Correct Tools

for Formal Methods
in Software Engineering

Kumulative Habilitationsschrift

vorgelegt zur Erlangung
der
Lehrbefugnis fiir Informatik
an der
Fakultat fiir Angewandte Wissenschaften
der
Albert-Ludwigs-Universitat Freiburg

von

Burkhart Wolff

Freiburg, April 2005

Abstract

The development of tools for program analysis, verification and refinement is
a prerequisite for the proliferation of formal methods in industry and research.
While most tools were directly implemented in a programming language, the
ultimate goal of this work is to represent widely known formal methods in a so-
called logical framework by their semantics using a particular representation
technique — called shallow embedding — motivated by more efficient deduction.
Based on this representation, symbolic computations in tool implementations
can be based on formally proven correct derived rules. As such, this correctness-
oriented approach has been known for a while and has been criticized for a
number of shortcomings:

1.

the application range of embeddings in logical frameworks is limited to very
small and artificially designed languages,

their application is impossible when the formal specification method is still
under development,

embedding the semantics conservatively and deriving some rules on this basis
does not imply that there is a comprehensive support of a method that is
technically powerful enough for applications,

the integration in a more global software engineering process and its prag-
matics is too difficult, and

the usability of embeddings is doubtful even if one is targeting at the (fairly
small market of) proof environments.

In contrast to this criticism, we claim that our approach is feasible. We substan-
tiate this by developing:

1.

suitable embeddings for widely used formal methods, including process-
oriented, data-oriented and object-oriented specification methods (CSP, Z,
UML/OCL),

abstractions and aspect-oriented structuring techniques allowing for the quick
development of semantic variants enabling the study consequences of changes
in formal methods under development (like UML/OCL),

particular techniques for generating library theories, for supporting particu-
lar deduction styles in proofs, for specialized deduction support for concrete
development methodologies,

different scenarios of the integration of the developed tools in conventional
tool chains in software engineering, and

front-ends for light-weight integration into tool chains (like HOL-Z 2.0) or
prototypic encapsulation of logical embeddings into generic graphical user-
interfaces for a more comprehensive encapsulation.

Finally, we validate one of these tool chains (HOL-Z 2.0) by a substantial case-
study in the field of computer security.

Contents

Burkhart Wolff

I Selected Papers:

|A Corrected Failure-Divergence Model for CSP in Isabelle/HOL| 27
Haykal Tej and Burkhart Wolff

IHOL-Z 2.0: A Proot Environment for Z-Specifications| 47
Achim D. Brucker and Frank Rittinger and Burkhart Wolff

[UML/OCL: Semantics, Calculi, and Applications in Refinement and Test| . 65
Achim D. Brucker and Burkhart Wolff

|[Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL] 123
Nicole Rauch and Burkhart Wolff

I Selected Papers:
ISpecial Deduction for Method Support|

|Correct and User-Friendly Implementation of [ransformation Systems|. ... 143
Kolyang, Thomas Santen and Burkhart Wolff

|[TAS - A Generic Window Inference System.|.............. 163
Christoph Liith and Burkhart Wolff

|Using Theory Morphisms for Implementing Formal Methods Tools| 181
Achim D. Brucker and Burkhart Wolff

[Symbolic Test Case Generation For Primitive Recursive Functions| 205
Achim D. Brucker and Burkhart Wolff

IIII Selected Papers:
|[Encapsulation and Tool Integration|

IHOL-Z in the UnikorM-Workbench - a Case Study in Tool Integration|. ... 225
Christoph Liith and Einar Karlsen and Kolyang and Stefan Westmeier
and Burkhart Wolff

|Functional Design and Implementation of Graphical User Interfaces for

Christoph Lith and Burkhart Wolff

IV~ Selected Papers:

|Validation by Case Studies|

|A Verification-Approach for Applied System Security|...................
Achim D. Brucker and Burkhart Wolff

Selected Paper Bibliography

1.

10.

11.

Tej, H., Wolff, B.: A Corrected Failure-Divergence Model for CSP in Isabelle/HOL.
In Fitzgerald, J., Jones, C., Lucas, P., eds.: Formal Methods Europe 97. LNCS 1313,
pp. 318-337, 1997.

. Brucker, A.D., Rittinger, F., Wolff, B.: HOL-Z 2.0: A proof environment for Z-

specifications. Journal of Universal Computer Science 9 (2), pp. 52-172, Elsevier
Science Publishers, 2003.

Brucker, A., Wolff, B.: UML/OCL — Semantics, Calculi, and Applications in
Refinement and Test. (Conditionally accepted by Acta Informatica, Manuskript
0204).

Rauch, N., Wolff, B.: Formalizing Java’s Two’s-Complement Integral Type in
Isabelle/HOL. In: Electronic Notes in Theoretical Computer Science. Volume 80.,
Elsevier Science Publishers, 2003.

Kolyang, Santen, T., Wolff, B.: Correct and User-friendly Implementation of Trans-
formation Systems. In Gaudel, M.C., Woodcock, J., eds.: Formal Methods Europe.
LNCS 1051, pp. 629-648, 1996.

Lith, C., Wolff, B.: TAS — A Generic Window Inference System. In Harrison, J.,
Aagaard, M., eds.: International Conference of Theorem Proving in Higher Order
Logics (TPHOLs). LNCS 1869, pp. 405-422, 2000.

Brucker, A.D., Wolff, B.: Using Theory Morphisms for Implementing Formal Meth-
ods Tools. In Geuvers, H., Wiedijk, F., eds.: Types 2002, Proceedings of the work-
shop Types for Proof and Programs. LNCS 2646, pp. 59-77, 2003.

Bucker,A., Wolff, B.: Symbolic Test Case Generation for Primitive Recursive Func-
tions. In Grabowski, J. Nielsen, B. eds.: International Workshop on Formal Ap-
proaches to Testing of Software (FATES’04). LNCS 3395, pp. 16-32, 2004.

Lith, C., Karlsen, E-W., Kolyang, Westmeier, S., Wolff, B.: HOL-Z in the
UniForM-Workbench — a case study in tool integration for z. In Bowen, J., ed.:
11. International Conference of Z Users ZUM’98. LNCS 1493, pp. 116-134, 1998.
Lith, C., Wolff, B.: Functional Design and Implementation of Graphical User
Interfaces for Theorem Provers. Journal of Functional Programming 9(2), pp.
167- 189, 1999.

Brucker, A.D., Wolff, B.: A Verification Approach for Applied System Security.
International Journal on Software Tools for Technology Transfer (STTT), DOI
10.1007/s10009-004-0176-3, 16 pages, to appear 2005.

1 Introduction

The development of tools for program analysis, verification and refinement is
a prerequisite for the proliferation of formal methods in industry and research.
Among the plethora of widely-used specification languages underlying formal
methods, we name only a few examples here such as Z [65, 41], VDM [38],
UML/OCL [54, 70, 71], CSP [9] and Hoare-Logics [72, 50], which are based on
more foundational formalisms like First-order Logic, Axiomatic Set Theory (ZF)
or Higher-order Logics (HOL) [24, 8, 32].

With respect to the formal analysis of specification languages, their rep-
resentation by their semantics in a powerful meta-logic, a so-called logical
framework such as NuPRL [1], Coq [3] or Isabelle [6, 51], is a widely accepted
technique that has been applied in many studies. With respect to the imple-
mentation of tools for formal methods, however, these representations have been
rarely used. Rather, formal method tools are usually directly implemented in a
programming language (e.g. [7, 4, 5, 61, 29, 43, 36, 47]), which makes their
correctness, their correct extensibility and their correct combination with other
tools a major concern. Moreover, we see a lot of splintering in the field: due
to all these special-purpose languages and special-purpose theorem provers and
model checkers, there is the danger that numerous ad-hoc implementations of
logical engines remain in a premature state hampering the progress of the field
as a whole.

Representing the semantic theory of a specification formalism or a program-
ming language inside a logical framework is called a logical embedding. Using an
embedding has two main advantages: First, existing theorem prover kernels can
be reused. Second, provided that a logical embedding is a conservative extension
of the logical framework, it is possible to formulate the symbolic computations
inside the tool on the basis of derived rules over this embedding. Thus, a tool im-
plementation can guarantee its logical consistency (relative to the consistency of
the logical framework) as well as its correct implementation of all symbolic com-
putations. However, in order to be practically useful and correctness-oriented,
the conservative embedding approach must provide:

1. suitable semantic embeddings for commonly used formal specification
languages. These embeddings should be sufficiently intuitive for experts in
order to be checkable against informal specifications, their logical consistency
should be mechanically checkable, and deduction should not be hampered
by the overhead due to the representation,

2. mechanical support of the method for the represented formal specifica-
tion languages. This may include support for refinements of specifications,
support for code verification!, or support for testing methods of code, and

3. appropriate tool integration of theorem provers in the tool support of
(pragmatic) software development processes. This includes front-ends for
software engineers during modeling activities, support tuned for the under-
lying methods during refinement, code verification, or test, for example.

! not investigated here

2 Burkhart Wolff

In this work, we chose the conservative shallow embedding technique as in-
stance for the place-holder “suitable” in the list above — in contrast to my
Phd-work [74], where deep embeddings were chosen as foundation for a sim-
ple logical framework in itself. This choice is motivated by the requirement of
mechanical check-ability of consistency and more efficient deduction. Shallow
embeddings are known to add two more issues to the list of challenges above:

1. the application range of embeddings is believed to be limited to very small
and artificially designed languages, using a type system which is very similar
to the one of the logical framework, and

2. the flexibility of the approach seems to exclude an application when the for-
mal method is still under development, in particular for languages “designed
by committee”.

It is the ultimate goal of this work to show that these challenges can be met.
For this purpose, we present a number of paradigmatic embeddings, modular
representation techniques, automated deduction techniques to support specific
methods and integration technologies. In more detail, our contributions in these
five fields are:

1. suitable embeddings for widely used formal methods, including process-
oriented, data-oriented and object-oriented specification methods (CSP, Z,
UML/OCL),

2. abstractions and aspect-oriented structuring techniques allowing for the quick

development of semantic variants enabling the study consequences of changes
in formal methods under development (like UML/OCL),

3. particular techniques for generating library theories, for supporting particu-
lar deduction styles in proofs, for specialized deduction support for concrete
development methodologies,

4. different scenarios of the integration of the developed tools in conventional
tool chains in software engineering, and

5. front-ends for light-weight integration into tool chains (like HOL-Z 2.0) or
prototypic encapsulation of logical embeddings into generic graphical user-
interfaces for a more comprehensive encapsulation.

The plan of this introduction — mirroring the plan of this work as a whole — is
as follows: First, in the following Sec. 2, we explain the foundations of this work
in more detail. In the subsequent sections, we will describe our contributions in
the field of embeddings (Sec. 3), method-support (Sec. 4) and integration/encap-
sulation (Sec. 5) and put them into perspective. In the final Section 6 we will
validate one of the resulting tool chains (including the theorem proving envi-
ronment) with a complex case study arising from the field of applied computer
security. Note that some of the presented papers are discussed in more than one
of these sections since they cover several of the mentioned categories of issues.

Introduction

2 Foundations

As the basis for the subsequent presentation and discussion of own work, we
will introduce to some core notions like “logical framework” and our particular
choice “Isabelle/HOL”, “conservative embeddings” and “shallow embeddings”.

2.1 Logical Frameworks and Isabelle

According to the Logical Frameworks Home Page maintained by Frank Pfenning
([57], see also for a bibliography and a collection of short surveys), a logical
framework is a formal meta-language for deductive systems. The primary tasks
supported in logical frameworks to varying degrees are

. specification of deductive systems,
. search for derivations within deductive systems,
. tactic programming of deductive algorithms,

=W N =

. proving meta-theorems about deductive systems.

