.

Building the theory in this way ensures consistency since each axiom is formali-
sed as a conservative constant definition. We indicate this by the keyword defs, and
the system checks for conservativity of these axioms as sketched in section 2.5.

3.3 The Global Search Synthesis Theorem

The following synthesis theorem for global search is based on theory GlobalSearch:

∀ I' r0 Split Extract subspace Satisfies.
  GSTHEORY I Out I' r0 Split Extract subspace Satisfies  ⇒

(I x ⇒  F x z = Out x z)
(GS) =

(I x ⇒  (∃ Fgs. REC Fgs I I' Extract Out Split ∧ F x z = Fgs x (r0 x) z ))



Assuming a global search theory, (GS) relates the problem specification to the sche-
matic search algorithm. The function Fgs we get when composing I, I', Extract,
Out, and Split according to REC finds exactly the solutions z that are specified by
Out if the search starts with the initial search space r0(x) for some legal input x.

Note that (GS) has the form of synthesis theorems introduced in section 2.1. The
components of the problem specification are free variables, while the bound variables
I' through Satisfies serve as parameters to the transformation obtained from (GS).

What are axioms in the theory of Figure 3.1.1 appears as the premise
(GSTHEORY …) in the implication of (GS). Therefore, an inconsistency in Figure
3.1.1 can not affect the "global" consistency of the Isabelle theory we are working in.
If the theory of global search algorithms were inconsistent, this would only affect the
applicability of the global search transformation: the synthesis theorem would trivi-
ally hold but the corresponding transformation could never be applied.

3.4 Mechanical Proof of the Synthesis Theorem

Figure 3.4.1 shows the structure of the proof of (GS) that we have carried out in
Isabelle. To keep the picture readable, we omit most of the functions' parameters.

GS Synthesis 
Theorem

REC Fgs ...   I x      Out x z =∧ ⇒ Fgs x (r x)z0(1) REC(Satisfies  Out)...∧(2)

(REC Fgs ...)

I x I' x r'

(Satisfies  Out) = Fgs∧(3)

Fgs     Satisfies  Out∧⇒(4) Satisfies  Out     Fgs∧ ⇒(5)

Out  Extract z s'  split  r' s'     Fgs∧ ⇒k∧(6)

Figure 3.4.1: Proof Structure

The proof proceeds backwards in a goal-directed fashion. The first steps are to ap-
ply the introduction rules for universal quantification and implication and exhibit the
equality

(I x ⇒  F x z = Out x z)
=

(I x ⇒  (∃ Fgs. REC Fgs I I' Extract Out Split ∧ F x z = Fgs x (r0 x) z ))

We prove this equality by mutual implication. The "right-to-left" direction is the
hard one, which after some simplification reduces to Lemma (1):

( 1 ) I x ∧ REC Fgs I I' Extract Out Split ⇒  Out x z = Fgs x (r0 x) z

The central proof-idea is to find a closed form for the recursively defined Fgs.



( 3 ) REC Fgs … ∧ … ⇒ (Satisfies z r' ∧ Out x z) = Fgs x r' z

This lemma says that any function Fgs satisfying the recursive equation REC be-
haves like the conjunction of Satisfies and Out. By GS3, Satisfies z r' means that
we only need finitely many applications of Split to find a subspace of r' where we
can extract z from. On the other hand, Fgs x r' z is defined by recursively splitting
r' and extracting solutions z that additionally fulfil Out x z — the latter condition
being the only intuitive difference between the two predicates. Once we have proved
(3), we can use GS2 to specialise it and show (1).

With Lemma (3) in mind, it is easy to prove the "left-to-right" direction of (GS).
Here, we basically have to show that there exists a function Fgs fulfilling REC. From
(3) we know that if a function Fgs satisfies REC then it behaves like the conjunction
of Satisfies and Out. So we use this conjunction — suitably abstracted — as a wit-
ness for the existential quantification and show that it indeed satisfies REC.

The proof of (3) does the real work. Here, we generally assume that Fgs satisfies
REC, and that the input x and search space r' are admissible, which is indicated by the
dashed frame in Figure 3.4.1. Again, we prove the equality by mutual implication and
reduce (3) to (4) and (5). Both can be interpreted computationally. Lemma (4) deals
with termination and correctness of solutions produced by Fgs.

