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Abstract. We present an extensible encoding of object-oriented data models into higher-order logic (HOL).
Our encoding is supported by a datatype package that leverages the use of the shallow embedding technique
to object-oriented specification and programming languages. The package incrementally compiles an object-
oriented data model, i. e., a class model, to a theory containing object-universes, constructors, accessor
functions, coercions (casts) between dynamic and static types, characteristic sets, and co-inductive class
invariants. The package is conservative, i. e., all properties are derived entirely from constant definitions,
including the constraints over object structures. As an application, we use the package for an object-oriented
core-language called IMP++, for which we formally prove the correctness of a Hoare-Logic with respect to a
denotational semantics.
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1. Introduction

While object-oriented programming is a widely accepted programming paradigm, theorem proving over
object-oriented programs or object-oriented specifications is far from being a mature technology. Classes,
inheritance, subtyping, objects and references are deeply intertwined and complex concepts that are quite
remote from the platonic world of first-order or higher-order logic (HOL). For this reason, there is a tangible
conceptual gap between the verification of functional programs on the one hand and object-oriented programs
on the other.

Among the existing implementations of proof environments dealing with subtyping and references, two
categories can be distinguished:

1. verification condition generators reducing a Hoare-style proof into a proof in a standard logic, and
2. deep embeddings into a meta-logic.
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Verification condition generators, for example, are Boogie for Spec# [BLS05, LM05], Krakatoa [MPM05] and
several similar tools based on the Java Modeling Language (JML) [LBR99]. The underlying idea is to compile
object-oriented programs into standard imperative ones and to apply a verification condition generator on
the latter. While technically sometimes very advanced, the foundation of these tools is quite problematic:
besides the correctness problem of the compilation, there is the problem that the operations of the target
memory/machine model must be axiomatized; for Spec#, this easily results in several hundreds of axioms.
Even if one believes that these axiomatizations adequately describe the target machine, the question of
consistency of these axiomatizations is highly non-trivial [BLW08].

Among the tools and formalizations based on deep embeddings, there is a sizable body of literature on
formal models of Java-like languages (e. g., [DE99, FKF99, NvO98, vON02]). In a deep embedding of a
language semantics, syntax and types are represented by free datatypes. As a consequence, derived calculi
inherit a heavy syntactic bias in form of side-conditions over binding and typing issues. This is unavoidable if
one is interested in meta-theoretic properties such as type-safety; however, when reasoning over applications
and not over language tweaks, this advantage turns into a major obstacle for efficient deduction. Thus,
while various proofs for type-safety, soundness of Hoare-Calculi and even soundness of verification condition
generators are formally proven, none of the mentioned deep embeddings has been used for substantial proof
work in applications.

In contrast, the shallow embedding technique has been used for semantic representations such as HOL itself
(in Isabelle/Pure), for HOLCF (in Isabelle/HOL) allowing reasoning over Haskell-like programs [MNvOS99]
or for HOL-Z [BRW03, BKTW05].

The essence of an effective shallow embedding is to find an injective mapping of the pair of an object-
language expression E and its type T to a pair E :: T of the meta-language HOL. “Injective mapping” means,
that well-typedness is preserved in both ways. Thus, type-related side-conditions in derived object-language
calculi can be left implicit. Since such implicit side-conditions are “implemented” by a built-in mechanism of
the meta-logic, they can be checked orders of magnitude faster compared to an explicit treatment involving
tactic proof.

At first sight, it seems impossible to apply the injective shallow embedding technique to object-oriented
languages: Their characteristic features like subtyping and inheritance are not present in the typed λ-calculi
underlying HOL systems. In a shallow embedding, an expression E of type T in some object-oriented language
must be translated into some HOL-expression E of HOL-type T . Moreover, this translation should preserve
well-typedness in both ways. However, an injective mapping does not mean a simple one-to-one conversion;
rather, the translation might use a pre-processing making, for example, implicit casts between subtypes and
supertypes explicit. Still, we need a formal data model that has support for such semantic properties, like
type casting without losing information, built-in.

Beyond the semantical requirements, there is an important technical one: object-oriented data models
must be extensible, i. e., it must be possible to add a class to an existing class model (or class system) without
reproving everything. The problem becomes apparent when considering the underlying state of an object-
oriented program. This state consists of Objects, i. e., abstract representations of pieces of memory, that may
be linked via references (object identifiers, oid) to each other. Objects are tuples of class attributes, i. e.,
elementary values like Integers or Strings or references to other objects. The type of these tuples is interpreted
as the type of the class they are belonging to. States are maps of type oid⇒ U relating references to objects
living in a universe U of all objects.

Instead of constructing such a universe globally for all data-models (which is either single-typed and
therefore not an injective type representation, or “too large” for the type system of HOL), one could think
of generating an object universe only for each given class model. Ignoring subtyping and inheritance for
a moment, this would result in a universe U 0 = A + B for some class model with the classes A and B.
Unfortunately, such a construction is not extensible: If we add a new class to an existing class model, say D,
then the construction U 1 = A+B +D results in a type different from U 0, making their object structures
logically incomparable. Properties, that have been proven over U 0 will not hold over U 1. Thus, such a naive
approach rules out an incremental construction of class models, which makes it unfeasible in practice.

As contributions of this paper, we present a novel universe construction which represents subtyping
within parametric polymorphism in an injective, type-safe manner and which is extensible. This construc-
tion is implemented in a datatype-package for Isabelle/HOL, i. e., a compiler that generates for each class
model and its extensions conservative definitions. This includes the definition of constructors and accessors,
casts between types, type tests, characteristic sets of objects. We apply this specification infrastructure by
integrating it into the assertions of a Hoare-Calculus for a small object-oriented language called IMP++.
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In Section 2 we introduce into our meta-language higher-order logic (HOL) and into a syntactic interface
for accessors, casts, tests, etc, in form of the assertion language COOL. In the following sections, we present
our type-safe encoding of COOL by several consecutive levels: In Section 3, we present level 0 which provides
a typed representation of objects (i. e., pieces of memory) in a store. In Section 4, we present level 1 of our
COOL encoding which provides a type-safe implementation of its accessors, casts, tests, . . . . In Section 5 we
give a more refined definition of COOL, called level 2 encoding, which supports class invariants. We show
in Section 6 in which ways our constructions support modular proof methodologies. Section 7 contains the
application part of the paper: we provide a denotational semantics for IMP++ and derive a calculus for
Hoare-style program verification. Finally, in Section 8 we draw conclusions and discuss related work.

2. Preliminaries

2.1. Isabelle/HOL

Isabelle [NPW02] is a generic, LCF-style theorem prover implemented in SML. For our object-oriented
datatype package, we use the possibility to build SML programs performing symbolic computations over
formulae in a logically safe way. Isabelle/HOL supports conservativity-checks of definitions, datatypes, prim-
itive and well-founded recursion, and powerful generic proof engines based on rewriting and tableau provers.

Higher-order logic (HOL) [And02] is a classical logic with equality enriched by total polymorphic higher-
order functions. The type constructor for the function space is written infix: α⇒ β; multiple applications like
τ1 ⇒ (. . .⇒ (τn ⇒ τn+1) . . .) are also written as [τ1, . . . , τn]⇒ τn+1. HOL is centered around the extensional
logical equality _ = _ with type [α, α]⇒ bool, where bool is the fundamental logical type.

The type discipline rules out paradoxes such as Russel’s paradox in untyped set theory. Sets of type
α set can be defined isomorphic to functions of type α ⇒ bool; the element-of-relation _ ∈ _ has the type
[α, α set]⇒ bool and corresponds basically to the application; in contrast, the set comprehension {_|_} has
type [α set, α⇒ bool]⇒ α set and corresponds to the λ-abstraction.

In fact, Isabelle provides a two tier type system similar to Haskell: types are annotated with typeclasses.
Throughout this paper, we assume a type class α ::bot for all types α that provide an exceptional element ⊥;
for each type in this class a test for definedness is available via def x ≡ (x 6= ⊥). The HOL type constructor
τ⊥ assigns to each type τ a type lifted by ⊥. Thus, each type α⊥ is member of the class bot. The function
x_y : α⇒ α⊥ denotes the injection, the function p_q : α⊥ ⇒ α its inverse for defined values. Based on these
definitions, partial functions, i. e., α ⇀ β, can be represented as total functions of type α ⇒ β⊥. We define
dom f , called the domain of a partial function f , by the set of all arguments of f that do not yield ⊥.