As typical systems, logical frameworks like ELAN, Elf, Forum, Isabelle,
and lambda Prolog were mentioned. Typically, a logical framework is based
on a typed lambda-calculus. However, the precise borderline to general purpose
higher-order logic provers like HOL, LEGO, NuPRL is not clear-cut; for Pfen-
ning the choice of terminology merely indicates the relative emphasis placed on
these tasks. Logical frameworks have been applied to many examples from logic
and the theory of programming languages.

2.2 Concepts and Use of Isabelle/HOL

The logical framework Isabelle [51] is a generic theorem prover of the LCF
prover family; as such, it offers the possibility to build programs performing
symbolic computations over formulae in a logically sound way on top of the logi-
cal core engine. Throughout this work, we will use Isabelle/HOL, the instance for
Church’s higher-order logic [24, 8] extended by parametric polymorphism with
order sorted types ([49]). Isabelle/HOL supports conservative extension schemes
(see Sec. 2.3), and, derived from these principles, support for data types, prim-
itive and well-founded recursion, and powerful generic proof engines based on
rewriting and tableaux provers.

A number of theories built by conservative definitions provide the theory for
arithmetics for natural and integer numbers, typed set theory based on the type
set(a;) and a list theory based on the type list(ce). Moreover, there are prod-
ucts, maps, and even a specification on real numbers and non-standard analysis.
The HOL-library provides several thousand derived theorems — yielding the
potential for reuse in a specialized tool for a particular formal method.

4 Burkhart Wolff

2.3 Conservative Theory Extensions

In this section, we explain the key concept of “conservative theory extension”
which — appropriately supported by Isabelle — yields the technology to build
consistent semantic models of the specification languages and finally tools sup-
porting deduction over them.

Slightly simplifying the situation in Isabelle, we define a theory as a pair
(X, Azx) with a signature X assigning constant symbols to their types and Ax
a set of axioms. A theory extension is a theory (X', Az') where X C X’ and
Az C Ax’. The idea of conservative theory extensions (see [32]) is to provide
syntactic characterizations of theory extensions that guarantee that if a theory
was consistent, then its extension will also be.

The simplest form of a conservative theory extension is a the constant defi-
nition (X', Az') = (¥ Uc— 7, Az Uc = FE) where ¢ is “fresh” i.e. (not declared
in XY and ¢ = F is a “definitional axiom”, i.e. E is a closed expression not
containing c¢. Thus, the conservativity of a constant definition can be justified
since it works essentially as abbreviation.

Another form of a conservative theory extension is a the type definition where
a new type is defined isomorphic to a set of previously defined individuals —
generalizing the idea of “abbreviation” to types.

It turns out that the theory libraries and the semantic models of the spec-
ification languages treated in this work can be built up entirely conservatively;
this also holds for recursive function definitions and recursive data types which
are ruled out at first sight by the above extension schemes.

For more details see the introduction of [20].

2.4 Embedding Techniques — An Overview

A theory representing syntax and semantics of a programming or specification
language is called an embedding. While the underlying techniques are known
since the invention of typed A-calculi, it was not before the late seventies that
the overall importance of higher-order abstract syntaz(HOAS) (a term coined
by [30]) for the representation of binding in logical rules and program transfor-
mations [31] and for implementations [30] was recognized.

For example, a universal quantifier may be represented in HOAS by a con-
stant All :: (a — bool) — bool, where the term All(Az. P(x)) is paraphrased
by the usual notation Vz. P(z). In contrast to the usual textbook definition for
predicate logic providing a free data-type for terms and predicates, explicit sub-
stitution and well-typedness functions over them, and explicit side-conditions
in logical rules over quantifiers preventing variable-clashes and variable capture,
this representation of the universal quantifier has two advantages:

1. the substitution required by logical rules like Vz. P(z) = P(t) can be di-
rectly implemented by the (-reduction underlying the A-calculus, and

2. the typing discipline of the typed A-calculus can be used to represent the
typing of the represented language. For example, a multi-sorted first-order

Introduction

logic (having syntactic categories for arithmetic terms, list terms, etc.) is
immediately possible by admitting expressions of type nat and alist.

In short, HOAS has the advantage of “internalization” of substitution and typ-
ing into the meta-language, which can therefore be handled significantly more
general and efficiently.

When using semantic definitions on the basis of HOAS, the technique is
extended into a “shallow embedding” (this terminology has been coined in [15])
of an object-language, a technique which is opposed to a “deep embedding”
which treats syntax by free datatypes and semantics via semantic interpretation
functions as common in logical textbooks.

A shallow embedding definition of the universal quantifier is, for example,
AllP = (P = Az.true) (the propositional function of the “body” of the quan-
tifier must be equal to the function that yields true for any argument), a deep
representation follows usual textbooks:

Sem[Vx.P(x)]y = true if Sem[P(x)]y[z :=d]foralld
false otherwise

where we assume a meta-language with well-defined concepts such as if ...
otherwise and ...forall..., for example ZF-set theory.

As can be seen, shallow embeddings can have a remarkably different flavor in
their semantic presentation, in particular when striving for conservativity as in
the example above. However, since the usual inference rules were derived from
these definitions (like the rule V. P(z) = P(t) from above), they are finally
proven as semantically equivalent.

If a shallow embedding is in itself a conservative theory extension (which
implies that the language definition is consistent if the meta-language is), we
also speak of a conservative embedding.

For more details see the introduction of [20].

3 Embeddings of Specification Languages

Since the principle of shallow embeddings in itself is fairly well-known, the ques-
tion arises, what the fundamental problems and technical challenges exist for
representing “real world” specification languages. The main difficulty stems from
the fact, that the most successful shallow-embeddings (as, for example, HOL en-
coded in typed A-calculus) are designed to fit to the underlying meta-language.
In contrast, “Real world”- languages are typically conceived solely on a kind of
mathematical notation based on naive set theory and no specific experience in
theorem proving in mind; in some cases, the definition process of a “real” spec-
ification language takes place in a “development by committee” process prone
to all sorts of arcane compromises. While a deep embedding is always possible
whenever a formal semantics exists, a shallow embedding may conflict with cer-
tain constraints the shallow technique imposes, be it on the representability of
the binding structure, the type discipline and the semantics of the language.

6 Burkhart Wolff

Thus, even fairly worked out semi-formal semantic descriptions of a specifi-
cation language may be quite distant to a formal (i.e. machine-checkable) repre-
sentation, and even a formal semantic representation may be quite distant to a
set of derived rules that allow for the formal support of a particular method of
this language. Providing paradigmatical embeddings and new techniques help-
ful for bridging this gap is the main goal of this work. In order to describe the
problem domain in more detail, we use the following classification: Specification
languages may be:

1. process oriented, i.e. their focus of description is the behavior, usually
described in terms of possible sequences (traces) of states or communication
events,

2. data oriented, i.e. their focus of description is the structure of data a system
processes, its states, and individual steps the system performs when making
a transition from one state to another, and

3. object-oriented, which is essentially a data-oriented specification approach
where object-oriented data structuring techniques such as inheritance and
sub-typing are emphasized.

Examples for process-oriented specification languages are temporal or modal
logics (such as LTL, CTL, u-calculus [25]) or process-algebras (such as CCS[48]
or CSP [9]). Examples for data-oriented specification languages are VDM [38]
or Z [65], examples for the object-oriented language class are ObjectZ [64] or
UML/OCL [54, 70, 71].

In the following subsections, we will discuss the specific technical challenges
with respect to binding structure, typing and semantics of typical representatives
of these language classes. These subsections serve as overview and summary of
the papers [69], [18], [17] and [58] of the first part of this work.

3.1 A Shallow Embedding of CSP in HOL: HOL-CSP

The shallow representation of the syntax of CSP in HOL from the (deep) text-
book presentation follows a schema which we call canonical translation; for the
sake of the completeness of the presentation, we will repeat this construction
here. For the following example, we refrain from an explanation of the presented
operators (see [9] and [69] for the details) and just focus on the syntactic aspects
of the translation.

In the CSP textbook [9], the syntax is given in the form of an extended
Backus-Naur-Form (EBNF) and reads as follows:

P:= X | Skip| Stop| POP | PNP
|a— P|P;P|?: AP
| P\ A| PIAJP | P|[P | P||IP
| uX.F

where some additional explanations are given such as “P is the non-terminal for
all process expressions” or “X is the non-terminal for variables, a for events,

Introduction

and A for event sets”. The canonical translation of an EBNF to a shallow-style
signature works as follows:

1. expanding the EBNF to a BNF,

2. erase the production for “X” and all other explicit references to variables
in the grammar; the latter results in “? : A. P” and “u. F”, (variables were
represented by variables of the meta-language HOL),

3. map the non-terminals events, event sets and P to the types «, o set and
«a process, where set is a type constructor from the HOL-library and process
is newly introduced type constructor,

4. lift all occurrences of non-terminals in the production rules, where variables
were implicitly bound, to functions from the type of these implicitly bound
variables; thus, we get: 7 : ._ = [a set,a] — « process 2 and pu. _

[a process — « process| — « process for the two language constructs where
HOAS is used. The notation 7z : A. P is treated as syntactic paraphrasing
for 7: .. _ A (Az. P) and px. P for p.(Az. P).

The remaining resulting “shallow” signature for CSP looks as follows:

Skip :: a process

Stop :: « process

O_ :: [« process, a process] — « process

M :: [a process, a process] — « process

i [a, @ process] — « process

: [process, a process] — « process

_\ - it [a process, a set] — « process

: [process, a set, a process] — « process
: [a process, a process] — « process

: [process, a process] — « process

As a consequence of this translation, informal side-constraints such as “all sub-
expressions in a process refer to the same set of basic events ” or the binding
of variables including their type discipline are made explicit. The gain of this
internalization is that we can now represent substitution simply by function
application as in rules like yz.P = P(uz.P) since P is no longer a process, but a
function that takes a process as argument and yields a process. With respect to
types, there is not much to do: the underlying set of all events X' (represented by
the type variable a above) is considered to be completely unstructured. A similar
language like CSP,; used in FDR providing features for data types, pattern
matching and functional programming has been developed in HOL-CSP.

While a shallow representation of its syntax and substitution is canonical for
CSP, at first sight, the semantics of HOL and the process algebra CSP could not
be more different. CSP talks about non-deterministic computations depending
on their context, whereas HOL, sometimes referred as “functional language with
quantifiers”, is based on a deterministic and functional “computation model”.

2 the notation [r1,...,Tn] — Tni1 is an abbreviation for 71 — ... — 7, — Tni1

8 Burkhart Wolff

Recursion in CSP may be undefined (uX.X is a legal expression in CSP), whereas
in HOL, only some form of well-founded recursion is admitted. However, earlier
work [23, 60] had already shown that it is possible to represent Scott’s approach
to denotational semantics [66, 72] in HOL in a conservative shallow embed-
ding — in other words, HOL is expressive enough to formalize Scott’s Logic of
Computable Functions (LCF) which stood at the beginning of theorem proving
environments and logical frameworks. The idea is to represent key concepts like
complete partial orders (CPO’s), and continuity inside a basic semantic theory.
This allows for representing partial functions inside CPO’s and explaining un-
bounded recursion via fix-point combinators. It turns out that tricky syntactic
side-conditions such as the admissibility of predicates for fix-point induction can
be represented semantically in HOL, leaving the reasoning over the admissibility
to a side-calculus based on derived rules. Meanwhile, a fully fledged conservative
shallow embedding of LCF in HOL — called HOLCF [52] — based on the work
of [60] is part of the Isabelle distribution.