( 4 ) Fgs x r' z ⇒  (Satisfies z r' ∧ Out x z)

We not only have to show that all output z produced by Fgs is a feasible solu-
tion, i.e. Out x z holds, but also that it can be extracted from the input search space
r' by finitely many Split's, i.e. Satisfies z r' holds. Here it is crucial that Split
produces a decreasing chain of search spaces with respect to a well-founded ordering
(cf. GS1 and GS5). Only this requirement allows us to interpret REC as a definition
of a recursive function. Otherwise predicates that are true on cycles of Split's where
Extract is false would satisfy REC. GS5 allows us to use a theory of well-founded
sets that comes with Isabelle/HOL: we prove (4) by well-founded induction on r'.

Lemma (5) deals with completeness of the set of solutions produced by Fgs: all
feasible solutions are indeed found by Fgs.

( 5 ) (Satisfies z r' ∧ Out x z) ⇒  Fgs x r' z

The proof idea for (5) is induction on the length of search paths, i.e. the number k
of Split's leading to the search space from which the solution z can directly be extrac-
ted. Lemma (6) formally captures this idea. It is gained from (5) by unfolding the defi-
nitions of Satisfies and rep_s, i.e. Split* .

Global search is an example of a non-trivial transformation. The entire proof
script for (GS) consists of about 140 tactics' applications. Isabelle under Standard ML
of New Jersey takes about 60 CPU seconds to execute it on a Sun Sparc 5 worksta-
tion. We needed several attempts to develop the global search theory and the proof of
the synthesis theorem in Isabelle. The first version of the theory was non-
conservative and explicitly introduced parameter sorts D, R and R'. We then abolished
these sorts and used polymorphism. The next stage in the theory development was to
come to the conservative theory sketched in Figure 3.2.1.

The proofs had to be adapted to each rephrasal of the theory. The structure of the
proofs also changed several times due to new proof ideas — the latest being to intro-



duce Lemma (3) – and due to changes in the formulation of the synthesis theorem: the
first version only was an implication from the algorithm schema to the problem spe-
cification. In this version, we also left out the precondition I x ∧ I' x r in the defini-
tion of REC. This formulation of the theorem was still correct but its premises would
have been too strong to be practically useful. Only after we introduced Lemma (3) and
tried to prove equality instead of implication, we became aware of the missing precon-
dition.

Despite of all these changes to the theory, it was relatively easy to adapt the proof
scripts. Simple "replay until failure" was usually sufficient to find the points were
changes had to be made, and these were mostly local ones like inserting a tactic to re-
establish some syntactic structure, that  the next tactic depended on.

3.5 Tactical Sugar for Global Search

Global Search is used in algorithm construction by providing a mapping from Glo-
balSearch to an extension of the concrete problem theory such that the global search
axioms are theorems under the extended problem theory. We can apply the same map-
ping to the schematic algorithm and get a solution for our problem, i.e. we have
transformed the non-constructive problem specification into a constructive form. This
algorithm is usually inefficient and has to be optimised by further transformations.

In [Smi 90, SPW 95], elaborate techniques to find a global search algorithm for a
given problem specification are described. They are based on  a library of global search
theories that basically describe the structures of search trees for various data structures.

While it is certainly possible to implement these techniques in our framework, we
focus on the description of the basics of our approach and restrain ourselves to much
simpler tactical sugar: the proven synthesis theorem is used to define an ML function

fun GLOBAL_SEARCH : nat * string list → tactic

that takes the subgoal number and the list of parameters to produce a tactic. This
function successively removes the universal quantification via forward proof and rule
spec (see section 2.4). Similarly, the implication and the equality are converted by
application of the modus ponens and substitutivity rule. These operations convert the
synthesis theorem into the following version:

[| GSTHEORY ?I ?Out ?I' ?r0 ?Split ?Extract ?subspace ?Satisfies ;
   ?I ?x  ⇒  (∃ Fgs. REC Fgs ?I ?I' ?Extract ?Out ?Split ∧

?F ?x ?z = Fgs ?x (?r0 ?x) ?z) |]
⇒  (?I ?x ⇒  ?F ?x ?z = ?Out ?x ?z)

Furthermore, GLOBAL_SEARCH successively substitutes the parameters (after par-
sing and typechecking the string list) into the meta-variables. Finally, the result is
applied via rtac to a particular subgoal — this will set the remaining variables (?F,
?x and ?z) and complete the mapping to the problem theory.