2.2. COOL—A Core Object-oriented Assertion Language

In this section, we introduce a core object-oriented assertion language (COOL). We start by presenting the
concrete syntax for COOL at a glance and thus make the domain of our logical representation more precise.
The basic lexical entities of COOL are:

• C, a set of class names,
• A, a set of attributes,
• V , a set of variable symbols, and
• X, a set of program variable symbols.

A class is a component consisting of an abstract name and a set of attributes. Thus, technically, the type of
a class is based on its abstract name and the types of its attributes. On the level of COOL, we identify the
type of a class by its name. Moreover, COOL supports the usual basic datatypes, e. g., Integer, and provides
a range of collection types. In more detail, the types of COOL are inductively defined as follows:

T := C | Boolean | Integer | Real | String | T Sequence | T Set | T Bag | T −> T . (1)

In Section 3 and Section 4 we describe how these types can be mapped injectively to HOL types.
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As abstract syntax, a class model, also called class system, is a (finite) partial map that assigns to a class
identifier a (finite) map, that associates to each attribute name its type:

M := C ⇀ (A ⇀ T ) . (2)
For simplicity, we assume that attribute names are unique throughout this paper; this means that the
domains of two elements in the range of M are always pairwise disjoint. Our formalization in Isabelle/HOL,
and thus our datatype package, require only that attribute names are unique within a class.

We assume an irreflexive partial order _ < _ on class types called class hierarchy; for ci < cj , we will
say that the class ci is a subclass of class cj .

The following inductive set of expressions is called path expressions:
P := V | P [C] | P.A . (3)

Path expressions are build from program variables, castings to a class type, and accessor functions to an
attribute of an object. The expressions of COOL are:

E := P | ∂ P | P.isType (T )| P.isKind (T )|
V | E = E | ¬E | E → E | · · · |
∀V.E | ∃V.E |
E + E | E ∗ E | · · · | E ∪ E | · · · | {V.E} | · · ·

(4)

While the latter lines sketch a conventional expression language, the first line contains key elements of object-
orientation: the result of path expression may denote (sets of, sequences of) objects, paths can be tested if
they are defined (∂ P ) within a store, the dynamic type (P.isType (T )) and the kind (P.isKind (T )) of an
object may be tested. Recall that casts can change the static type of an object, while the dynamic type is
just the type of an object at creation time; the kind of an object is defined as the dynamic type and all its
subtypes. These concepts can be found in many object-oriented languages, e. g., Java, C#, and UML/OCL.

We refrain from a presentation of the (obvious) type inference rules for COOL.
An assertion over a state σ in COOL is denoted as σ |= E. Semantically, an assertion is a set of states σ

that satisfy E (which must be of type Boolean).
We present our framework for encoding object-oriented data structures and assertion languages together

with a small example (see Figure 1): we assume a class Node with an attribute i of type Integer and the
attributes left and right, both of type Node. Further, we assume a subclass CNode of Node with an attribute
color of type Boolean. Thus, we have CNode < Node in the subtype ordering, and {CNode 7→ {color 7→
Boolean}, Node 7→ {left 7→ Node, . . .}}. Note, however, that the COOL assertions are based on a two-valued
semantics (similar to Spec# or JML), whereas OCL [Obj03a] (a constraint language for UML [Obj03b]) is
based on a three-valued logic, i. e., the type Boolean ranges over true, false, and OclUndefined.

While our datatype package was developed within the HOL-OCL project [BW08, BW06a], it can be used
for an arbitrary assertion language with the techniques presented here. During loading a specification, all
definitions presented in Section 3, Section 4, and Section 5, are automatically generated and all theorems
automatically proven by our datatype package. Besides the concrete syntax presented throughout this paper,
our datatype package is also able to load UML class models (together with an OCL specification) in a
standardized exchange format (XMI) used by most CASE tools.

3. Level 0: Typed Object Universes

A key objective of our approach is to type objects unambiguously. Although the objects may contain untyped
object identifiers (oid’s), the operations of COOL will be defined such that they always work on objects, not
on object identifiers.

As mentioned earlier, a consequence of typed objects is the necessity of object universes to define the
store model in HOL. In this section, we introduce our families U i of object universes enabling extensibility.
Here, we use the superscript to denote the temporal development, i. e., U i+1 is originated by extending U i.
Each U i comprises all value types and an extensible class type representation induced by the class hierarchy.
To each class, a class type is associated which represents the set of object instances or objects. In other words,
a type is constructed for all objects (“pieces of memory”) belonging to a class. The extensibility of a universe
type is reflected by “holes” (polymorphic variables), that can be filled when “adding” extensions to a class



An Extensible Encoding of Object-oriented Data Models in HOL 5

class Node
attributes

i : Integer
left : Node
right : Node

constraints
inv positive : self .i > 5

end

class CNode < Node
attributes

color : Boolean
constraints

inv flip:
∂ self . left[CNode] −→ self .color = ¬ self . left[CNode].color

∧ ∂ self . right[CNode]−→ self .color = ¬ self . right[CNode].color
inv flip_strong :

∂ self . left[CNode] ∧ self .color = ¬ self . left[CNode].color
∧ ∂ self . right[CNode] ∧ self .color = ¬ self . right[CNode].color

end

Figure 1. A simple class model describing directed graphs: we model a class Node with an attribute i of type
Integer and two attributes left and right for storing adjacent objects of type Node. Moreover, we model
a subclass CNode of Node that introduces an attribute color of type Boolean. Both classes are described
more precisely by invariants, e. g., for any instance of class Node we require that the value of i is larger
than five. For the class CNode, we require two invariants, a weaker and a stronger one. Both require that the
color attribute flips its value while traversing a path through the object graph, the second one also requires
additionally that left and right nodes exist.

system. Our construction ensures that U i+1 is just a type instance of U i (where U i+1 is constructed by
adding new classes to U i). Thus, properties proven over object systems “living” in U i remain valid in U i+1,
see Figure 2 for an illustration of the main ideas of the construction we present in the following.

3.1. A Typed Objects Store

In the following we define several type sets which all are subsets of the types of the HOL type system. These
sets, although denoted in usual set-notation, are a meta-theoretic construct, i. e., they cannot be formalized
in HOL.

First, we introduce types for attributes. If we aim towards a conservative formalization of our object store,
we cannot model the set T of COOL types directly if we want support for mutually recursive data structures.
Thus, we introduce a special type oid for object-identifiers, i. e., we assume that each object (instance of a
class) can be uniquely identified by its identifier (which is of type oid). Thus, we formally define the set A of
attribute types and the set C of class types. Conceptually, the union of these two type sets provides a first
representation of the set T of COOL types. Formally, we define for the class attributes the set of attribute
types as follows:

Definition 1 (Attribute Types). The set of attribute types A is defined inductively as follows:

1. {Boolean, Integer, Real, String, oid} ⊂ A, and
2. {a Set, a Sequence, a Bag} ⊂ A for all a ∈ A.

Attributes with non-value types, e. g., the attribute left of class Node, are encoded using the type oid. Of
course, this representation cannot guarantee the type-safety for attributes with non-value. Therefore, these
object identifiers (i. e., references) will be resolved by accessor functions, on level 1 (see Section 4 for details)
of our encoding, like A. left(1) (the superscript denotes that this is an attribute accessor on level 1) for a
given state; an access failure will be reported by ⊥.

The main idea of the following encoding of class types is as follows: we represent a class by a tuple, which
is built by pairing the attribute types of the class. Moreover, we extend this type by an abstract datatype



6 A.D. Brucker and B. Wolff

A A βObject

αA

U 
(αA,βObject) = A× αA⊥ + βObject

U 
(αB,αC,βA,βObject) = A× (

=αA³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
B× αB

⊥
+ C × αC

⊥
+ βA)⊥

(a) A single class A represented by the type sum A × αA⊥ + βObject. The type variable αA⊥ allows for introducing
subclasses of A and the type variable βObject allows for introducing new top-level classes.