Our work [69] extends this line by formally showing that processes in the
sense of the semantic definitions in [9] represent CPO’s and can be captured
by a type definition forming « process. This construction revealed an error for
one of the core operators in previous CSP literature which could be communi-
cated to Bill Roscoe before his book went to print. Moreover, the tricky details
concerning the continuity of the operators could be formally shown, together
with a derived side-calculus that allows for the deduction of the admissibility
of process-refinements (in the sense of [9]). This has the consequence that the
fix-point-induction principle is applicable for refinement proofs over processes.
However, no tactic support for automated refinement proofs (based on fix-point
induction) has been developed so far, which would be highly desirable for larger
case studies.

3.2 A Shallow Embedding of Z in HOL: HOL-Z

Representing the syntax of Z terms following the “canonical translation” tech-
nique presented in detail in the previous section is a standard exercise. However,
the binding structure of some expressions, namely the expressions of the so-called
schema-calculus, is highly non-standard with respect to binding: according to
the type of certain expressions, implicit bindings to components of underlying
schemas were produced. In Z, for example, it is possible write:

VA.B or ANB

where A and B are schema expressions, which means semantically sets of records.
If A has the record components a and b, and B the components a, b, ¢, then VA.B
is again a schema with the component c, i.e. the components a and b are bound
as a consequence of implicit conventions based on types. Moreover, schemas may
play different roles in an expression: They may serve as sets, or as predicates as
above. According to their role, explicit coercions must be generated.

Besides the necessity to develop the library of Z — the so-called “Mathe-
matical Toolkit” — conservatively in HOL, the reconstruction of this implicit

Introduction

bindings is the main technical achievement in HOL-Z [18]. The problem is solved
by an independent type-checker that produces additional syntactic information
and combinators that capture the essence of bindings and translation. The ef-
fects on these representational “tricks” on deduction, and the development of
support for specific methods such as system development by formal refinement
or testing is discussed in Sec.4.

3.3 Shallow Embedding of UML/OCL

A shallow embedding of the key features of object-oriented modeling in HOL is
the technically most challenging enterprise in this work - but also the one with
the greatest potential of use in software engineering. A shallow embedding in
HOL must capture the essence of sub-typing and inheritance in a type system
that does not provide a notion of subtypes, and provide means for extensibility
and reuse in order to capture the pragmatics of object orientation. Moreover,
a formalization in HOL must capture that object-oriented specification as in
UML/OCL is deeply intertwined with the notion of state: A substantial part of
the language is concerned with the map of object-references to object-instances
(abstractions of pieces of memory) and logical constraints on this map expressed
in form of class invariants or pre- and postconditions of methods. A consequence
of our specific choice UML/OCL for an object-oriented specification language
is the necessity to cope with role of undefinedness in computations and in the
logic.

The representation of syntax of UML/OCL follows the canonical transla-
tion technique described in Sec. 3.1, but with a slight modification: Since all
arguments of operations may refer to an environment v (a data structure re-
quired by the UML/OCL standard containing the states before and after the
execution of methods), an OCL operation as, for example, the addition _ + _
on INTEGER in the sense of the standard must be lifted over these environ-
ments, i.e. the corresponding operation _+' _ in HOLOCL must have the type
(y = INTEGER) — (y — INTEGER) — v — INTEGER. When introduc-
ing the type synonym Integer. for v+ — INTEGER this type can be rephrased
as Integer, — Integer, — Integer,. Thus, a type in OCL can be mapped
to a type eypression (instead of a type constructor) in HOL when representing
OCL operations; we call a translation of this type a semi-canonical translation
over y1,. .., yn. It turns out that the complete set of UML/OCL operators, be it
from the core logic or be it from the quite rich library, can be syntactically con-
structed as semi-canonical translations. This includes operators with non-trivial
binding-structure such as the let-construct, the so-called iterators (correspond-
ing to map-like and fold-like operators known from functional languages).

Beyond the typical problems concerning undefinedness and states, the main
achievement of HOL-OCL as a shallow embedding consists in a particular se-
mantic understanding of the key-notions such as static and dynamic types in
object-orientation, and combining this with practical need of extensibility of the
object-type system and modular theories over it. In the end, the theory also
offers a new perspective on methods and late-binding method invocation.

10 Burkhart Wolff

3.4 Encoding System-oriented Libraries

Capturing the semantics of specification and programming languages in itself is
only part of the problem. Beyond libraries considered as part of the language
(such as the “Mathematical Toolkit” of Z or the description of the “Collections”
in UML/OCL), a significant part of the work that makes formal methods prac-
tically relevant consists in the modelling of the underlying system environment
— be it arithmetic data types as implemented by the underlying processor or
be it interfaces of the underlying operating system.

In this work, one example for each of these situations is presented, by pro-
viding new theories covering these aspects.

In [58], we adress the problem of arithmetic data types as specified by the
Java Language Specification [33], or, in other words, the machine arithmetics of
the Java Virtual Machine. With respect to floating point numbers, similar work
had been undertaken earlier (as in the seminal work by John Harrison [35]). The
Integral Numbers in the sense of the Java Language Specification are similar to
the ANSII-C specification, and similar to most processor specifications, but more
specific with respect to the division and remainder operations. Machine integral
numbers behave in many respects similar to their “mathematical” counterparts:
they enjoy ring properties (even if exceptions are taken into account when the
law @ — a = 0 is constrained to non-exceptions) and many other simplification
laws. However, in some details, they behave remarquably different (the successor
of the maximal number is the minimal number) which results in complex can-
cellation rules (a < b => a+ ¢ < b+ ¢ only holds for non-trivial side-conditions)
and, moreover, sometimes in bad surprises which are very likely to be overlooked
by programmers (for example, abs(x) is not necessarily positive). While floating
point numbers are meanwhile a fairly well-investigated subject, machine integral
numbers as used in the Java Language Specification have attracted the interest
of researchers only recently: they form the basis for the verification of arith-
metic libraries and libraries of cryptographic functions, which are gaining more
importance.

In [22], we address the modelling problem of a widely used operating system
library, namely UNIX /POSIX, with respect to the access control facilities for files
in a UNIX filesystem. This model is used to verify an access control policy by
a sytem implementation model. More details on this model and the verification
method is given in Sec. 6.

3.5 Summary

In order to summarize the presented logical embeddings, we define several no-
tions for their classifification. As already mentioned, we call a syntax translation:

— canonical iff the non-terminals (or types) of the object language can be
mapped to type constructors in the HOL representation,

— semi-canonical iff iff the non-terminals (or types) of the object language can
be mapped to type expressions (possibly containing free type variables),

Introduction

— pre-compiled iff the non-terminals (or types) of the object language were
mapped to type expressions according to their context in the term-language.

As an example for a pre-compiled translation, consider the HOL-Z embedding,
where a schema expression A may be mapped to a function 7,...,7, — bool,
where both the 7; and the n depend on previous declarations.

We turn now to a classification of type systems resulting from an embedding
function embedding : L — HOL mapping expressions of an object-language L
to expressions in HOL. We assume the existence of predicates well — typed,
(assuring that an expression of language L is well-typed w.r.t. type discipline)
and well — typedy,; (assuring that a HOL-expression is well-typed with re-
spect to the simple-type type system including parametric polymorphism called
A

Then we can characterize a type translation underlying an embedding as

— approzimate iff for any e, well — typedy,, (embeddinge) is implied by
well — typed; (e),

— tight iff the type translation is approximative and we have additionally for
any e, well — typed, (e) is implied by well — typed,, (embeddinge).

Thus, if an embedding is tight, a possible implementation for a type-checker con-
sists in applying the embedding-function and trying to type-check its result in
HOL; an error on the converted term indicates the existence of a type error on
the original term. Note, however, that the practical usability of such a concep-
tual implementation is usually very limited, in particular for semi-canonical or
precompiled languages, since the error messages gained by this process are hard
to decipher for users not familiar with the semantic details of the embedding.

On this basis, we can summarize the discussed embeddings in the following
table:

Process-Oriented Data-Oriented|Object-Oriented
Example |CSP 7 UML-OCL
Syntax |Canonical Translation |pre-compiled |Semi-Canonical
HOAS
Typing |Tight Approximate |Tight
Semantics|Denotational Semantics,|Fairly trivial |Theory Morphisms,
Complex Side-Calculi Complex Side-Calculi,
Three-Valued Logics

The reason for the non-tightness of the Z embedding lies in a mere techni-
cality: in the Z type-system, n-ary tuples or records exists and are distinct to
their (isomorphic) represenation as nested pairs: (a, b, ¢) has not the same type
as (a, (b,c)). Since the latter is the representation of the former in HOL-Z, an
expression like (a,b,c) = (a, (b,¢)) can be typed after applying the embedding
function although it can not be typed with the Z type discipline.

Some explanation for the remarks in the line summarizing semantic features:
in a shallow embedding, it is necessary to express syntactic constraints (e.g. for
admissibility as in the case of fixpoint-induction, or continuity in the case of

11

12 Burkhart Wolff

process-refinement, or state-passing in the case of rewriting in OCL) semanti-
cally, i.e. by second or third-order predicates expressing conditions that were
otherwise characterized by inductively defined subsets of the syntax. These se-
mantic predicates result in side-conditions which can be established by derived
rules having a similar form and purpose than the inductive rules of a sublan-
guage definition (for example, the admissibiliy rules characterize formulas built
over logical constants, - A _, _V _ and universal quantification; thus, existential
quantification or negation are ruled out except that they occur in the construc-
tion of constant terms). However, their semantic construction leads sometimes
to unexpected generalizations and often improves the insight into their logical
nature than their (traditional) syntactic counterparts.

4 Support for Specific Methods

The previous section was predominantly concerned with the foundation of tool
construction in our approach, i.e. the semantic representation of specification or
programming languages. In this section, we are concerned with the processing
of specifications or programs based on rules derived from this foundation. We
distinguish three categories:

— specific deduction: this covers calculi geared towards interactive or auto-
mated deduction in specifications. Examples for the former are particular,
refinement oriented proof presentation techniques, examples for the latter
are tableaux calculi for a logic such as OCL.

— theory development support: this comprises systematic approaches for theory
construction or support for theory development. Examples are our technique
of theory construction based on a theory morphism as well as refinement-
oriented proof support.

— methodological support: this comprises support for specific methods such as
system development by formal refinement and test-case generation.

4.1 Specific Deduction

Derived Transformational Calculi. A straight-forward approach of program
development is the “program development by transformation”-approach follow-
ing systems like PROSPECTRA or KIDS [63] The main idea is to represent
well-known algorithmic schemes such as “divide and conquer” or “global search”
(c.f. [27]) as built-in rules of the form:

A = Spec C Prog

where A is the applicability condition of the transformation rule, Spec the spec-
ification pattern and Prog the resulting program pattern and C the refinement
relation that states the logical relation between Prog and Spec (equality in the
simplest case). These rules were directly supported by a formal program de-
velopment system that supports the stepwise transformation from an abstract

Introduction

specification to a more concrete one that can be automatically converted into
executable code.

The contribution in our paper [40] 3 consists in the demonstration that these
program transformation rules can be derived from induction principles inside
Higher-Order Logic (HOL)[8] or the Logic of Computable Functions (LCF) going
back to the work by Scott and Milner. Moreover, it could be shown that these
derived rules can be used to implement these program development systems in
a logically sound way by encapsulating LCF-style theorem prover engines into
a tool by providing control via method-specific tactical programs (called “tactic
sugar”) and a user-interface that hides the technical details of the engine away
from the user. This paper is methodologically and technically the starting point
of this work.