There are different versions of tactical sugar conceivable — one could leave more
parameters uninstantiated or massage the conclusion into a different syntactical form
using more forward resolution steps. More complex tactics based on the synthesis
theorem could employ the substitution rule for equality of higher-order logic. We
would not break up the equality in (GS) but apply it to a subterm of a possibly com-
plex goal. The choice how to come to the parameters of the global search theory
would remain the same as before.



Note that the process of transforming the synthesis theorem into a logical rule
which is applied by some ML function is "safe". The transformations used there are
all based on proven correct rules and the primitive theorem manipulating functions of
Isabelle, so nothing incorrect can happen — assuming the core of Isabelle is sound.

Proving the correctness of tactical sugar is not necessary in the sense that it sim-
ply controls the application of basic axioms and lemmas. This control may lead to a
dead end and fail, or it might prove something that we did not want to prove, but it
can never produce a proof for something that would not be provable in the theorem
prover without this tactical program. Of course, the implementation for "apply an
axiom" which represents the atoms of our tactical control programs might be
incorrect or the basic rules of the logic might be unsound. But proving the correctness
of "apply an axiom" in the absolute sense would require a formalisation and
verification of the core theorem prover. As a consequence, this "meta-encoding" can
not fully solve the problem since it raises the same problems of correctness on the
meta-level.

4 YATS — the System

YATS can be regarded as a step towards an IFDSE  (Integrated Formal Development
Support Environment) following the philosophy of [BH 95] or [Kri+95]. Such
systems support many stages of the formal development, from initial functional
specifications, through design specifications and refinement. More elaborated systems
will also provide a support for specification animation, version-management etc.

We believe that a high-quality graphical user interface (GUI) plays a key role for
both the acceptance and productivity of an IFDSE. To date, there is no common
agreement on what could be a good design of a GUI for a theorem prover or an IFDSE
(we admit that we have not found the definite answer either), although there are recent
remarkable efforts in this direction.

Our GUI should be completely independent from Isabelle and as independent as
possible from our system environment and our hardware-platform. In the past, the de-
velopment of many systems (PROSPECTRA, for example) has been trapped by their
complex and monolithic design. An answer to this dilemma of monolithic designs
can be a heterogeneous one with few complementary components that are systems in
their own right. This way it is possible to integrate work of independent research
groups. The main task of an heterogeneous design is to provide suitably abstract and
flexible interfaces in order to enable an easy and stable integration of new versions of
its components.

For our GUI, we chose the toolkit Tk [Ous 94] to achieve this goal. Although we
wish to profit from Tk as a highly portable interface to X-Windows, we do not be-
lieve that the command-language Tcl on top of Tk should be used for larger software
developments. The major reason is that Tcl supports only one data-structure — text
— in a way similar to LISP and its lists. Tcl is an untyped language without data
structures and lacks higher modularisation concepts.

For this reason, we implemented an SML interface for Tk, called sml_tk. It is a
component in its own right and provides a toolkit for standard windows, e.g. a substi-
tution window, that can be reused by research groups working on, e.g., another theo-
rem prover interface. Based on sml_tk, the GUI itself is implemented as an SML
functor, called isawin, which is parametrised by a list of tactical-sugar functions. The
system YATS is an instantiation of this functor with a list containing the function



GLOBAL_SEARCH (see section 3.5). According to the instantiation, isawin automati-
cally produces new interface components and new dialogues with the user — the im-
plementor of a transformation has only to provide its proof and its tactical sugar.