A

B C

A βObject

B

αB

C βA

αC

U 
(αB,αC,βA,βObject) = A× (

=αA³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
B× αB⊥ + C × αC⊥ + βA)⊥

+ βObject

(b) Extending the previous class model simultaneously with two direct subclasses of A is represented by instanti-
ating the type variable αA of U 1

(αA,βObject).

Figure 2. Assume we have a model consisting only of one class A which “lives” in the universe U 1
(αA,βObject)

that we want to extend simultaneously with two new subclasses, namely B and C. As both new classes are
derived from class A, we construct a local type polynomial B × αB⊥ + C × αC⊥ + βA. This type polynomial
is used for instantiating type variable αA. This process results in the universe U 2

(αB ,αC ,βA,βObject) for the
final class hierarchy. In particular, the universe U 2

(αB ,αC ,βA,βObject) is a type instance of U 1
(αA,βObject). Thus,

properties that have been proven over the initial universe U 1
(αA,βObject) are still valid over the extended universe

U 2
(αB ,αC ,βA,βObject).

for each class. This abstract datatype, the tag type, ensures that there is a bĳection between the class types
and their representation as tuple.

Definition 2 (Tag Types). For each class C a tag type Ct ∈ T is associated. The set T is called the set of
tag types.

Tag types are one of the reasons why we can build a strongly typed universe (with respect to the object-
oriented type system), e. g., for class Node we assign an abstract datatype Nodet with the only element
Nodekey. Further, for each class we introduce a base class type:

Definition 3 (Base Class Types). The set of base class types B is defined as follows:

1. classes without attributes are represented by (t × unit) ∈ B, where t ∈ T and unit is the standard HOL
type denoting the empty product.

2. if t ∈ T is a tag type and ai ∈ A for i ∈ {0, . . . , n} then (t× a0 × · · · × an) ∈ B.

Thus, the base type of an object of class Node is Nodet×Integer×oid×oid and of class CNode is CNodet×
Boolean. Conceptually, the base class type represents the mapping of COOL class names C (represented by
the tag type) to the attributes A (directly represented by their types).

Without loss of generality, we assume in our object model a common supertype of all objects. For example,
for Java this is Object, while for OCL (Object Constraint Language), this is OclAny.

Definition 4 (Object). Let Objectt ∈ T be the tag of the common supertype Object and oid the type of
the object identifiers. We define α Object :=

(
(Objectt × oid)× α⊥

)
.

Object generator functions can be defined such that freshly generated object-identifiers to an object are also
stored in the object itself; thus, the construction of reference types and of referential equality is fairly easy
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(see the discussion on state invariants in Section 6.4). Now we have all the foundations for defining the type
of our family of universes formally:

Definition 5 (Universe Types). The set of all universe types U is inductively defined by:

1. U 0
α ∈ U is the initial universe type with one type variable (hole) α.

2. if U(α0,...,αn,β1,...,βm) ∈ U, n,m ∈ N, i ∈ {0, . . . , n} and c ∈ B then
U(α0,...,αn,β1,...,βm)

[
αi :=

(
(c× (αn+1)⊥) + βm+1

)]
∈ U

This definition covers the introduction of “direct object extensions” by instantiating α-variables.
3. if U(α0,...,αn,β1,...,βm) ∈ U, n,m ∈ N, i ∈ {0, . . . ,m}, and c ∈ B then

U(α0,...,αn,β1,...,βm)

[
βi :=

(
(c× (αn+1)⊥) + βm+1

)]
∈ U

This definition covers the introduction of “alternative object extensions” by instantiating β-variables.

Where the initial universe U 0
α represents mainly the common supertype (i. e., Object) of all classes, i. e.,

a simple definition would be U 0
α = α Object. However, we will need the ability to store Values = Real +

Integer + Boolean + String. Therefore, we define the initial universe type by U 0
α = α Object + Values.

Extending the initial universe U 0
(α) with the classes Node and CNode leads to the following universe type:

U 1
(αC,βC,βN) =

(
(Nodet × Integer× oid× oid)

×
(
(CNodet × Boolean) × (αC)⊥ + βC

)
⊥ + βN

)
Object + Values . (5)

We use the idea of a universe representation without values for a class with all its extensions (subtypes). We
construct for each class a type that describes a class and all its subtypes. They can be seen as “paths” in
the tree-like structure of universe types, collecting all attributes in Cartesian products and pruning the type
sums and β-alternatives.

Definition 6 (Class Type). The set of class types C is defined as follows: Let U be the universe covering,
among others, class Cn, and let C0, . . . , Cn−1 be the supertypes of C, i.e, Ci is inherited from Ci−1. The
class type of C is defined as:

1. Ci ∈ B, i ∈ {0, . . . , n} then

C 0
α =

(
C0 ×

(
C1 ×

(
C2 × · · · × (Cn × α⊥)⊥

)
⊥
)
⊥

)
⊥
∈ C,

2. UC ⊃ C, where UC is the set of universe types with C 0
α := U 0

α .

Thus in our example we represent the class type of class Node by the HOL type

(αC , βC) Node =(
(Nodet × Integer× oid× oid)×

(
(CNodet × Boolean)× (αC)⊥ + βC

)
⊥
)

Object . (6)

Here, αC allows for extension with new classes by inheriting from CNode while βC allows for direct inheritance
from Node.

The outermost _⊥ reflect the fact that class objects may also be undefined, in particular after projecting
them from some term in the universe or failing type casts. Thus, also the arguments of constructors may be
undefined.

3.2. Elementary Object Construction

For each class, we provide injections and projections into an object universe. In the case of the class Object
these definitions are quite easy, e. g., using the constructors Inl and Inr for type sums we can easily insert
an Object object into the initial universe via:

mk(0)
Object obj = Inl obj with type α Object⇒ U 0

α (7)
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where obj is a variable denoting the current object. Recall that we denote the level on which a constant
(e. g., injection, projection, attribute accessor) is defined by a superscript (in parenthesis)) and the class for
which the constant is defined by a subscript.

The inverse function for projecting an Object object out of a universe can be defined as follows:

get(0)
Object u =

{
k if u = Inl k
ε k. true if u = Inr k with type U 0

α ⇒ α Object. (8)

where ε x. P x is the Hilbert-operator that chooses an arbitrary x satisfying P .
In the general case, the definitions of the injections and projections is a little bit more complex, but

follows the same schema: for the injections we have to find the “right” position in the type sum and insert
the given object into that position. Further, we define in a similar way projectors for all class attributes. For
example, we define the projector for accessing the left attribute of the class Node:

obj . left(0) ≡ (fst ◦ snd ◦ snd ◦ fst) pbase objq (9)

with type (α1, β) Node⇒ oid⊥ and where base is a variant of snd over lifted tuples:

basex ≡
{
b if x = x(a, b)y,
⊥ otherwise. (10)

For attributes with non-value types we return an oid. As we return oid for all class types, we consider this
construction not as type-safe in an object-oriented sense. In Section 4, we show how these projectors can be
used for defining a type-safe variant of projectors.

Similarly, we can define injections, or setters, for each attribute. For example, for setting the attribute
left to a specific value lft we define:

obj . set(0)
left lft ≡ let

oid = OidOf obj
i = obj . i(0)

right = obj . right(0)

ext = obj . ext(0)

in
x((Objectt, oid), x((Nodet, i, lft, right), ext)y)y

(11)

where OidOf _ accesses the object identifier, _. i(0) and _. right(0) are attribute accessors, and _. ext(0) is
an accessor for possible extension of the object, i. e., parts defined in subclasses, e. g., CNode.

In a next step, we define type test functions; for universe types we need to test if an element of the
universe belongs to a specific type, i. e., we need to test which corresponding extensions are defined. For
Object we define:

isUniv(0)
Object u =

{
true if u = Inl k
false if u = Inr k with type U 0

α ⇒ bool. (12)

For class types we define two type tests, an exact one that tests if an object is exactly of the given dynamic
type and a more liberal one that tests if an object is of the given type or a subtype thereof. Testing the latter
one, which is called kind in the OCL standard, is quite easy. We only have to test that the base type of the
object is defined (using def _), e. g., not equal to ⊥:

isKind(0)
Object obj = def obj with type α Object⇒ bool. (13)

An object is exactly of a specific dynamic type, if it is of the given kind and the extension is undefined, e. g.:

isType(0)
Object obj = isKind(0)

Object ∧¬
(
(def ◦ base) obj

)
with type α Object⇒ bool. (14)

The type tests for user defined classes are defined in a similar way by testing the corresponding extensions
for definedness.