Derived Tableaux-Calculi. Shallow embeddings may introduce new combi-
nators that cope with certain aspects of an embedded language or logics that
have a substantially different flavor from the used meta-logics HOL. This results
in particular challenges for proof-support of an object-logic, since expanding the
constructs into their definition in the meta-logic and proving the formulas there
is often computationally infeasible or results in formulas that are difficult to
interpret by a user and therefore unsuited in an interactive setting.

In [18], we have developed a tableaux calculus for a sub-language of Z with
a noteworthy non-standard treatment of binding called the “schema calculus”
(see Sec. 3.2). The binding structure is made explicit in HOL-Z by special com-
binators which must be generated by a pre-compiler; for example, the shallow
representation of the schema conjunction can be presented as:

SB’ 2" — z1...7 2" — zp. A(x1 .. 2y) ABY1 - Ym)

Instead of unfolding combinators like SB and converting a Z-formula into a
potentially large representation in HOL, we developed a special tableaux calculus
that maintains the structure of a Z-formula by assigning to each schema language
construct special tactics mimicking introduction and elimination rules. Thus,
a mechanical proof can follow the Z-structure of a formula and is not forced
to reason over the (less abstract) HOL-formula. Formulas resulting from such
introduction or elimination tactics can still be pretty-printed and interpreted as
Z formulas by the user which is vital for interactive proof.

In [17], we have to cope with a three-valued logics of OCL required by the
OCL Standard [55]. As a consequence, automatic proof support by our proof
environment Isabelle can not be reused on OCL formulas. Consequently, we de-
rived an own tableaux calculus (roughly following previous work by Kohlhase
and Héahnle, but based on derived rules and specific side-calculi treating expres-
sions consisting of strict operations or other semantic side conditions such as
“state passing”).

3 David: We should discuss your objections here muendlich.

13

14 Burkhart Wolff

4.2 Theory Development Support

The mentioned theory morphisms refer to the work [20], which shows that the
semantic presentation via a set of combinators leads not only to a very modular
organization of the semantic theory of the object language (which may be under
development and is therefore a moving target for analysis and tool development),
but also to techniques to generate a significant part of the semantic library, i.e.
the necessary body of rules derived from the semantic theory of a language in
order to be useful for applications.

4.3 Methodological Support

Derived Window-Inference Calculi. Transformational program develop-
ment is a fairly coarse-grained approach, and transformational program devel-
opment calculi in the original sense were deliberately incomplete. This lead to
a number of theoretical and technical shortcomings. In practice, many syntactic
“massage steps” are necessary in order to bring the original specification into
a form that makes a rule “applicable”. Applicability conditions has been tradi-
tionally considered as formulas to be proven by “external” tools which raises the
question of correct tool integration. In order to gain more flexibility, in many
transformation systems “invent and verify”-rules following the (obviously sound)
scheme:
Spec C Prog = Spec C Prog

which instantiates the applicability condition A with Spec C Prog and therefore
shifts the burden of the correctness-proof to the applicability condition and thus
entirely to external reasoning.

In order to increase the flexibility of the approach, a more general framework
for transformational program development (introduced by [62], investigated by
[34] and combined with Back’s refinement calculus by [10]) was used as founda-
tion for our work on generic transformation systems [46], which represents a
re-implementation and generalization of [40]. The basic idea of the new general-
ized framework is the concept of a window rule of the form:

adm(C) = (A = Spec C(j) Prog) = C(Spec) C;y C(Prog)

where C' is called the “focus”, Spec the “window” containing the specification
to be refined to a program Prog, and a family of partial orderings E;), called
refinement orderings. Such refinement orderings may be all sorts of program
refinement notions, or just logical proof refinement, i.e. implication, which makes
it possible that not only sub-windows, but also applicability conditions A may
be treated with a possibly complete calculus (as existing for HOL). A focus is
constrained to an applicability condition admC', which can enforce, for example,
that in logically negative contexts proof refinement is realized by implication in
the opposite direction. Note that the proof of the special applicability condition
adm(C) is automated and hidden from the user.

Introduction

Our contribution in [46] is the implementation of generic automated tactical
support of window inference reasoning in Isabelle (including monotonicity rea-
soning and management of the refinement orderings), its integration into a newly
developed “point-and-click” generic graphical user interface geared to support
window inference calculi and a resulting hierarchically structured (refinement)
proof presentation, which we believe is more suited for software engineers and
novice formal method users than, say, natural deduction. The generic implemen-
tation has been instantiated with HOL and proof refinement, CSP and process
refinement and Back’s Refinement Calculus for data-refinement in imperative
imperative programs.

Support for Post-hoc Refinement Methods. Instead of transforming a
specification into its refined version, as in the transformational approach, it is
of course also possible to state that some function or procedure is refined by
another. From such a statement, proof-obligations can be generated that allow
for a post-hoc verification of the postulated refinement relation. It is then possible
to verify these proof obligations.

We applied standard refinement notions such as “forward simulation” in both
the HOL-Z [18] as well as the HOL-OCL [17] environment. The method imple-
mented in HOL-Z had been applied in substantial case studies (see Sec.6). In
the case of object oriented specification as in HOL-OCL, our proof system is
even general enough to refine methods by each other which refer to completely
independent data universes, i.e. they may be defined in different class diagrams.

Test-Case Generation. In [21] we present a completely different line of ex-
ploiting formal specifications besides code verification and refinement: Gener-
ating (unit-)tests out of a specification given by pre- and postconditions. The
presented setting is geared towards functional programs.

While the former two validation techniques are motivated by the question
“are we building the program right?”, the latter is focused on the question “are
we specifying the right program?”. In particular, if a formal model of the environ-
ment of a software system (e.g., based on, amongst other things, the operating
system, middle-ware or external libraries) must be reverse-engineered, testing —
in the sense of “experimenting” — is a necessity (see [19, 22]).

Our method has two stages: first, the original formula is partitioned into test
cases by transformation into a Horn-clause normal form (HCNF). Second, the
test cases are analyzed for instances with constant terms satisfying the premises
of the clauses. Particular emphasis is put on making test hypotheses underlying
a test explicit and on using test hierarchies to avoid intractability.

5 Embedding Encapsulation and Tool Integration

One major obstacle for the use of formal methods in an industrial setting is
the difficulty of integrating it in the conventional software engineering process.

15

16 Burkhart Wolff

Developers of IT-technology usually have their own suite of tools capturing all
phases of software engineering ranging from requirement analysis, design phase,
coding, validation and deployment. During the development, all documents pro-
duced and exchanged between these phases underly a constant flux of changes.
The management of these changes and the achievement of suitable degrees of
consistency for the documents of the overall process is a major problem (which
is often enough unsolved in practice).

Integrating formal specifications in requirement, design and code documents
offers both new potentials as well of new technological challenges. We consider
as new potentials that the effects of changes can be traced mechanically and
that the correctness of code with respect to the original specifications can be
validated. The most notable challenges is the increasing amount of information
to be processed, the increasing number of tools and technologies involved as well
as the increase of the overall bureaucracy.

Two major tool integration schemes can be identified in software engineering:

1. the tool-chain,
2. the repository/plug-in architecture

Characteristic for a tool-chain is the fairly coarse granularity of data that
it processes; usually, input files and local files were passed to a tool, which
produces intermediate files which are then fed into the next tool of the chain
and so forth. The chain proceeds in a linear manner, with the consequence that
errors occurring in the later stages of the chain have to be interpreted in terms
of the input files of the overall chain and corrected there. The dependency of the
documents to be exploited by a build management, which can yield work-flow
control and also some coarse-grained process optimization. A version control
system may add the ability of reconstruct each single stage of the development.
Tool control may also be integrated in the editing/viewing environment, as well
as specialized views of error reports resulting from running members of the tool
chains.

‘ Editing and Viewing Front-End ‘ Build Management ‘

‘ Filesystem / Version Management Repository ‘

Figure 1. Toolchain Architecture Schema.

Introduction

The main advantages of this integration scenario is its wide use in UNIX
environments, its flexibility and the low integration efforts necessary. Its main
drawback is the coarse grainedness of data (which tends to increase the turn-
round times of a user) and the assumed underlying linear information flow (which
implies not only difficulties for error-handling as mentioned, but also hampers
the systematic reuse of intermediate results of tool chain members).

In order to overcome the limitations of tool-chains, plug-in architectures have
been provided, which can be seen as variant of component frameworks (Cf. see
[68], CORBA[56] or EJB [67]). Prominent examples of plug-in architectures are
Rational/Rose [37] and its open-source equivalents Argo/UML [26] and Eclipse
[28](for program development). Plug-in architectures provide a uniform data-
exchange format and a bus, over which not only files can be exchanged between
the tools, but also more fine-grained objects, containing increments of docu-
ments, events or intermediate results of integrated tools.

Editing and Viewing Front-End ‘

Pl

Tool 1 Tool 2 Tool 3

Build Management

 w w0

‘ Exchange Bus ‘

|

‘ Repository ‘

Figure 2. Plugin-Architecture Schema.

After first naive approaches to integrate formal methods into industrial soft-
ware engineering processes, which resulted in insular specifications and code ver-
ifications that had little to do with the delivered product, the tool integration
aspect has been addressed by several research projects more seriously, namely
UniForM [16] and PROSPER [2], but also various attempts to integrate specific
formal methods as plug-ins into plug-in-architectures such as [14, 26, 73].

The work presented here grew out of the UniForM project, but was completed
long after the project was finished. Essentially, we followed both approaches: the
HOL-Z 2.0 environment is a classical tool-chain, which could be applied suc-
cessfully for applications, while GenWin and the more comprehensive UniForM-
Workbench are (prototypes for) plug-in-architectures.

17

18 Burkhart Wolff

5.1 The HOL-Z Tool-chain.

The HOL-Z [18] environment follows the tool-chain-architecture paradigm. Us-
ing the shallow embedding of Z in HOL described in Sec. 3.2 as the core of the
overall architecture, the front-end deficiencies of the shallow embeddings (i.e.
syntax and type errors are difficult to interpret on the level of its semantic rep-
resentation in HOL) are addressed by an own type-checker for a TeX-based input
format integrated into a widely used editor (Emacs). This paves the way for a
central document design which contains all input data, be it informal descrip-
tions, unchecked specifications, machine-checked formal specifications, proofs,
code, etc. With respect to Fig.1 Several extractors are used to generate the sub-
content of the central document which is passed to the elements of the tool-chain
like type-checker and theorem prover. The integration of the type-checker into
the editor is close enough to allow for immediate error-messages referring to the
type-setting level.

As a result, the gap has been closed between a logical embedding which is
proven correct and a tool suited for applications of non-trivial size, as is shown
in Sec. 6.

5.2 The GenWin-Architecture.

The GenWin-Architecture is a plug-in architecture described in [45]; it provides
a generic mechanism to describe plug-ins as applications by their signature. On
this basis, the GenWin-Architecture generates “the rest”, i.e.

— a graphical user interface providing various views objects,

a hierarchical desktop and object manipulation based on the “drag-and-
drop”-metaphor and “point-and-click” into object views,

— a repository,

— and a session management.