The following diagram gives a short overview over the stack of main components
(the size of the blocks roughly corresponds to their implementation size):

sml_tk

isawin
GlobalSearch

Isabelle/HOL

Tcl/Tk

Figure 4.0.1: The System architecture

Note that the formal proof of Global Search and its integration into the system
contributes only to a very small part to the whole system. This justifies our claim
that the design allows the implementors to concentrate on the real intellectual pro-
blem of designing and verifying new transformations. Moreover, the instantiation of
isawin with a new transformation is a question of a few seconds. Even if a very diffe-
rent state of technology (hardware and software) has to be taken into consideration, in
comparison to PROSPECTRA, for example, where a complete recompilation was ne-
cessary that took 2 hours [GL 93], this is quite remarkable.

4.1 The interface sml_tk

Our interface evolved from an imperative version of a purely functional, monad-style
encapsulation of Tk in Gofer [VTS 95]. It has a more functional flavour than the
interface available for caml/light [PR 95]. It is characterised by the following features:

• abstract data-types for options, configurations, packing information

• abstract data-type for graphical objects, called widgets

• events on the interface (mouse clicks, key strokes, etc) are mapped to
SML functions associated to widgets via bindings.

• a toolkit for defining a problem specific set of window types.

To give a flavour of programming in sml_tk, let us have a brief look at a fragment of
the essential tree-like data type for widgets used to describe the content of windows:

datatype  Widget =
  Frame of WidId * Widget list * Pack list * Configure list * Binding list
| Label of WidId * Pack list * Configure list * Binding list
| Entry of WidId * Pack list * Configure list * Binding list
...

type Window  = (WinId * Title * (Widget)list * Action);

The following fragment is taken from the description of a small standard-window of
the toolkit:

fun input enteraction = 
let fun mrs () = let val nm = selectTextAll "e1"

            in  enteraction nm ();closeWindow "enter" end 
in Entry("e1",[],[Width 20], [Bind("<Return>",mrs)]) end;



The function input yields an Entry-Widget [Ous 94], that represents a graphical field
allowing to enter a string. It has the name e1 and a width of 20 characters. Associated
to e1, there is a function mrs  that is evaluated whenever the event <Return> hap-
pens. mrs selects the inserted text, passes it to the parameter function enteraction
and closes the surrounding window called enter.

4.2 The GUI of YATS

The main window of YATS (as well as any other instance of isawin) consists of two
major components: An edit-window (where the editing facilities like Cut-Copy-Paste
are already provided by Tk without writing any additional line of code in the interface)
and a prover-window to which the transformation facilities (a result of the instantia-
tion of isawin) and the operations controlling Isabelle are associated. It is possible to
browse theories and ML files in suitable subwindows with their associated axioms
and theorems (see Figure 4.2.1 below). The user-interface for the prover part is not in
the focus of this paper.

Figure 4.2.1: Screenshot of YATS (Overview)

Usually, by double-click on an arbitrary widget of the interface, the user can get
more information, and by triple-clicks suitable operations on the activated unit are
executed. For example, when pointing to a subgoal in the prover-state-widget, a dou-
ble-click will inform the user on what transformation or Isabelle-command will be
executed (due to settings and other information inferred by the system), while a triple-
click performs this command.



4.3 An Application Example

In this section we use our system to develop a global search algorithm that
enumerates all maps from a finite set U to a finite set V. We take the global search
theory for this algorithm, gs_finite_mappings, from [Smi 87]. In KIDS, abstract and
simple theories like gs_finite_mappings are used to describe search patterns on parti-
cular data structures. To develop a search algorithm for a particular problem with
KIDS means to specialise such a "pattern theory" to the given problem specification
(see [Smi 90]). Since the specialisation procedure as well as the pattern theories are
hard-wired into KIDS, their correctness can not be guaranteed within the system. The
development of "pattern theories" can not rely on specialisation but must use different
tactical sugar like we have implemented in YATS.

The problem specification for gs_finite_mappings is based on a library theory of
finite maps:

F  � fin_maps 
δ  �  α  set ×  β  set ρ � (α, β) Fmap
I   � λ (U,V). Fin U ∧ Fin V Out � λ (U,V) N. N ∈ Map(U,V)

We wish to synthesise a function called fin_maps that transforms pairs of sets
over types α and β to finite maps whose domains are sets over α and whose ranges
are sets over β, i.e. members of (α, β) Fmap. For finite input sets U and V the
function must return a map N with domain U and a range in V. The predicate Map is
defined by

Map(U,V) ≡ { M | dom M = U ∧ ∀ b ∈ dom M.  M ^ b ∈ V }
Note that we need an explicit operation ^ to apply maps because their type (α, β)

Fmap is different form the HOL function type.