Finally, we define casts, i. e., ways to convert classes along their subtype hierarchy. Thus we define for
each class a cast to its direct subtype and to its direct supertype. We need no conversion on the universe
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Universe

Object ValuesObject Values

A

B

C

A(0)
[Object]

B(0)
[A]

C(0)
[B]

Object(0)
[A]

A(0)
[B]

B(0)
[C]

mk(0)
A

mk(0)
B

mk(0)
C

get(0)
A

get(0)
B

get(0)
C

Figure 3. The type casts, e. g., B[C] allow the conversion of a type to its direct successor or predecessor in
the type hierarchy. The injections, e. g., mkB convert a class type to the universe type and the projections,
e. g., getB, convert a universe type to a concrete class type. For a universe without values, the class type and
the universe type of the top most class are identical. Here, the package Universe represents the universe,
i. e., the top level class (Object) and the primitive types (Values).

types where the subtype relations are handled by polymorphism. Therefore we can define the type casts as
simple compositions of projections and injections, e. g.:

Node(0)
[Object] = get(0)

Object ◦mk(0)
Node with type (α1, β) Node⇒ (α1, β1) Object, (15)

Object(0)
[Node] = get(0)

Node ◦mk(0)
Object with type (α1, β1) Object⇒ (α1, β1) Node. (16)

These type-casts are changing the static type of an object, while the dynamic type remains unchanged.
Figure 3 summarizes this construction for the three classes A, B, and C.

Note, for a universe construction without values, e. g., U 0
α = α Object, the universe type and the class

type for the common supertype are the same. In that case there is a particularly strong relation between class
types and universe types on the one hand and on the other there is a strong relation between the conversion
functions and the injections and projections function. In more detail, one can understand the projections as
a cast from the universe type to the given class type and the injections are inverse.

Now, if we build a theorem over class invariants (based finally on these projections, injections, casts,
characteristic sets, etc.), it will remain valid even if we extend the universe via α and β instantiations.
Therefore, we have solved the problem of structured extensibility for object-oriented languages.

This construction establishes a subtype relation via inheritance. Therefore, a set of Nodes (with type(
(α1, β) Node

)
Set) can also contain objects of type CNode. For resolving operation overriding, i. e., late-

binding, the packages generates operation tables user-defined operations; see [BW06a, Bru07] for details.

3.3. Properties of Elementary Objects

Based on the presented definitions, our object-oriented datatype package proves that our encoding of object-
structures is a faithful representation of object-orientation (e. g., in the sense of languages like Java or
Smalltalk or the UML standard [Obj03b]). These theorems are proven for each model, e. g., during loading
of a specific class model. This is similar to other datatype packages in interactive theorem provers. Further,
these theorems are also a prerequisite for successful reasoning over object structures.

In the following, we assume an arbitrary model with the classes A, B and C where B is a subclass of A and
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C is a subclass of B (recall Figure 3). We start by proving this subtype relation for both our class type and
universe type representation:

isUniv(0)
A univ

isUniv(0)
B univ

(17.a) isType(0)
B obj

isKind(0)
A obj

(17.b)

We also show that we can switch between the universe representations and object representation without
losing information, in fact, both type systems are isomorphic:

isUniv(0)
A univ

mk(0)
A (get(0)

A univ) = univ
(18.a) isType(0)

A obj
get(0)

A (mk(0)
A obj) = obj

(18.b)

isType(0)
B obj

isUniv(0)
A (mk(0)

A obj)
(19.a) isUniv(0)

A univ
isType(0)

A (get(0)
A univ)

(19.b)

Moreover, we can “re-cast” an object safely, i. e., up and down casts are idempotent. However, casting
an object deeper in the subclass hierarchy than its dynamic type results in undefinedness:

isType(0)
A obj

obj(0)
[B] = ⊥

(20.a) isType(0)
B obj(

(obj(0)
[A])

(0)
[B]
)

= obj
(20.b)

and also, the cast operations are strict and transitive, e. g.:

⊥(0)
[A] = ⊥ (21.a) isType(0)

C obj
(obj(0)

[B])
(0)
[A] = obj(0)

[A]

(21.b)

Further, for all class types c, both isType(0)
c ⊥ = false and isKind(0)

c ⊥ = false are valid.
Summarizing, these derived rules show that our encoding of inheritance establishes a subtype relation.

Moreover, the (informal) relations between classes one would expect from languages like UML, Java, or
Spec#, also hold in our encoding.

Our datatype package also derives similar properties for the injections and projections into attributes
automatically. For example, assume the class A has two attributes a and b then we derive among others:

obj 6= ⊥
(obj . set(0)

a x). a(0) = x
(22.a) (obj . set(0)

a x).b(0) = obj .b(0) (22.b)

(obj . set(0)
a x). set(0)

a y = obj . set(0)
a y (23)

(obj . set(0)
a x). set(0)

b y = (obj . set(0)
b y). set(0)

a x (24)

As we use a shallow embedding of object-oriented data-structures into HOL, these properties cannot be
proven as meta-theoretic property of our encoding. Instead, our datatype package proves these properties,
fully automatically, during the import of an object-oriented data model.
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4. Level 1: A First Type-safe Embedding of COOL

In this section, we present a type-safe embedding of the accessors of COOL. As a prerequisite, we define the
store as a partial map based on the concept of object universes:

α St := oid ⇀ Uα . (25)

Since all operations over our object store will be parametrized by α St, we introduced the following type
synonym:

Vα(τ) := α St⇒ τ . (26)

Thus we can define type-safe accessor functions: object identifiers (references) are completely encapsulated,
i. e., on level 1 no object identifiers are visible. For example, the function for accessing the left attribute
of an object of class Node in a system state σ works by taking the object, projecting the oid for the left
attribute, de-reference it in the state σ (which gives a value in the current universe), and project from this
the class object of type Node. Formally, this is expressed as follows:

obj . left(1) ≡ λσ.

{
get(0)

Node u if σ(obj . left(0)) = xuy,
⊥ otherwise.

(27)

For set- or sequence valued accessors, we have to provide definitions that de-reference each element of, e. g.,
a set of object identifiers and build a set of typed objects.

The type of the object-language accessor .left returning an object of type Node, which is in fact a
function of type Node→ Node, is now represented by our construction as follows:

_. left(1) ::V(αC ,βC)((αC , βC) Node)⇒ V(αC ,βC)((αC , βC) Node) . (28)

Thus, the representation map is injective on types; subtyping is represented by type-instantiation on the
HOL-level. However, due to our universe construction, the theory on accessors, casts, etc. is also extensible.

All other operations like casting, type- or kind-check are lifted as follows:

obj(1)
[A] ≡ λσ. (obj σ)(0)

[A] (29)

isType(1)
A obj ≡ λσ. isType(0)

A (obj σ) (30)

isKind(1)
A obj ≡ λσ. isKind(0)

A (obj σ) (31)
∂ obj ≡ λσ. def(obj σ) (32)

Their types are analogously lifted as in the accessor as discussed above.
In the following, we show how the other operations of COOL can be represented by HOL operators (for

simplicity, we will use overloading of operator symbols). Constant symbols in COOL like 0,1,2,. . . , true,false,
{} will be represented by constant functions that just drop the state: λσ. 0,λσ. 1,λσ. 2,. . . , λσ. true,λσ. false,
λσ. {}. All operators of the COOL language are just “lifted” from their HOL counterparts by passing the
implicit state argument, for example, the case of the binary operators is covered by:

X op Y = λσ. (X σ) op (Y σ) (33)

where op stands for _ = _, _ ∧_,_→ _, _ + _, _ ∗_, _ ∈ _, _ ∪_, . . . .
If a path expression is used as expression, i. e., as argument of a COOL operator as in self . i(1) > 5, for

example, it is implicitly dropped: λσ. (λσ. p(self . i(1))σq)σ > (λσ. 5)σ. This is motivated by turning COOL in
a conventional HOL-language without exceptional elements (similar to Spec# or JML); these elements were
strictly propagated within path expressions, can be tested via ∂ obj , and will be interpreted by arbitrary,
underspecified values when passed as arguments to operators.