The GenWin-Framework has been instantiated with two plug-in instantia-
tions, namely an interface to the theorem prover Isabelle (called: IsaWin) and
a specific extension of Isabelle, namely the transformation system TAS [46] de-
scribed in Sec. 4.3. The integration allows for the logically sound export and
import of proof obligations between the different plug-ins; for example, it is pos-
sible to perform standard transformational program development according the
“divide-and-conquer”-scheme in TAS, split-off resulting side-conditions (such as
termination of certain auxiliary functions) as proof-obligations, shift them via
drag-and-drop into the IsaWin-plug-in, prove them there, and use the proof fi-
nally completed under IsaWin in order discharge the side-conditions still open
under TAS. Thus, various views on proof-styles and various degrees of develop-
ment abstractions can be supported within one framework without compromising
logical consistency, since the underlying logical engine is identical as well as the
underlying proof contexts.

Introduction

5.3 The UniForM-Workbench.

The (prototypical) implementation of GenWin is based on a collection of para-
metric data structures in SML, i.e. plug-ins were described as SML functors.
This has as consequence that the framework is essentially limited to SML im-
plementations and inherits SML’s limitations with respect to concurrency and
exceptions.

The UniForM-Workbench [16, 39] has been designed to overcome these lim-
itations; it is implemented in HASKELL and provides a “real” object exchange
bus conceptually similar to CORBA; it provides excellent mechanisms to han-
dle also exceptional behavior and global session management in a repository
of a standard versioning system (CVS). In [44], we describe by a paradigmatic
example how the necessary data-modeling can be done in order to integrate
IsaWin-based Systems (be it IsaWin-like or TAS-like plug-ins based on the log-
ical embeddings described in Sec.3.1, Sec.3.2 or Sec.3.3) into the more general
UniForM-Workbench plug-in architecture.

6 Validation through a Case-Study

Embedding languages and developing support for specific methods as such does
not suffice to establish our claim that shallow embeddings can be used as a
technique for constructing correct tools supporting standard formal methods. Of
course, there are successful, tool-oriented shallow embeddings (such as HOL itself
which is embedded into Isabelle’s built-in login Pure), but HOL and Pure are
very closely related and historically, Pure was designed with hindsight to support
HOL. With languages such as CSP, Z and OCL, the situation is different: These
languages had been designed independently from a concrete proof-environment.
On the other hand, a number of deep embeddings have been provided [53, 59, 13].
The presentations mirror rather directly formal textbook semantics which does
obviously not represent a substantial problem. However, all these embeddings
have not proven successful as a tool. For instance, in the case of NanoJava [53] —
although used to prove important meta-theoretic properties such as completeness
of a derived Hoare-Logics — , the largest published example that has been
analyzed is a Java program of about 20 lines of code. In the other cited cases,
the situation is not essentially different. Therefore, it is fair to classify these
works as (usually deliberate!) proofs of concept and not as proofs of technology.

It is difficult to compare the effectiveness of embedding techniques with
respect to their potential to implement proven correct tools for their object-
language. A quantification based on costs for inferences in the object language
is clearly possible (and speaks in favor of shallow embeddings), but is certainly
not a sufficient condition for a proof of technology.

Therefore, we provided substantial case-studies stemming from the applica-
tion field of computer security [22].

In this work, we present a method for the security analysis of realistic models
over off-the-shelf systems and their configuration by formal, machine-checked

19

20 Burkhart Wolff

proofs. The presentation follows a large case study based on a formal security
analysis of a CVS-Server architecture. The formalization of the architectural
composition of this system heavily exploits the Z schema calculus (see Sec. 3.2),
the resulting proofs therefore vitally depend on deduction support for these
constructs (see Sec. 4.1).

The analysis is based on an abstract architecture (enforcing a role-based
access control), which is refined to an implementation architecture (based on the
usual discretionary access control provided by the POSIX environment). Both
architectures serve as a skeleton to formulate access control and confidentiality
properties.

Both the abstract and the implementation architecture are specified in the
language Z. Based on a logical embedding of Z into Isabelle/HOL, we provide
formal, machine-checked proofs for consistency properties of the specification,
for the correctness of the refinement, and for security properties.

Meanwhile, another case study has been realized on the HOL-Z environment
[11]. Interestingly, this case-study was in direct competition to previous model-
checking based verification [12]; it turned out, that the overall time in performing
this case-study in the HOL-Z approach (including both modeling and verifica-
tion time) was not significantly longer as in the model-checking approach, while
achieving substantially stronger results. This case-study shows convincingly that
HOL-Z can be used for a wide spectrum of modeling problems, ranging from data
modeling over behavioral modeling up to the verification of temporal system re-
quirements.

7 Conclusion

We have presented a wide spectrum of techniques to make the embedding ap-
proach (in particular the approach based on shallow embeddings) applicable for
the correct construction of tools for widely-used and standardized formal meth-
ods.

While the shallow embedding technique has been successfully applied for this
purpose before (as in the Isabelle/HOL environment itself), we argue that there
is a conceptual gap between embeddings of this type and standardized formal
method languages that have not been designed with hindsight to a particular
proof-environment. To overcome this gap is the overall goal of this work.

The gap consists in a threefold challenge:

1. Find a suitable, machine-oriented representation of the semantics of the ob-
ject language. We strongly argue in favor of the shallow representation tech-
nique for the purpose of tool-construction and provide new techniques to
overcome the resulting problems of this approach.

2. Provide mechanical support for the tool-construction as well as the partic-
ular method underlying a “formal method” (post-hoc verification, transfor-
mational refinement, post-hoc refinement, testing). We develop new proof-
support (based on hand-programmed tactics controlling applications of de-
rived rules) for various methods based on our representations.

Introduction

3. Provide encapsulation techniques of prover engines extended by embeddings.
This integration scenarios of different layers of abstraction and perfection
(such as the tool-chain scenario of HOL-Z contrasted to the integrated GUI-
scenario of TAS and IsaWin), for which we developed novel generic tech-
niques and implementations of tools or prototypes.

Further, we provide evidence for at least one of our implementations, that
the results are not only a proof-of-concept, but a proof-of-technology. For this
purpose, we applied HOL-Z for two substantial case-studies stemming from the
field of applied computer security.

One final remark, and the reader may apologize for its boldness: In our view,
formal methods and its use for modeling techniques lie at the heart of computer
science as a field, similar to informal mathematical modeling representing the
“core” of physics ([42]). The work presented here gives further evidence for the
thesis that there is in fact “unity behind the diversity” of techniques, tools,
and methods, and that the use of this “unity” is not only of merely academical
interest, but results in concrete technologies that will find their way into the
industrial practice some day.

References

[1] NUPRL Project Home Page, Sept. http://www.nuprl.org.

[2] PROSPER Project Home Page: Proof and Specification Assisted Design Environ-
ments. http://wuw.dcs.gla.ac.uk/prosper/.

[3] The Coq proof assistant, May 2002. http://pauillac.inria.fr/coq/.

[4] ERGO: An Interactive Theorem Prover, Sept. 2002. http://svrc.it.uq.edu.
au/pages/Ergo.html.

[5] Karsruhe Interactive Verifier Home Page, Sept. 2002. http://illwww.ira.uka.
de/~kiv/.

[6] The Isabelle Home Page, Sept. 2002. http://isabelle.in.tun.de.

[7] The Z/EVES Home Page, Sept. 2002. http://www.ora.on.ca/z-eves/welcome.
html.

[8] P.B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Academic Press, May 1986.

[9] A.W.Roscoe. The Theory and Pactice of Concurrency. Prentice Hall, 1997.

[10] R.-J. Back and J. von Wright. Refinement Calculus. Springer Verlag, 1998.

[11] D. Basin, H. Kuruma, K. Takaragi, and B. Wolff. Verification of a signature
architecture with HOL-Z. In Formal Methods 2005, volume 3582 of LNCS, pages
269-285. Springer Verlag, 2005.

[12] D. Basin, K. Miyazaki, and K. Takaragi. A formal analysis of a digital signature
architecture. In S. Jajodia and L. Strous, editors, Integrity and Internal Control
in Information Systems, IV, pages 31-48. Kluwer Academic Publishers, 2004.

[13] J. Bohn and W. Janssen. A strategic approach to transformational design. In
Industrial Benefit and Advances in Formal Methods (FME’96), volume 1051 of
LNCS, pages 609-628, 1996.

[14] Borland Corp., USA. Together/J System Overview. http://www.borland.com/
together/.

21

22

[15]

[16]

[17]

18]

[19]

[20]

(21]

22]

[23]

24]
[25]
[26]
[27]
28]
[29]
(30]
(31]
32]
[33]
[34]

[35]

Burkhart Wolff

R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. V. Tassel. Ex-
perience with embedding hardware description languages in HOL. In V. Stavridou,
T. F. Melham, and R. T. Boute, editors, Proceedings of the IFIP TC10/WG 10.2
International Conference on Theorem Provers in Circuit Design: Theory, Prac-
tice and Experience, volume A-10 of IFIP Transactions, pages 129-156, Nijmegen,
The Netherlands, June 1992. North-Holland/Elsevier.

Bremen Institute of Safe Systems (BISS). Universal formal methods workbench
home page. http://www.informatik.uni-bremen.de/uniform/.

A. Brucker and B. Wolff. UML/OCL — semantics, calculi, and applications in
refinement and test. Acta Informatica, conditionally accepted, Manuscript 0204,
2003.

A. D. Brucker, F. Rittinger, and B. Wolff. HOL-Z 2.0: A proof environment for
z-specifications. Journal of Universal Computer Science, 9(2):152-172, Feb. 2003.
A. D. Brucker and B. Wolff. Testing distributed component bases systems using
UML/OCL. In K. Bauknecht, W. Brauer, and T. Miick, editors, Informatik 2001,
Tagungsband der GI/OCG Jahrestagung, pages 608-614. 2001.

A. D. Brucker and B. Wolff. Using theory morphisms for implementing formal
methods tools. In H. Geuvers and F. Wiedijk, editors, Types 2002, Proceedings of
the workshop Types for Proof and Programs, volume 2646 of LNCS, pages 59-77.
Springer Verlag, Nijmegen, 2003.

A. D. Brucker and B. Wolff. Symbolic test case generation for primitive recursive
functions. In J. Grabowski and B. Nielsen, editors, Formal Approaches to Testing
of Software, volume 3395 of LNCS, pages 16-32. Springer Verlag, Linz, 2005.

A. D. Brucker and B. Wolff. A verification approach for applied system security.
International Journal on Software Tools for Technology Transfer (STTT), 2005.
A. J. Camillieri. A higher order logic mechanization of the csp failure- divergence
semantics. In G. Birtwistle, editor, IVth Higher Order Workshop, Banff 1990.,
Workshops in Computing. Springer Verlag, 1991.

A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56—68, 1940.

E. M. Clarke, O. Grumberg, and P. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

T. Community. The Argo/UML project home page. http://argouml.tigris.
org/.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press and McGraw-Hill, 2nd edition edition, 2002.

Eclipse.org. The Eclipse.org home page. http://www.eclipse.org/.

J.-C. Filliatre. The why tool home page. http://why.lri.fr/index.en.html.
C. E. Frank Pfenning. Higher-order abstract syntax. In PLDI 1988, pages 199—
208, 1988.

B. L. G. Huet. Proving and applying program transformations expressed with
second order patterns. Acta Informatica, 11:31-55, 1978.

M. J. C. Gordon and T. F. Melham. Introduction to HOL. Cambridge Press, July
1993.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison
Wesley, 1997.