To develop an algorithm for the problem, we chose the theory of finite maps as
the logical context (just by activating it via a mouse-click) and enter the (slightly
massaged) specification as a goal into YATS as shown in Figure 4.3.1.

Figure 4.3.1: Entering the transformation goal

We now apply the transformation Globalsearch of section 3.5. First of all, this
makes Isabelle match the goal with the transformation rule and set up the substitution
of meta-variables and type variables for the problem specification. The next step is
the creative part of the transformation: we have to provide the parameters that
establish a global search theory. To date, as Figure 4.3.2 shows, this is done by
explicitly entering a substitution for the parameters.



Figure 4.3.2: Entering parameter substitution

In mathematical notation, the substitution looks as follows:

I' � λ (U,V) (S,T,M). S ∪ T = U ∧ S ∩ T = ∅ ∧ M ∈ Map(S,V)
r'0  � λ (U,V). (∅, U, Ó Õ)
Split � λ (U,V) (S,T,M) (S',T',M'). (E a b. a ∈ T ∧ b ∈ V

 ∧ (S',T',M') = (S ∪ {a},T − {a}, M ⊕ Óa � bÕ)) 
Extract � λ N (S,T,M). T =∅ ∧ N = M
subspace � space(λ (S,T,M) (S',T',M'). S ⊂ S') 
Satisfies � λ N (S,T,M). (∀ x ∈ S. N ^ x = M ^ x)
The crucial part here is to find a representation of search spaces and a suitable

Split based on that representation. Our search idea is to successively extend a partial
map until its domain encompasses all of U. Therefore, we model search spaces by tri–
ples (S,T,M) where S and T partition U and M is a map to V with domain S. Split–
ting a search space means to extend M by a new pair mapping a not yet used member
a of U to some arbitrary value b of V. The operation ⊕ overwrites the first map on
the domain of the second, and Óa � bÕ maps a exactly to b. The subspace relation on
search spaces is induced by the strict subset relation on S, which we for–malise using
the library function space that converts an ordering function into its graph. Given the
transformation above, Isabelle computes the type of search spaces auto–matically.

ρ' �  α set × β set × (α, β) Fmap

After type checking the parameter substitution, YATS responds with the following
proof state, containing the proof obligations and the synthesised "program":

Figure 4.3.3: The resulting proof state



Now, we may use Isabelle to verify the proof obligations. At an arbitrary point of
the development, we may decide to "freeze" the complete proof state i.e. convert it
into an Isabelle theory containing the proof state as the implication: "if the
(remaining) proof obligations hold, then the program is equivalent to the specifica-
tion". Later, we can reload the frozen proof state and resume the development.

Although a small example, fin_maps demonstrates the virtues of top-down devel-
opment via stepwise refinement in a transformational setting. Simply by indicating
to the system which transformation shall be applied to a specification, YATS can
check if the transformation is applicable, and systematically leads the user to the
necessary design decisions and proof obligations.

5 Discussion

We have shown how to implement transformation systems in a systematic way that
clearly separates the soundness issues of transformations, the pragmatics of their ap-
plication, and their presentation to developers at the user interface.

For several reasons, representing the logical content of transformations by synthe-
sis theorems highly increases the users' confidence in single transformation steps and
thereby in the correctness of software they develop with the implemented system.

• Several attempts to construct a new transformation are usually needed until it
is indeed expressed in a correct and useful form. Since practically useful trans-
formations must capture large and complex design steps, they are difficult to
conceive and implement by human developers. Here, a mechanical proof of the
synthesis theorem may be useful to increase confidence in the soundness of the
transformation. Moreover, a proof can be useful to find the final shape of a
transformation.

• Separating transformations into logical core and tactical sugar clearly identifies
the parts of the implementation that guarantee correctness of the resulting soft-
ware. Program errors in the tactical sugar parts of the system or the user inter-
face can in no way lead to logically incorrect results of transformations.