The lifted operations, for example _ ∧ _, have the type Vα(bool) ⇒ Vα(bool) ⇒ Vα(bool) if the corre-
sponding operator _∧_ of the meta-language HOL has the type bool⇒ bool⇒ bool. This exemplifies again
the injectivity of the representation map on associated types.

The judgment σ |= E is simply a shortcut for E σ. As a consequence of these definitions, σ |= E ∧ E′ is
just equivalent to σ |= E ∧ σ |= E′ (recall that we use overloading).

An alternative semantic choice for the semantics of COOL consists in strict extensions of the operators
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and a three-valued logic; a further subdivision here is a strict logic (cf. [BW06b]) or a strong Kleene-Logic
(cf. [BW06a]). Such an alternative allows for a uniform handling of exceptions (like illegal memory access or
“1 div 0”) as occurring in programming languages like Java. The key difference to the semantics of COOL as
presented above is the definition for the operator family:

X op Y = λσ.

{
xpX σq op pY σqy if def(X) ∧ def(X),
⊥ otherwise (34)

where the case of monadic operators and constants is handled analogously. Another difference is the injection
of paths into expressions, which is just the identity in this variant. However we will not further discuss this
alternative here since it is clearly too far away from the mainstream in object-oriented program verification.

Finally, the properties of the previous section can be rephrased for level 1. The “lifted versions” of these
rules will have to take the store σ into account. This results in two different patterns shown as follows:

σ |= isType(1)
A obj

σ |= isKind(1)
A obj

(35.a) σ |= isType(1)
C obj

(obj(0)
[B])

(1)
[A] σ = obj(1)

[A] σ
(35.b)

5. Level 2: Co-inductive Properties in Object Structures

A main contribution of our work is the encoding of co-inductive properties over object structures, including
the support for class invariants.

Recall our running example, i. e., Figure 1, where the class Node describes a potentially infinite cyclic ob-
ject structure. Subsequently, we will give semantics to the three invariants positive, flip and flip_strong.
Since they represent recursive predicates, they must be defined conservatively via greatest fixed-points. The
Isabelle library also offers a theory for the greatest fixed-point operator gfp :: (α set ⇒ α set ⇒ α set;
for technical reasons, we must talk over characteristic sets like Node_positive_Set instead of invariants
Node_positive, although both are closely connected:

Node_positive(self ) ≡ self ∈ Node_positive_Set ≡ self ∈ (λσ. gfp(Node_positive_F σ))

We pick the example definition Node_positive_F as core-prerequisite for the invariant; recall that this
invariant requires from the attribute i of class Node to have values greater than 5:

Node_positive_F :: U 1
(αC,βC,βN) St⇒ U 1

(αC,βC,βN) St⇒ (αC , βC) Node set

⇒ U 1
(αC,βC,βN) St⇒ (αC , βC) Node set

Node_positive_F ≡ λσ. λX.
{

self
∣∣ σ � ∂ self . i(1) ∧ σ � self . i(1) > 5

∧ σ � ∂ self . left(1) → σ � isKind(1)
Node self . left(1)

∧ σ � (self . left(1)) ∈ X

∧ σ � ∂ self . right(1) → σ � isKind(1)
Node self . right(1)

∧ σ � (self . right(1)) ∈ X
}

(36)

The first part of this (generated) definition is a straight forward translation of the formula in the inv
part of the class declaration in Figure 1; the clauses σ � ∂ self . left(1) → σ � isKind(1)

Node self . left(1) ∧ σ �
(self . left(1)) ∈ X (and for _.right) are added schematically as a result of the recursive type definitions.

For a given invariant from the input, our package generates definitions as the one shown above and
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derives the following class invariant theorem expressing the intuition of our invariant:

σ � Node_positive self = σ � ∂ self . i(1)

∧ σ � self . i(1) > 5

∧ σ � ∂ self . left(1) → σ � isKind(1)
Node self . left(1)

∧ σ � Node_positive self . left(1)

∧ σ � ∂ self . right(1) → σ � isKind(1)
Node self . left(1)

∧ σ � Node_positive self . right(1)

(37)

or equivalently (by extensionality and by COOL notation (see Section 4)):

Node_positive self = ∂ self . i(1) ∧self . i(1) > 5

∧ ∂ self . left(1) → isKind(1)
Node self . left(1) ∧Node_positive self . left(1)

∧ ∂ self . right(1) → isKind(1)
Node self . right(1) ∧Node_positive self . right(1)

(38)

Since in our package, it is possible to use the kind and type tests inside invariants, one can establishing
useful constraints for verification. For the class Node, we can state the following invariant even on the level
of the input:

inv positive_type : self .i > 5
∧ ∂ self .left−→ isType(1)

Node self .left
∧ ∂ self .right−→ isType(1)

Node self .right

This example is in fact a canonical alternative interpretation of the positive invariant: Node_positive leads
only to the requirement that sub-graphs have the Node-kind; the above declaration (which leads to struc-
turally the same invariant theorem except that isKind(1)

Node _ predicates were replaced by their isType(1)
Node _

counterparts) strengthens this to the requirement that all reachable nodes have Node-type. We call the
characteristic sets of these alternative invariants the characteristic type set, while the default is called the
characteristic kind set.

For kind sets and type sets, the packages proves automatically by monotonicity of the approximation
functions and their point-wise inclusion:

σ � Node_positive_Type_Set ⊆ Node_positive_Set (39)

This kind of theorem is an another example for properties that remain valid if we add further classes in a
class model.

Now we relate class invariants of subtypes to class invariants of supertypes. Here, we use cast functions
described in the previous section; we write self (1)

[Node] for the object self converted to the type Node of its
superclass. The trick is done by defining a new approximation for an inherited class CNode on the basis of
the approximation function of the superclass:

CNode_flip_F ≡ λσ. λX.{
self

∣∣∣∣ ( self (1)
[Node] ∈

(
Node_positive_F σ (λx. x(1)

[Node])
8 X
))
∧(CNode_flip self )

}
(40)

where _ 8 _ denotes the point-wise application.
Similar to [BW99] or [Pau00] we can handle mutual-recursive datatype definitions by encoding them

into a type sum. However, we already have a suitable type sum together with the needed injections and
projections, namely our universe type with the make and get methods for each class. The only requirement
is that a set of mutual recursive classes must be introduced “in parallel,” i. e., as one extension of an existing
universe.

These type sets have the usual properties that one associates with object-oriented type systems. Let CN
(KN ) be the characteristic type set (characteristic kind set) of a class N and let CN and KN be the corre-
sponding type sets of a direct subclass of N, then our encoding process proves formally that the characteristic
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type set is a subset of the kind set, i. e.:
σ � self ∈ CN −→ σ � self ∈ KN . (41)

Moreover, that the kind set of the subclass is (after type cast) a subset of the type set (and thus also of the
kind set) of the superclass:

σ � self ∈ KC −→ σ � self (1)
[Node] ∈CN . (42)

These proofs are co-inductions and involve a kind of bi-simulation of (potentially) infinite object structures.
Further, these proofs depend on theorems that are already proven over the pre-defined types, e. g., Object.
These proofs where done in the context of the initial universe U 0 and can be instantiated directly in the
new universe without replaying the proof scripts; this is our main motivation for an extensible construction.

On the basis of these definitions, we can now give an alternative, stronger semantic interpretation of
COOL. The key issue of this language interpretation is that the definedness of an accessor function implies
that the resulting object is indeed valid, i. e., satisfies its class invariant. Thus, the static type of an object
gets a meaning via the class invariants, not only structurally as in the previous interpretation. The accessors
are defined like:

self . left(2) ≡ λσ.

{
self . left(1) if σ � self . left(1) ∈KNode
⊥ otherwise.

(43)

The key concepts of kind and type were interpreted as follows:

isType(2)
A self ≡ λσ. σ � self ∈ CA (44)

isKind(2)
A self ≡ λσ. σ � self ∈ KA (45)

All other semantic definitions for COOL remain unchanged.
The additional property of this semantic interpretation of COOL just formalizes the intuition already

stated above:
σ |= ∂(self . left(2))

σ |= isKind(2)
Node self . left(2)

(46)

With these derived rules, reasoning over a set of objects in the store (e. g., as in OCL provided by the construct
::allInstances()), to establish class invariants becomes superfluous.