J. Grundy. Transformational hierarchical reasoning. Computer Journal, 39:291—
302, 1996.

J. Harrison. A machine-checked theory of floating point arithmetic. In Y. Bertot,
G. Dowek, A. Hirschowitz, C. Paulin, and L. Thry, editors, 12th International

[36]
37]
[38]

39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

jas]
j49]
50]
51]
/52]

[53]

Introduction

Conference on Theorem Proving in Higher Order Logics, Nice, France, volume
1690 of LNCS, pages 113-130. Springer Verlag, 1999.

G. J. Holzmann. The model checker SPIN. Software Engineering, 23(5):279-295,
1997.

IBM Corp. Rational/Rose. http://www-306.1ibm.com/software/awdtools/
deve-loper/rosexde/.

C. B. Jones. Systematic Software Development using VDM. ISBN: 0-13-880733-7.
Prentice Hall International, 1990.

E. W. Karlsen. Tool Integration in Functional Programming Language. PhD
thesis, Universitdt Bremen, 1998. http://www.informatik.uni-bremen.de/
uniform/wb/papers/ewk-thesis.ps.gz.

Kolyang, T. Santen, and B. Wolff. Correct and user-friendly implementation of
transformation systems. In M.-C. Gaudel and J. Woodcock, editors, FME 96
— Industrial Benefits and Advances in Formal Methods, number 1051 in LNCS,
pages 629-648. Springer Verlag, 1996.

Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Is-
abelle/HOL. In J. von Wright, J. Grundy, and J. Harrison, editors, TPHOLs,
volume 1125 of LNCS. Springer Verlag, 1996.

I. Lakatos, J. W. (Editor), and G. C. (Editor). The Methodology of Scientific
Research Programmes, volume Volume 1 : Philosophical Papers (Philosophical
Papers). Cambridge University Press, 1978.

F. S. E. Ltd. Failures-divergence refinement — FDR2 user manual. Available at
http://wuw.formal.demon.co.uk/FDR2.html.

C. Liith, E. W. Karlsen, Kolyang, S. Westmeier, and B. Wolff. HOL-Z in the
UniForM-Workbench — a case study in tool integration for z. In J. Bowen, editor,
11. International Conference of Z Users ZUM’98, volume 1493 of LNCS, pages
116-134. Springer Verlag, 1998.

C. Lith and B. Wolff. Functional design and implementation of graphical user
interfaces for theorem provers. Journal of Functional Programming, 9(2):167—
189, Mar. 1999.

C. Liith and B. Wolff. TAS — a generic window inference system. In J. Harrison
and M. Aagaard, editors, Theorem Proving in Higher Order Logics: 13th Inter-
national Conference, TPHOLs 2000, volume 1869 of Lecture Notes in Computer
Science, pages 405—422. Springer Verlag, 2000.

J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers.
In S. Graf and M. Schwartzbach, editors, TACAS00, Tools and Algorithms for
the Construction and Analysis of Systems, volume 1785 of LNCS, pages 63-77.
Springer Verlag, 2000.

R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989. SU Fisher Research 511/24.

T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and G. Plotkin,
editors, Logical Environments, pages 164—188. Cambridge University Press, 1993.
T. Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing, 10:171-186, 1998.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer Verlag, 2002.

D. V. Oheimb, O. Muller, O. Slotosch, and T. Nipkow. Holcf = hol + lcf, Dec.
1998.

D. v. Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side
effects and virtual methods revisited. In L.-H. Eriksson and P. A. Lindsay, editors,
FME’02), volume 2391 of LNCS, pages 89-105. Springer Verlag, 2002.

23

24

[54]
[55]
[56]
[57]

[58]

[59]

[60]

[61]

(62]
(63]
[64]
[65]

[66]
(67]

[68]
[69]

[70]
[71]
[72]
73]

[74]

Burkhart Wolff

OMG. Object Constraint Language Specification. [55], chapter 6.

OMG. Unified Modeling Language Specification (Version 1.4). 2001.

T. O. M. G. (OMG). The omg’s corba website. http://www.corba.org/.

F. Pfenning. Logical frameworks home page. http://-www2.cmu.edu/afs/cs/
user/fp/www/1fs.html.

N. Rauch and B. Wolff. Formalizing java’s two’s-complement integral type in
isabelle/hol. In Electronic Notes in Theoretical Computer Science, volume 80.
Elsevier Science Publishers, 2003.

R. Reetz. Deep Embedding VHDL. In E.T. Schubert, P.J. Windley, and J.
Alves-Foss, editors, 8th International Workshop on Higher Order Logic Theorem
Proving and its Applications, volume 971 of Lecture Notes in Computer Science,
pages 277-292. Springer Verlag, Sept. 1995.

F. Regensburger. HOLCF': FEine konservative Erweiterung von HOL um LCF.
PhD thesis, Technische Universitat Miinchen, 1994.

W. Reif, G. Schellhorn, and K. Stenzel. Proving system correctness with KIV.
In M. Bidoit and M. Dauchet, editors, TAPSOFT °97: Theory and Practice of
Software Development, volume 1214 of LNCS, pages 859— 862. Springer Verlag,
1997.

P. Robinson and J. Staples. Formalizing a hierarchical structure of practical
mathematical reasoning. Journal of Logic and Computation, 3:47-61, 1993.

D. R. Smith. KIDS — a semi-automatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024— 1043, 1991.

G. Smith. An object-oriented approach to formal specification. PhD thesis, Uni-
versity of Queensland, 1992.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

J. Stoy. Denotational Semantics. The MIT Press, Cambridge, Mass, 1977.

Sun microsystems. J2EE: Enterprise JavaBeans Technology. http://java.sun.
com/products/ejb/.

C. Szyperski. Component Software: Beyond Object-Oriented Programming. The
Component Software Series. Addison Wesley Professional, 2nd edition edition,
2002.

H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Is-
abelle/HOL. In J. Fitzgerald, C. Jones, and P. Lucas, editors, FME 97, volume
1313 of LNCS, pages 318-337. Springer Verlag, 1997.

J. Warmer and A. Kleppe. The Object Contraint Language: Precise Modelling
with UML. Addison-Wesley, 1999.

J. Warmer, A. Kleppe, T. Clark, A. Ivner, J. Hogstrom, M. Gogolla, M. Richters,
H. Hussmann, S. Zschaler, S. Johnston, D. S. Frankel, and C. Bock. Response to
the UML 2.0 OCL RfP. Technical report, 2001.

G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.
D. Winterstein, D. Aspinall, and C. Liith. Proof General/Eclipse. In User Inter-
faces for Theorem Provers UITP’05, Apr. 2005.

B. Wolff. A Generic Calculus of Transformations. PhD thesis, Universitdt Bre-
men, Shaker-Verlag, BISS Monograph No. 4, 1997.

Part 1

Selected Papers:
Embeddings

A Corrected Failure-Divergence Model
1

for CSP in |sabelle/HOL

H. Teg, B. Wolff

Universitat Bremen, FB3
Postfach 330440
D-28334 Bremen

{bu,ht}@informatik.uni-bremen.de

Abstract. We present a failure-divergence model for CSP following
the concepts of [BR 85]. Its formal representation within higher order
logic in the theorem prover Isabelle/HOL [Pau 94] revealed an error in
the basic definition of CSP concerning the treatment of the termination
symbol tick.

A corrected model has been formally proven consistent with Isabelle/-
HOL. Moreover, the changed version maintains the essential algebraic
properties of CSP. As a result, there is a proven correct implemen-
tation of a "CSP workbench" within Isabelle.

1 Introduction

In his invited lecture at FME'96, C.A.R. Hoare presented his view on the status quo
of formal methods in industry. With respect to formal proof methods, he ruled that
they "are now sufficiently advanced that a [...] formal methodologist could occasio-
nally detect [...] obscure latent errors before they occur in practice” and asked for their
publication as a possible "milestone in the acceptance of formal methods" in industry.

In this paper, we report of a larger verification effort as part of the UniForM pro-
ject [Krit95]. It revealed an obscure latent error that was not detected within a decade.
It can not be said that the object of interest is a "large software system" whose failure
may "cost millions", but it is a well-known subject in the center of academic interest
considered foundational for several formal methtmids the theory of the failure-
divergence model of CSP ([Hoa 85], [BR 85]). And indeed we hope that this work
may further encourage the use of formal proof methods at least in the academic com-
munity working on formal methods.

Implementations of proof support for a formal method can roughly be divided into
two categories. Irdirect toolslike FDR [For 95], the logical rules of a method
(possibly integrated into complex proof techniques) are hard-wired into the code of
their implementation. Such tools tend to be difficult to modify and to formally reason
about, but can possess enviable automatic proof power in specific problem domains
and comfortable user interfaces.

1 This work has been supported by the German Ministery for Education and Research
(BMBF) as part of the projedtiniForM under grant No. FKZ 01 IS 521 B2.

28 Haykal Tej and Burkhart Wolff

The other category can be labelledaggcal embeddings=ormal methods such as
CSP or Z can be logically embedded into an LCF-style tactical theorem prover such
asHOL [GM 93] orlsabell§Pau94]. Coming with an open system design going back
to Milner, these provers allow for user-programmed extensions in a logically sound
way. Their strength is flexibility, generality and expressiveness that makes them to
symbolic programming environments

In this paper we present a tool of the latter category (as a step towards a future
combination with the former). After a brief introduction into the failure divergence se-
mantics in the traditional CSP-literature, we will discuss the revealed problems and
present a correction. Although the error is not "mathematically deep", it stings since
its correction affects many definitions. It is shown that the corrected CSP still fulfils
the desired algebraic laws. The addition of fixpoint-theory and specialised tactics ex-
tends the embedding in Isabelle/HOL to a formally proven consistent proof environ-
ment for CSP. Its use is demonstrated in a final example.

2 The Failure Divergence Semantics

In this section, we follow closely the presentation of [Cam 91], whose contribution
is a formal, machine-assisted version of a subset of CSP based on [BR 85] and [Ros
88] withoutthe sequential operator, the parallel interleave operator and a proof-theory
based on fixpoint induction. With [Cam 91], we share some major design decisions,
in particular the choice of the alternative process ordering in [Ros 88] (see below).

In its trace semantics model it is not possible to describe certain concepts that
commonly arise when reasoning about concurrent programs. In particular, it is not
possible to express non-determinism, or to distinguish deadlock from infinite internal
activity. The failure-divergence model incorporates the information available in the
trace-semantics, and in addition introduces the notiomefo$alanddivergenceo
model such concepts.

Example 2.1: Non-Determinism
Letaandb be any two events in some set of ev@ntShe two processes

(a - Stop)d (b - Stop) 1)
and

(a - Stop)m (b — Stop) 2

cannot be distinguished under the trace semantics, in which both processes are capable
of performing the same sequences of events, i.e. both have the same set of traces
{{a(b)}. This is because both processes can either engaagarid thenStop or

engage irb and therStop We would, however, like to distinguish between a deter-
ministic choice of or b (1) and a non-deterministic choiceaobr b (2).

This can be done by considering the events that a process can refuse to engage in
when these events are offered by the environment; it cannot refuse either, so we say
its maximal refusal seis the set containing all elementsXfother thara andb,
written >X\{a,b}, i.e. it can refuse all elementsinother thara or b. In the case of the
non-deterministic process (2), however, we wish to express that if the environment
offers the evena say, the process non-deterministically chooses either to engage in

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 29

/1o refuse it and engage lin (likewise for b). We say therefore, that process (2) has
two maximal refusal set&)\{a} and Z\{b}, because it can refuse to engage in either

or b, but not both. The notion of refusal sets is in this way used to distinguish non-
determinism from determinism.