• It is often possible to formalise transformation concepts like "Divide-and-Con-
quer" in different synthesis theorems. With our approach, it is easy to relate, to
specialise and to combine synthesis theorems to form new transformations.

• It is conceivable to extend our system dynamically by proving the synthesis-
theorems which are sugared in a standardised way automatically.

• Different specification formalisms like CSP and Z have been represented in
HOL. The representation of transformation rules as synthesis theorems provi-
des a means to study rules in combined multi-formalism environments.

The tactical theorem prover is the core of our system. It is not only used to prove
synthesis theorems but also, based on its meta-variables and deduction facilities, to
implement transformation applications. We have shown that this can be done with
little effort. Moreover, in [HSZ 95], we have demonstrated a systematic approach to
build tactical sugar.

The user-interface description and command language Tcl/Tk has seen a tremen-
dous success in the recent years. From our experience, the X-Window toolkit Tk
seems to offer "the right abstraction" for building user interfaces. However, the design
of our parameterized interface and our productivity to code it profited substantially
from the embedding of Tk into SML with its typing and modularisation concepts.



5.1 Related Work

The transformational approach to program development has a long tradition. Starting
from the Munich CIP project [Bau+85], many studies have stressed the importance of
the approach. During the PROSPECTRA project [HK 93], a system has been develo-
ped that enabled the formalisation of transformation rules and their use during the
software development process.

In KIDS [Smi 91], programs are developed by transforming problem specificati-
ons to programs. First, high-level transformations such as global search are used to
come from the problem specification to a (inefficient) program. This program is then
optimised by low-level program transformations like finite differencing or case
distinction.

While the research in the context of KIDS has contributed much in the area of ma-
thematically describing complex transformations and tactical sugar for their successful
application, a shortcoming of the implemented system is that there is no easy way to
convince oneself of the soundness of the implemented transformations. Our work
focuses on this aspect and may thus be regarded complementary to the KIDS work.

Kreitz [Kre 93] gives mechanical proofs of global search theories in a constructive
type theory, namely Nuprl [Con 86]. He aims at capturing even the pragmatics of
transformation applications in a logical framework and attempts to extract synthesis
tactics from the computational content of constructive proofs. In our approach, formal
logic is used only to treat the soundness of transformations. This admits varying de-
grees of sophistication of tactical sugar: we can easily have different tactics for the
same synthesis theorem. To achieve the same effect, Kreitz would have to provide dif-
ferent proofs of the theorem, each encoding a different approach to its application.

Basin's work [Bas 94] represents an approach to logic program synthesis also im-
plemented in Isabelle. It is based on the Whelk logic that has been proposed as foun-
dation. The rules of Whelk are derived in Isabelle. This work focuses on foundational
issues rather than on a practical system implementation.

The recent formation of new workshops show a growing interest in the design and
implementation of graphical user interfaces for both theorem provers and IFDSEs. A
notable implementation is the TkHOLWorkbench currently developed in Cambridge
[Sym 95], another one is [CO 95] for Isabelle. Although these interfaces currently are
clearly superior to ours it is predominantly implemented in Tcl and not in ML. For
this reason, we believe that our approach offers a higher potential of growth and
reusability for similar systems.

5.2 Future Work

Our implementation to date is a prototype to illustrate the approach. To make it prac-
tically usable, two improvements have to be made: we need to extend the library of
transformations and we need  to incorporate a standard specification language which is
used in practice.

Incorporating more standard transformations from the literature is easy. The stan-
dardised form of synthesis theorems even allows us to develop a set of "meta-trans-
formations" — as ML functions — yielding transformations from synthesis theorems
automatically. Meta-transformations might implement different ways to deal with
application conditions and parameters. As we have mentioned in section 3.5, verifica-
tional approaches supplying the parameters directly and leaving application conditions
as subgoals to verify are as well as possible as constructive approaches that — auto-



matically or interactively — synthesise parameters while proving application condi-
tions. Different techniques to match an input pattern against a goal are possible.

As for the use of a standard specification language, research is going on to imple-
ment support for, e.g., Z in Isabelle. Proving suitable synthesis theorems in the logi-
cal representation of such a specification language makes our approach immediately
applicable to that language. This work is partly an objective of the project UniForM
[Kri +95].
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