6. A Modular Proof-methodology for Object-oriented Modeling

In the previous sections, we discussed a technique to build extensible object-oriented data models. Now we
turn to the wider goal of a modular proof methodology for object-oriented systems and explore achievements
and limits of our approach with respect to this goal. Two aspects of modular proofs over object-oriented
models have to be distinguished:
1. the modular construction of theories over object-data models, and
2. a modular way to represent dynamic type information or storage assumptions underlying object-oriented

programs.
With respect to the former, the question boils down to what degree extensions of class models and theories
built over them can be merged. With respect to the latter, we will show how co-inductive properties over
the store help to achieve this goal.

6.1. Non-overlapping Merges

The positive answer to the modularity question is that object-oriented data-model theories can be merged
provided that the extensions to the underlying object-data models are non-overlapping. Two extensions are
non-overlapping, if their set of classes has no common direct parent class (see Figure 4a). In these cases,
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U 1:

A

U 2a:

A

C

U 2b:

A B

D

U 3:

A B

C D

(a) Non-conflicting Merges

U 1:

A

U 2a:

A

C

U 2b:

A

B

U 3:

A

BC

(b) Conflicting Merges

Figure 4. Merging Universes: Figure 4a illustrate the non-overlapping extension of a class A with one direct
subclass C and a new hierarchy consisting of the classes B and D which are rooted on the same level as A. In
contrast, Figure 4b illustrates a conflicting merge. In this case, the class A is extended independently with
the direct subclasses B and C which causes a conflict when merging these two extensions.

there exists a most general type instance of the merged object universe U 3 (the type unifier of both extended
universes U 2a and U 2b); thus, all theorems built over the extended universes are still valid over the merged
universe (see Figure 4a). We claim that the non-overlapping case is the pragmatically more important one;
for example, all libraries of the HOL-OCL system [BW06a] were linked to the examples in its substantial
example suite this way. Without extensibility, the datatype package would have to require the recompilation
of the libraries, which takes in the case of the HOL-OCL system about 20 minutes. In the following, we discuss
two approaches for tackling this limitation of our framework.

6.2. Handling Overlapping Merges

Unfortunately, there is a pragmatically important case in object-oriented modeling that will be considered
as an overlap in our package. Consider the case illustrated in Figure 4b. Here, the parent class A is in the
class set of both extensions (including parent classes). The technical reason for the conflict is that the order
of insertions of “son”-classes into a parent class is relevant since the type sum α + β is not a commutative
type constructor.

In our encoding scheme of object-oriented data models, this scenario of extensions represents an overlap
that the user is forced to resolve. One possibility is to arrange an order of the extensions by changing the
import hierarchy of theories producing overlapping extensions. This worst case results in re-running the
unmodified proof scripts of either B or C. Another option is to resolve the (potential) conflict in advance by
introducing an empty class B’ and let inherit B from there. A further option consists in adding a mechanism
into our package allowing to specify for a child-class the position in the insertion-order.

6.3. Modularity in an Open-world: Dynamic Typing

Our notion of extensible class models generalizes the distinction “open-world assumption” vs. “closed-world
assumption” widely used in object-oriented modeling. Our universe construction is strictly “open-world” by
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default; the case of a “closed-world” results from instantiating all α,β-“holes” in the universe by the unit type.
Since such an instantiation can also be partial, there is a spectrum between both extremes. Furthermore,
one can distinguish α-finalizations, i. e., instantiation of an α- variable in the universe by the unit type, and
β-finalizations. The former closes a class hierarchy with respect to subtyping, the latter prevent that a parent
class may have further direct children (which makes the automatic derivation of an exhaustion lemma for
this parent class possible).

In this and the subsequent section, we consider an extension of path expressions in the COOL language by
(side-effect free) methods. In usual object-oriented languages, methods can be overridden, method invocations
like in object-oriented languages require a mechanism for the resolution of overridden methods such as late
binding as used in Java. Late binding uses the dynamic type isType(1)

X self of self . The late-binding method
invocation is notorious for its difficulties for modular proof. Consider the case of an operation:

method Node ::m():: Boolean
pre: P
post : Q

Furthermore assume that the implementation of m invokes itself recursively, e. g., by self.left.m(). Based
on an open-world assumption, the postcondition Q cannot be established in general since it is unknown which
concrete implementation is called at the invocation.

Based on our universe construction, there are two ways to cope with this underspecification. First,
finalizations of all child classes of Node results in a partial closed-world assumption allowing to treat the
method invocation as case switch over dynamic types and direct calls of method implementations. Second,
similarly to the co-inductive invariant example in Section 5 which ensures that a specific de-referentiation
is in fact defined, we can specify that a specific de-referentiation self . left(1) has a given dynamic type. An
analogous invariant Invleft(self ) can be defined co-inductively. From this invariant, we can directly infer
facts like isType(1)

Node (self . left(1)), and isType(1)
Node (self . left(1). left(1)), i. e., in an object graph satisfying this

invariant, the left “spine” must consist of nodes of dynamic type Node. Strengthening the precondition P by
Invleft(self ) consequently allows to establish postcondition Q—in a modular manner, since only the method
implementation above has to be considered in the proof. Invoking the method on an object graph that does
not satisfy this invariant can therefore be considered as a breach of the contract.

6.4. Modularity in an Open-world: Storage Assumptions

Similarly to co-inductive invariants, it is possible via co-recursive functions to map an object to the set of
objects that can be reached along a particular path set. The definition must be co-recursive, since object
structures may represent a graph. However, the presentation of this function may be based on a primitive-
recursive approximation function depending on a factor k :: nat that computes this object set only up to the
length k of the paths in the path set:

ObjSetAleft 0 self σ = {}
ObjSetAleft k self σ = if σ |= ∂ self then{}

else {self } ∪ObjSetAleft (k − 1) (self . left(1) σ) σ
(47)

The function ObjSetleft self σ can then be defined as limit⋃
n∈Nat ObjSetAleft n self σ . (48)

Moreover, we can add an state invariant, on top of our concept of state, by using a type definition
αSt = {σ :: oid ⇀ U α | Inv σ}. Here, we require for Inv that each oid points to an object that contains itself:

∀ oid ∈ dom σ. OidOf(the(σ oid)) = oid (49)

As a consequence, there exists a “one-to-one”-correspondence between objects and their oid in a state. Thus,
sets of objects can be viewed as sets of references, too, which paves the way to interpret these reference sets
in different states and specify that an object did not change during a system transition or that there are no
references from one object-structure into some critical part of another object structure.
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7. Application: A Shallow Embedding of IMP++

In the following, we integrate the assertion language COOL for object-oriented data models into a derived
Hoare-Calculus for a small, non-trivial object-oriented language. This language is pretty much in the spirit
of Featherweight Java [IPW01], in the sense that it is reduced to the absolute minimum. IMP++does not
even comprise the concept of a method invocation or a procedure call; on the other hand, it provides a
“generic slot” for these concepts via the CMD-construct, that allows for an arbitrary transition over the entire
program state. Given the dynamic type tests of the data model, it is straight-forward to define an arbitrary
overload resolution within this slot. However, demonstrating how this definition scales up with the presented
machinery to a modular proof system for methods and their invocation, is a far more evolved subject that
we consider beyond the scope of this paper.

Instead, we focus on how our type-safe framework pays off by simplifying the proof rules and consequently
the proofs. No side-conditions are necessary related to well-formedness of objects, to the syntactic admissi-
bility of attribute accesses of an object or to reasoning along the class hierarchy as in the deep embedding
of, e. g., NanoJava [vON02].

We will show in a standard exercise that a compact Hoare-Logic can be derived from a denotational
semantics for IMP++. As basis, we use IMP [Nip98], a canonical imperative core language available in the
Isabelle/HOL library; this language has been inspired by a standard textbook on program semantics [Win93].
We will extend IMP with object-oriented types, object creation and object update, and a simple form of
exceptional computation motivated by illegal memory accesses. Finally, we present a small program that
establishes the class invariant of our CNode example—although no individual step of IMP++ can establish it.

In contrast to the previous sections where definitions and proofs were done automatically for all classes
and attributes, the proof presented in this section are done interactively. However, the rules for the Hoare-
Logic are proven once and for all, and the derivation of the rules for update and create could be automated.