Example 2.2: Infinite Chatter
Consider the infinite process

pX.a- X

which performs an infinite stream a%. If one now conceals the everin this pro-
cess by writing

MX.a- X)\a 3

it no longer becomes possible to distinguish the behaviour of this process from that
of the deadlock procesdtop We would like to be able to make such a distinction,
since the former process has clearly not stopped but is engaging in an unbounded
sequence of internal actions invisible to the environment. We say the process has
diverged, and introduce the notion oflimergence seto denote all sequences events

that can cause a process to diverge. Hence, the p&iogss assigned the divergence

set {}, since it can not diverge, whereas the process (3) above diverges on any
sequence of events since the process begins to diverge immediately, i.e. its divergence
setisz”, wherez" denotes the set of all sequences with elemerEs Divergence is
undesirable and so it is essential to be able to express it to ensure that it is avoided.

2.3 The Original Version of CSP-Semantics

The Semantic Domain. In the model of CSP presented in [BR 85] a process
communicates with its environment by engaging in events drawn fromaiphrabet
>. In the failure-divergence semantics a process is characterised by:

» itsfailures— these are sets of pairs (s,X), where s is a possible sequence of
events a process can engage itrgee), and X is the set of events that process
can refuse to engage in (trefusalg after having engaged &)

» itsdivergences— these are the traces after which a process may diverge.
Processes are therefore represented by @iy, whereF is a failure set anB is a
divergence set.

The failures and divergences of a process must satisfy six well-definedness condi-
tions (following [Ros 88]): (i) the initial trace of a process must be empty, (ii) the
prefixes of all traces of a process are themselves traces of that process, i.e. traces are
prefix-closed,(iii) a process can refuse all subsets of a refusal set, (iv) all events
which are impossible to perform in the next step can be included in a refusal set, (v) a
divergence set isuffix closedand (vi) once a process has diverged, it can engage in,
or refuse, any sequence of events.

More formally, given a (possibly infinite) set of eveltand set$ andD such that:
FOS" xP(%)
DOL

then using a set theory and predicate calculus notation similar to that adopted in
[Ros 88], the above six well-definedness conditions for processes are stated as:

30 Haykal Tej and Burkhart Wolff

f
is_well_defined(F,DglkE

) OF 0
0 DOst(s "t {)OFO (s, {) OF (ii)
O OsXY.(s,)OFOYOXO (s, Y)OF (iii)

O 0Os,X)Y. (s, X)OFO@@cOY. (s™o, {H) OF)DO

(s, XOY)OF (iv)
0 OstsdOD0O s~tOD V)
O OstsODO (s t,X)OF (vi)

where() denote the empty trace, and the notatidrt is used to represent the conca-
tenation of two tracesandt.

In the model originally presented in [BR 85], the converse of (iii) is also a well-
definedness condition. This condition, which is shown formally below, states that a
set is refusable if all its finite subsets are refusable:

(OYOF(X). (s,Y)OF) O (s,X) OF @

In [Ros 88], Roscoe explains that this condition can in fact be omitted from the defi-
nition of process, but if this is done, a coarser, more complex ordering on processes
must be defined since the ordering used in [BR 85] is no longemgpletepartial

order otherwise. This ordering will be callpbcess ordering.

We prefer to use the process ordering of [Ros 88] (extended in [RB 89]), since we
plan to investigate combinations of Z and CSP. In such a combination, Z is used to
specify system-transitions via pre-and postconditions. Therefore we need a model that
can cope with unbounded nondeterminism. In such a setting, a separation of the
process-ordering from the refinement ordering seems unavoidable (see the detailed
discussion of the counter examples in [Ros 88]). We will show in chapter 5 how one
can live with two orderings from a proof theory point of view.

The semantics of the operators. We will consider the set of well-formed pro-
cesses over alphabEtas a typeprocesss. Then the language of CSP can now be
given by the following signature (using infix notation):

Stop, Skip : process

o 12 X process. - process: (* prefix of single event *)
O: - P Xx(X-process) - process (* multi-prefix of events*)
A\ :process xP X - processx (* hide *)

o, ., (* det. & non-det. choice *)
i . procesg x proces. - proces. (* seq. composition*)

M : (proces. - process) - proces (* recursion *)

The signature above is the precise equivalent of the "grammar" in [BR 85] in higher-
order abstract syntax. We will writdx : A -~ P xfor{d_: -) A (Ax.P x).
In the traditional CSP-literature, a distinguishable particular elesh@nick") within

> is required. It is used to indicate the termination of a process. It is crucial that it has
not been distinguished on the level of the definition of the semantic domains.

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 31

Let D be the projection into the divergences dhdbe the projection into the

failures of a process. The semantics for the CSP-operators can now be given
following the lines of the example below:

(P;Q) DPO{s"t|tick-free(sIsVy O traces(F P) Ot 0 D Q}

HP;Q) {(s, X) | tick-free(s)d (s, XO{V}) O FP}
O {(s”t,X)]| (s?V),{) O FPOtick-free(s)d(t,X) O FQ)
O {(s,X)|sODP)}
where traces denotes the projection into the traces and the predtoagtefree
discriminates traces not containing tick.
Of course, for any operator it has to be shown that the resulbsaoid 7, when

composed to a pair, form in fact an object of tppaecessi.e. it remains to be shown

that failures and divergences produced by an operator according to definitions above
respect the well-formedness condition of the semantical domains iwell de-

fined P, DP). (Theorem 1 in [BR 85]).

In fact, this is not possible for the sequential operator.

2.4 The Problem

The problem is that from the definition one can not prove the following part of
is_well_defined

(s t{h) 0D FP:QU (s.{h) U APQ)

Consider the following case:

« (s "t {H 0HAPQ) and
e sSAtODP and
e sODP and

e sis not tick-free, i.e there existands" such thas = s' (v} ~s"
From the definition for ; and the_well_definedve can only prove that:

(s.{) 0 FHP:Q)

but we can say nothing abdst{}).
The problem is independent from axiom (4).

Conceptually, this is a consequence of an incoherent treatment of tick-freeness in
divergence sets and failure sets. Although this is extremely ugly, our intuition that
ticks "can appear only at the end of a trace" ([Hoa 85], pp.57, paragraph 1.9.7) has to
be formally represented in the notion of well-formedness (which was, to our know-
ledge, never done in the CSP-Literature).

This means that the sequential operator of CSP in the sense of the definition does
not form a process. This problem has meanwhile been recognised by other researchers
of the CSP community ([Ros 96]), together with the fact that the problem ranges
over "traditional CSP literature”. Roscoe independently found this error recently and
proposes a solution similar to ours.

32 Haykal Tej and Burkhart Wolff

3 Isabelle/HOL

3.1 Higher Order Logic (HOL)

In this section, we will give a short overview of the concepts and the syntax. Our
logical language HOL goes back to [Chu 40]; a more recent presentation is
[And 86]. In the formal methods community, it has achieved some acceptance, espe-
cially in hardware-verification. HOL is a classical logic with equality formed over the
usual logical connectives 4), [0, 0 and = for negation, conjunction, disjunction,
implication and equality. It is based on total functions denotekl&lystractions like
"Ax.X". Function application is denoted . Every term in the logic must be
typed, in order to avoid Russels paradox. Isabelle's type discipline incorporates
polymorphism with type-classes (as in Haskell). HOL extends predicate calculus in
that universal and existential quantificatiaix. P x rsp.[x. P x can range over
functions.

13.2 Conservative Extensions in HOL

The introduction of new axioms while building a new theory may easily lead to
inconsistency. Here, theoryis a pair of a signatur® and a set of formula&x (the
axioms). A theory extension can be characterised by a relation on theories:

(Z, AX) ~ (=0 A, Ax O AAX)

Fortunately there are a number of syntactic schemes for theory extensions that
maintain the consistency of the extended one — such schemes areaadled/ative
extensions schemggor a more formal account the reader is referred to [GM 93]; one
may also find a proof of soundness there). Some syntactic schemes for theory-incre-
mentsAY andAAXx are:

» theconstant definitiort =t of a fresh constant symbol and a closed expres-
siont not containingc and not containing a free type variable that does not
occur in the type of,

« thetype definition(a set of axioms stating an isomorphism between a non-
empty subseB ={x ::R | P x} of a base-typ® and the typf to be defined),

Rep_TX1 S
Abs_T(Rep_T(x)) = x
xO SO Rep_T(Abs_T(x)) =

< a set of equations formingmimitive recursive schemever a fresh constant
symbol f.
The basic idea of these extension schemes is to avoid logical paradoxes by avoiding
general recursive axioms provoking them. Desired properties have to be derived from
conservative extensions. We will build up all theories by the above extension
schemes, which constitutes a consistency proof w.r.t. HOL.

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 33

3.3 Isabelle

Isabelle is ageneric theorem prover that supports a number of logics, among them
first-order logic (FOL), Zermelo-Frankekt theory (ZF), constructive type theory
(CTT), the Logic of Computable Functions (LCF), and others. We only use its set-
up for higher order logic (HOL). Isabelle supports natural deduction style. Its princi-
pal inference techniques are resolution (based on higher-order unification) and term-re-
writing. Isabelle provides syntax for hierarchical theories (containing signatures and
axioms).

In the sequel, all Isabelle input and output will be denoted in RIANT
throughout this paper — enriched by the usual mathematical notatian, far..
instead of ASCII-transcriptior.

Isabelle belongs to the family of LCF-style theorem provers. This means it is a
set of data types and function definitions in the ML-environment (or: "data-base").
The crucial one is the abstract data type "thm" (protected by the ML type discipline)
that contains the formulas accepted by Isabelle as theorems. thm-objects can only be
constructed via operations of the logical kernel of Isabelle. This architecture allows to
provide user-programmed extensions of Isabelle without corrupting the logical kernel.

Technically, the proofs were done by ML-scripts performing sequences of kernel
operations. These scripts were attached to the theory documents that constitute a
larger system of theories, "the CSP-theory" in our case. While Isabelle is loading the
theory documents and checking the proof-scripts, Isabelle can produce an HTML-
document allowing to browse the CSP-theory.

4 Formalising CSP Semantics in HOL

Our formalisation of CSP profits from the powerful logical language HOL in several
aspects:

» Higher order abstract syntax leads to a more compact notation avoiding
auxiliary instruments like environments, updates, substitutions and process-and
alphabet-variables. These issues were handled uniformly and precisely by the
type-discipline.

* The data type invariamt_process (corresponding to is_well_defined in 2.3.1)
can be encapsulated within a HOL-type. This leads to explicit treatment of
notational assumptions and makes them amenable to static type checking.

* As we will see in the next chapter, HOL can cope with the issadrnafssibi-
lity (as a prerequisite for fixpoint induction) in an extremely elegant way.

4.1 A Corrected Version for CSP Semantics

Whenever we changed a definition or a theorem, we will mark this by * in the sequel.
The modified process invariant reads as folfws

2 We do not distinguish quantifications and implications at the different logical levels
throughout this paper; see [Pau 94].

3 In his "Notes on CSP" [Ros 96], Roscoe proposes two additional conditions. We have
also proved formally that the CSP-theory is consistent on this basis.

34 Haykal Tej and Burkhart Wolff

. def
is_process(F, D) =

o ©OMmUF 0
0 Os,X. (s,X) OF O front-tick-free(s) *)
O Ost¢s™"t,{hHOFO (s, OF (ii)
O OsXY.(s,X)OFOYOX O (s,Y)OF (iif)
O OsXY. (s, X) OFOWcOY. (s PHOF) O (s, XOY)OF (iv)
0 [Os,t. s O D Otick-free(s) O front-tick-free(t) O s~ t 0D (v*)

OJ Ost.sODO (s, X)JF (vi)

The condition * requires all traces to be front-tick-free (.ean occur at most at the
end of a trace). Note that from (v *) and (vi) follows also front-tick-freeness for all
divergences.