7.1. Syntax

The syntax of IMP++ is introduced via a datatype definition:

α com = SKIP | EXN
| CMDα cmd | IF α bexp THEN α com ELSE α com
| α com ; α com | WHILE α bexp DO α com

(50)

SKIP denotes the empty, successfully terminating command, EXN the program that raises the exception
(IMP++ possesses only one). The generic command CMD takes as argument a function α cmd which is a
synonym for a function α state⇒ α state⊥. Thus, a α cmd is allowed to raise an exception; in our context,
this will be used to react operationally on undefined argument-oid’s of creation and update operations. The
sequential composition, the conditional and the while loop are the conventional constructs of the language.
The latter two are controlled by a Boolean expression α bexp which is a synonym for α state⇒ bool (resp.
α state ⇒ bool⊥ in the case of a strict version of COOL). Any COOL expression has a type which is an
instance of α bexp, thus, it can be also used as control expression in IMP++. In the case of a strict version
of COOL, as used in [BW06b], the type α bexp is defined as synonym to α state⇒ bool⊥.

7.2. Denotational Semantics

The denotational semantics of an imperative language is a relation on states; since uncaught exceptions
may occur on the command level, we have also error states denoted by ⊥. Thus, the type of the relation is
(α :: bot state⊥ × α state⊥)set. As a consequence, we need as prerequisite the “strict extension” _ ◦⊥ _ of
type (β⊥ × γ⊥) set⇒ (α⊥ × β⊥) set⇒ (α⊥ × γ⊥) set on relations:

r ◦⊥ s ≡ {(⊥,⊥)} ∪ {(x, z). def x ∧ (∃y. def y ∧ (x, y) ∈ s ∧ (y, z) ∈ r)}
∪ {(x, z). def x ∧ (∃y.¬ def y ∧ (x, y) ∈ s ∧ z = ⊥)} (51)
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∀s. P ′ s −→ P s � {P}c{Q} ∀s.Q s −→ Q′ s

� {P ′}c{Q′} (55.a) � {�P} SKIP{�P} (55.b)
� {�P}c{�Q} � {�Q}d{�R}

� {�P}c; d {�R} (56.a)

� {�λσ. Pσ ∧ (pσq � b)}c{�P}

� {�P}{WHILE}b{DO}c{�λσ. Pσ ∧ (pσq � ¬ b)} (56.b)

� {λσ. σ = ⊥} c {λσ. σ = ⊥} (57.a) � {�λσ. pσq � ∂ f ∧Q(f pσq)} CMD f{�Q} (57.b)

� {�λσ. (Pσ) ∧ (pσq � b) ∧ (pσq � ∂ b)}c{�Q} � {�λσ. (Pσ) ∧ (pσq � ¬ b) ∧ (pσq � ∂ b)}c{�Q}

� {�P}{IF}b{THEN}c{ELSE}d{�Q}
(58)

Table 1. The Hoare Calculus for IMP++is derived from the semantic definitions of IMP++.

The definition of the semantic function C is a primitive recursion over the syntax:
C(SKIP) = Id (52a)
C(EXN) = {(s, t). t = ⊥} (52b)

C(CMD f) = {(s, t). s = ⊥ ∧ t = ⊥} ∪ {(s, t). def s ∧ t = f psq} (52c)
C(c0; c1) = C(c1) ◦⊥ C(c0) (52d)

C(IF b THEN c1 ELSE c2) = {(s, t). s = ⊥ ∧ t = ⊥}
∪ {(s, t). def s ∧ b psq = true ∧ (s, t) ∈ Cc1} (52e)
∪ {(s, t). def s ∧ b psq = false ∧ (s, t) ∈ Cc2}

C(WHILE b DO c) = lfp(Γ b (C c)) (52f)
where Γ is the usual approximation functional for the least fixed-point operator lfp, enriched by the cases
for undefined states:

Γ b cd ≡ (λφ. {(s, t). s = ⊥ ∧ t = ⊥} ∪ {(s, t). def s ∧ b psq = true ∧ (s, t) ∈ (φ ◦⊥ cd)}
∪ {(s, t). def s ∧ b psq = false ∧ s = t}) (53)

7.3. A Derived Hoare-Logic

In our setting, assertions are functions α :: bot state⊥ ⇒ bool. The validity of a Hoare triple is stated as
traditional:
|= {P}c{Q} ≡ ∀s t. (s, t) ∈ C(c) −→ P s −→ Q t (54)

Based on the definition for C, we can derive a Hoare-Calculus for IMP++. Since we focus on correctness
proof and not completeness, we present the rules for validity |= directly, avoiding a detour via a derivability
notion `. Moreover, we use the abbreviation �P for λσ. def σ ∧ Pσ. Thus, assertions like � {�P ′}c{�Q′}
relate “non-exception” states allowing inference of normal behavior. The derived calculus is now surprisingly
standard (see Table 1).

7.4. Data-model Specific Hoare-Rules

Recall our running example depicted in Figure 1. Besides the type-safe accessor functions, we need families
of level-1 (store-related) update and creation operations on objects.

The lifting of update operations to level 1 is straight-forward:

self . set(1)
left E ≡ λσ.σ(OidOf self := self σ. set(0)

left (E σ)) (59)
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Here, the operation _(_ :=_) denotes the usual update on functions. Instead of CMD(self . set(1)
left E) we write

self . left :=E.
With respect to the creation operations, we define later:

newOidσ ≡ ε x. x /∈ dom σ (60)

where ε x. P x is the Hilbert-operator that chooses an arbitrary x satisfying P .

newNode oid ≡ x((Objectt, oid), x((Nodet,⊥,⊥,⊥,⊥)y)y (61)

The creation operation generates a new object of some type and stores the reference to it in a given attribute
of self :

self .new(1)
left ≡ λσ. letσ′ = σ(newOidσ := newNode (newOidσ))

in self . set(1)
left (newNode (newOidσ))σ′ (62)

Instead of CMD(self .new(1)
left ) we write self . left := new(Node).

From these definitions, the following family of class model-specific Hoare-rules is derived (as usual, we
pick the case for attribute left):

|= {�λσ.(pσq � (∂ self)) ∧Q(self . set(1)
left Epσq)}self . left :=E{�Q} (63)

The analogous case for the creation is a special case of this rule.

7.5. An Example in IMP++.

A program that produces the smallest non-trivial Object system satisfying the CNode invariant looks in a
fictive object-oriented language as follows:
method Node m();
var H1: CNode ;
var H2: CNode ;
begin

H1 := New( CNode );
H2 := New( CNode );
H1.i:= 7;
H1. color := true;
H1.left := H2;
H1. right := H2;
H2.i:= 9;
H2. color := false ;
H2.left := H1;
H2. right := H1;
return H1

end

Well, the method as such cannot be represented in IMP++ because we did not provide syntax for that.
However, we can represent the local variables by extending the underlying class model by a stack object
class for method m (a terminology also used in the Java language specification), and express pre and post
conditions for the body called mbody translated one-to-one in IMP++.

The stack-object class class m_stobj has the form:
class m_stobj

attributes
self : Node
return : CNode
H1 : CNode
H2 : CNode

i. e., it comprises attributes for the local variables H1 and H2 with the previously described types as well as a
return attribute of type CNode. The package will then generate the usual update functions for this class and
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give semantics to the corresponding assignments in our example program (the return statement is viewed
as an update to the return attribute). With these preliminaries, the encoding of the body of method m is
one-to-one.

We want to specify that the program establishes by a sequence of creation and update steps the global
invariant. Assuming that the stack objectm is defined when the method is called (an assumption that reflects
the operational behavior of method invocations), the verification of the body is stated as Isabelle as proof
goal follows,:

� {�λσ. σ |= ∂ m}mbody{�σ � CNode_flip_strong(m. return(1))} (64)

The interactive proof of this statement proceeds in essentially two phases: First, by several applications of
the consequence rule (shown in Equation 56.a in Table 1) and the update-rules shown in Equation 59, we
accumulate an equation system as assertion:

σ |= ∂(m.H1(1))
∧m.H1. i(1) = 7 ∧m.H1. color(1) = true
∧m.H1. left(1) = m.H2(1) ∧m.H1. right(1) = m.H2(1)

∧ ∂(m.H2(1)) (65)
∧m.H2. i(1) = 9 ∧m.H2. color(1) = false
∧m.H2. left(1) = m.H1(1) ∧m.H2. right(1) = m.H1(1)

∧m. return(1) = m.H1(1)

Here, we dropped the superscript for all nested accessor functions to increase the readability. This assertion
must imply the postcondition, which is reduced to:

σ |= m. return(1) ∈ CNode_flip_strong_Set (66)

The gap is bridged by the application of the derived fixed-point-induction:

∧
X.

[σ |= m. return(1) ∈ X]
···

σ |= m. return(1) ∈ (λσ.CNode_flip_strong_F σ X)

σ |= m. return(1) ∈ (λσ. gfp(CNode_flip_strong_F σ))

(67)

The example also shows how liberal invariants (a freshly generated object only satisfies such an invariant
since the .left and .right attribute are uninitialized) can be used to establish stronger ones (.left and .right
always refer to defined objects). In [LM05] local flags in objects are suggested to switch on and off parts of
static class invariants. Our approach does not need such flags (while it can mimic them), rather, we would
generate versions of invariants and relate them via co-induction automatically.

8. Conclusion

We presented an extensible universe construction supporting object-oriented data-models providing subtyp-
ing and (single) inheritance. As syntactic interface for object-oriented data-models, we used the annotation
language COOL which we interpreted in two logical embeddings called level 1 and level 2. The underlying map-
ping from object-language types to types in the HOL representation is injective, which implies type-safety. We
introduce co-inductive properties on object systems via characteristic sets defined by greatest fixed-points;
these sets also give a semantics for class invariants. In our package, constructors and update-operations were
handled too.

Finally, we integrated COOL inside a Hoare-Calculus for a conceptual imperative core-language with
object creation and object update. We used both interpretations for COOL—level 1 for small-step reasoning,
level 2 for big-step reasoning—to verify a program generating a cyclic object graph against its specification.

The universe-construction is supported by a package (developed as part of the HOL-OCL project [BW06a]).
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Invoice eBank Company Royals and Loyals

number of classes 3 8 7 13
size of OCL specification (lines) 149 114 210 520
generated theorems 647 1444 1312 2516
time needed for import (in seconds) 12 42 49 136

Table 2. Importing Different UML/OCL Specifications.

Generated theories on object systems can be applied for object-oriented specification languages as OCL as
well as programming language embeddings using the type-safe shallow technique.

In the context of HOL-OCL, we gained some experimental data that shows the feasibility of the technique:
Table 2 describes the size of each of the above mentioned models together with the number of generated
theorems and the time needed for importing them into HOL-OCL. The number of generated theorems depends
linearly on the number of classes, attributes, associations, operations and COOL constraints. For generaliza-
tions, a quadratic number (with respect to the number of classes in the model) of casting definitions have to
be generated and also a quadratic number of theorems have to be proven. The time for encoding the models
depends on the number of theorems generated as well as their complexity.

8.1. Related Work

Datatype packages have been considered mostly in the context of HOL or functional programming languages.
Systems like [Mel92, BW99] build over an S-expression like term universe (co)-inductive sets which are
abstracted to (freely generated) datatypes. Paulsons inductive package [Pau00] also uses subsets of the ZF
set universe i. To the best of our knowledge, this is the first attempt to apply this technology to type-safe
object-oriented data-models derived on-the-fly from conservative definitions.

There is a substantial body on literature on object-oriented language semantics based on deep embeddings.
A more conceptual work is NanoJava[vON02], which is in spirit quite similar to IMP++, albeit focusing on
meta-theoretic proofs like completeness. Although the proofs done with NanoJava are rather smallish (in
this respect quite similar to IMP++), it is instructive to compare its rules with the ones of IMP++. We just
consider the case of a cast-operation in an own subcalculus on expressions:

A |=e {P}e
{
λ v s.

(
case v of Null ⇒ true

| Addr a ⇒ obj class s a <C C

)
→ Q v s

}
(Cast)

A |=e {P}Cast C e{Q}
(68)

These side-conditions in subcalculi deciding whether the type of a reference is conform to another type is
just superfluous in IMP++, where type-casts were represented as simple equational rules that are amenable
to rewriting. The Isabelle/Bali Project [vO01] followed a similar approach to NanoJava, but for a quite
substantial fragment of the Java language. It served as a formal reference semantics in several other projects
(see below). Working with this embedding is technically very challenging, both with respect to time and
memory consumption. The complexity of side-condition evaluations inspired for some time the development
of code-generators for Isabelle. The approach is in principle compatible to open-world assumptions, but not
easily amenable for modular verification.

The KeY Tool [ABB+05, BHS07] is a verification environment integrated into a CASE tool. It offers
remarkable support for development and claims for a high degree of proof automation. However, it is based
on an axiomatic description of Java and C like languages in Dynamic Logic, which is implemented in taclets,
i. e., purely syntactic transformations of a prover state. For fragments of the substantial rule-sets, formal
verifications with respect to an operational Java model in Maude and Isabelle/Bali have been undertaken at
some stage of the system development. In contrast, our datatype package makes comprehensive proofs for the
consistency of the extensible data-model based on an LCF-style kernel allowing only logical manipulations
with respect to HOL.

Jive [MPH00] compiles an object-oriented data-model into a fixed Isabelle theory and includes this into
a derived Hoare-calculus over a substantial fragment of Java. The system shares basic ideas with respect
to the object model with Spec# (see below). However, the overall construction is based on a closed-world
assumption and thus, not extensible. An extension of an object-model results in a recompilation that needs
at present 20 minutes for small programs.
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To the probably most advanced tools belong verification condition generator approaches such as Boogie for
Spec# [BLS05, LM05], which is excellently integrated into a CASE tool. The underlying idea is to compile
object-oriented programs into standard imperative ones and to apply a verification condition generator
on the latter. The approach requires the generation of a quite substantial axiomatization of an object-
oriented memory/machine model, and an explicit first-order representation of object-oriented types within a
logical context in which the verification conditions were stated. The second author witnessed several logical
inconsistencies in an attempt to verify the memory/machine model of a C variant of the Boogie-System with
Isabelle. We believe that the properties of our object-oriented memory model, even if taken axiomatically,
could provide assurance. If required, our system can generate a proof of consistency for given data models.

Krakatoa [MPM05] and several similar tools for JML follow a similar approach than Boogie for Spec#.
While the core, the Why tool supporting an alias-free imperative language, has been verified, the overall tool
including object-oriented compilation is not. Inconsistencies of past versions of axiomatic memory models
have been reported. The object-oriented model has only a constrained notion of dynamic type and is only
partly extensible.

For shallow embeddings, there is the work by [SKS02]. In this approach, however, emphasis is put on
a universal type for the method table of a class. This results in local “universes” for input and output
types of methods and the need for reasoning on class isomorphisms. As the authors admits, this “creates
considerable formal overhead.” Subtyping on objects must be expressed implicitly via refinement. Somewhat
more similar to our work are the encoding provided by Huismann [HJ00] and its follow-up by Jacobs [JP04].
The approach is based on a straight-forward compilation of class systems to families of records; this is in
contrast to our work restricted to closed-world data-models. The follow-up paper, developed in the context of
the acsloop tool, states our work on automated class invariant derivation explicitly as desirable future work.
The approach by Yatake [YAK05] is similar to Huismanns and suffers from the same limitations; however,
the derivation of the elementary data-model rules is very similar to ours.

With respect to extensibility of data-structures, the idea of using parametric polymorphism is partly
folklore in HOL research communities; for example, extensible records and their application for some form of
subtyping has been described in HOOL [NW98]. Since only α-extensions are used, this results in a restricted
form of class types with no cast mechanism to α Object.

8.2. Future Work

We see the following lines of future research:
Towards a Generic Package. The supported type language as well as the syntax for the co-induction

schemes is fixed in our package so far. More generic support for annotation languages like OCL, COOL or its
strict version is required to make our package more widely applicable.

Support for Inductive Constraints. By introducing measure-functions over object-structures, inductive
datatypes can be characterized for defined measures of an object. This paves the way for the usual structural
induction and well-founded recursion schemes.

Support of built-in Co-recursion. Co-recursion can be used to define e. g., deep object equalities.
Deriving VCG. Similar to the IMP-theory, verification condition generators for IMP++ programs can be

proven sound and complete. This leads to effective program verification techniques based entirely on derived
rules.
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