4.2 The Type Process

The encapsulation of the data type invariastgrocessof the previous section
within a type is accomplished by a type definition (see section 3.2). Note that
Isabelle's notation for type constructor instances differs from the one used throughout
this paper.

We introduce a type abbreviatiorace > as synonym for¥ O {\/})thereD
denotes the disjoint sum on sets. Further, a type abbrevjaiiosill be used for the
product of failures and divergences:

px déEfIP(trace > xP (2 O{V})) xP (trace %)

The set of all these tuples ofprepresents the base type R of the type definition
scheme. According to this extension scheme, fresh constant symbols are introduced:

Abs_process : p £ - process 2
Rep_process : process > - p X
together with the new axioms:

Rep_process X : {p. is_process p} (Rep_process)
Abs_process(Rep_process(X)) = X (Abs_inverse)
is_process X [0 Rep_process(Abs_process(X)) = X (Rep_inverse)
In Isabelle, this whole instance of the conservative extension scheme is abbreviated
with the following statement in the thedPyocessType:

subtype (process) process 2= "{p. is_process p}"

A first important theorem of this extensiof:is

is_process (Rep_process P) (is_process_Rep)

In fact, the methodology entails a proof obligation that the type is non empty, i.e.
that there is a witness for which is_process holds. This trivial proof is omitted here.

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 35

We proceed with the definitions of the projections for failures and divergences:

D P = snd (Rep_process P)
F P = fst (Rep_process P)

wherefst andsnd are the usual projections into cartesian products.

The encapsulation of well-formedness within a type has the price that the constant
definitions of the semantic operators are slightly unconventional. The definition of
the prefix-operator in Isabelle theory notation, for instance, proceeds as follows:

Prefix = ProcessType +
consts """ ¥ - process X - process X (infix 75)
defs
Prefix_def "a - P=
Abs_process({(s,X) | s =) OevalOX}O
{5, X)|s#¢ Ohds=-eval(sX)O FP},
{d|d#¢{ Ohdd=evaltilsODP})"
end
The first line indicates that the thedpyefixis a hierarchical extension of the theory
ProcessType. The pragmdinfix 75) sets up Isabelle's powerful parsing machinery
to parse the prefix operator the way it is used throughout this paper. The next axiom
is declared to be a constant definition (Isabelle checks the syntactic side conditions)
containing the abstracted tuple of failures and divergences, wherndtl are the
usual projection in lists ane is just the injection of an element infol {V}.

From this definition, the traditional equations f@rand D arederived as
theorems:
D@ - P) ={((ev a)s, X) | s O D P}
Fa - P) ={(O.X) | eva OX}} O{(ev a)s,X) | (s,X) O F P}

The proof requireRep_inverse and hence a proof @&_process for the prefix ope-
rator. We follow this technique to develop conservativEgnd D for all operators.

4.3 The Semantics of the CSP-Operators

In the sequel, we will omit the technical definitions likeefix_def and start with a
listing of the derived theorems for the process projections, bearing in mind that they
already subsume the proof of process well-formedness.

Haykal Tej and Burkhart Wolff

D(Bot) = {d | front-tick-free d} *
F(Bot) = {(s,X) | front-tick-free s} *
D(Skip) ={

F(Skip) ={(0.X) | VO X} O{().X)}

D(Stop) ={

F(Stop) = {(0.X)}

DOx:A-P x)={(ev a)*s, X) |aOA Os0OD P}

FOXASP X)={OX) | X nevA={}
O{(ev a)*s,X) |aOA O(s,X) O F P}

D ; Q) =PDPO{s"t| sy Otraces(F P) 0t0 D Q} *)
F(P ; Q) = {(s,X) | tick-free(s) O (s, X O{V}) O F P}

O{sX) | (™). 0 FPOEX) OFQ}

O {(s,X) | s O D(P;Q)} *)
DPP M Q) =DPODQ
FPrQ) =FPOFQ

DPO Q) =PDPODQ
F(PO Q) ={OX) 1 (OX) 0 FPn FQ}
O{sX) sz O@Gs,X)O FPO FQ}
0{OX) 100 DPUDQ}
DP \ A) ={s | Ot u.front-tick-free u O s=(hide t(ev A))*u O
tODP O(@= ¢ O tick-free t) O
(OM.MOF {x.True} OtO M O
(O wOM,w'OM.tsw O (wsw' 0O w'sw)) O
(O w O M. hide w (ev A) = hide t (ev A) O

w O traces(F P))} ™)
TP\ A) ={(s, X) | Ot s = hide t (ev A) O
(t,XO evA) OFP}
O {(s, X) s 0 D(P\A) } *)

DPIAINIQ) ={s| Ot ur w. fronttick-free w O

(tick-free r O w=) Os = r*w O

r inter((t,u),(ev A) O {V}) O

(t0ODPOul traces(F Q) O

t0 2D Q Uu O traces(F P))} *
FPUANQ ={sR) |OtuXY.tX)OFPOMWY)IFQO

s inter ((t,u), (ev A) O {v}) O

R=((XOY) n ((ev A) O {V}) O X n Y}

O{sR)[sO DPIAI Q)} ™)

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 37

hide t A yields the trace obtained fronwhen concealing all events containediin
The expression inter ((t,u),A) means that is obtained front andu by synchro-
nising their events which are containedhiandinterleaving those which are not

We adopt the more recent concept of the parallel interleave opeli&dQ from
the CSP-literature and define the parallel operator and the interleave operator as special
cases:

PIIQ=PI{IQ PIlQ=PIi{x| True}ll Q
4.4 The Generic Theory of Fixpoints

The keystone of any denotational semantics is its fixpoint theory that gives semantics
to systems of (mutual) recursive equations. Meanwhile, many embeddings of denota-
tional constructions in HOL-Systems have been described in the literature; in the Isa-
belle/HOL world alone, there is HOLCF [Reg 94]. However, HOLCF is a logic of
continuous functionswhile the fixpoint-theory is only a very small part of it. In
contrast to HOLCF, we aim at a more lightweight approach that is parameterized
(generic) with the underlying domain-theory (here: processes). Beyond the advantage
of a separation of concerns, this paves the way for the reuse of this theory in other
problem domains and for a future combination of CSP with pure functional program-
ming. It is also possible with little effort to exchange the fixpoint-theory by another,
for example, based on metric spaces via Banach-fixpoints.

Our formalisation of fixpoint theory in HOL will use a particular concept of Isa-
belle/HOL, namely polymorphism with (axiomatigjpe classesThis is a constraint
on a type variable (similar to the functional programming language Haskell) restric-
ting it to the class of types fulfilling certain syntactic and semantic requirements.

For example, the type clags :: po (partial ordering) can restrict the class of all
typesa to those for which there is a symbol a x a - bool that enjoy the pro-
perty x £ x (refl_ord), x<yOy<x0O x =y (antisym_ord) andx <y Oy
<z 0O x < z (trans_ord). Showing that a particular type (sagt with its standard
ordering<) is aninstanceof this type-class, i.eat::po is a legal type assertion, re-
quires the proof of the above properties follow from the definitiod :ofat x nat -
bool. Once this proof has been done while establishing the instance judgement,
Isabelle can use this semantic information during static type checking.

We apply this construction to the clag® that is an extension @b. It requires
the symbolL : a::cpo and the semantic properties< x (least) anddirected X [
Xz{} O[b. X <<| b (complete). Here, directed : (a::po) set - bool and "is least
upper bound" <<|_:(a::po)set — a — bool are defined in the usual way for the
class of partial orderings, together witlb : (a::po)set - a defined adub S =
ex. S <<| x. For the class of cpo's, the crucial notions for contineityt : (a::cpo
- PB::cpo) - bool and the fixpoint operatdix : (a::cpo -~ a) - o are defined
in the usual way.

From the definition of continuity it is easy to show several proof-rules like
cont(Ax.x) (cont_id) andcont(Ax.c) (cont_const_fun), stating the identity or
any constant function to be continuous.

The first key result of the fixpoint theory is the proof of the fixpoint theorem:
cont f O fix f = f(fix f)

38 Haykal Tej and Burkhart Wolff

from the definition offix f = Iub(iDDN fiL). The second key result is the fixpoint
induction theorem, that can be used as general proof principle (see chapter 5).

A third result consists in the fact that the definitionsy = fstx < fsty O

sndx<sndyand L =(L1, L) extend cpo's to product cpo's. From these definition
the instance judgement for the type constructbiitself can be proved:

instance "x" : (cpo,cpo)cpo
On this basis Isabelle's parser can parse mutual recursive definitions of the scheme:
letrec x1 = E1(X1,..-,Xn)

Xn = En(X1,....Xn)
in F(X1,.-,Xn)
aslet(Xq,.--,Xp)=fix A(Xq,---.Xn)-(E1(X1,---:Xpn)s--En(X1,--:Xp)) iN F(Xq,...,Xp).
Note that the necessary inference that...,xn) forms acpo is done by Isabelles
type inference and not by tactical theorem proving.

Similarly, the usual extension @po's to function spaces can be constructed.
This adds arbitrary abstractions to an instance of the fixpoint theory with a concrete
language; for CSP, this means an optional extension to "Higher Order CSP"
allowing the expression of process schemes within this language (similar algorithmic
schemes likenapandfold in functional programming languages).

4.5 The Process Instance of the Fixpoint Theory

The crucial point of the instantiation is the definition of the process ordering. As al-
ready mentioned, instead of the usual refinement ordering (which is a partial ordering):

PcQ=7P0 FQUDPIDQ
we use the more complex process ordering of [Ros 88] since otherwise the operators
will not be continuous in presence of unbounded nondeterminism. A prerequisite is
the definition "refusals after®; proces€ - traces - P(P (ZO{V})):
RPs={X]|(s,X)0 F P}
Then the process ordering is introduced as:
P<Q = DPODQ
OsOPDPO RPs=RQs
O wDP)dtraces FQ

wherep T denotes the set of minimal elements of a set T of finite traces. The diffe-
rence between these orderings is thatrders just approximation, but not non-deter-
minism, i.e.:

Bot £ a-Bot £ a-a-Bot...
but:

a-Bot £ a-Botmb-Bot £ a-Botmb-Botric—Bot ¥ ..
Note that the chain outlined above is ordered wd, thowever.

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 39

The well-known theorem:

P<QUOPc Q (ord_imp_ref)

expresses that the process ordering is just a coarser ordering than the refinement
ordering.

The definition of< proves to be an instance mwd. With Bot identified witht,
the typea process is proven to form an instance of the type clgss. As a conse-
guence we inherit all definitions and theorems from the generic fixpoint theory. The
CSP-operatop is just identified withfix:(process ~ — process ¥) — process 2.

A quite important consequence @fd_imp_ref is that the fixpoints (which are
known to uniquely exist in the generic fixpoint theory) have a very particular form in
the process-instance:

fix f = Abs_process (iDQ\‘ H Bot), “QN D(fl Bot)) (fix_eq_lim_proc)

i.e. if a fixpoint exists w.r.t<, than it coincides with the fixpoint w.rd.

The most complex part of the entire theory is the proof of continuity for the
CSP-operators. The required properties have the following form:

contFO cont(Ax.a— Fx) (cont_prefix)
contFOcontG O cont(A\x. FxO G x) (cont_ndet)
contFOcontG O cont Ax.Fxm G x) (cont_det)
contFOcontG O contAx. Fx; Gx) (cont_seq)
contF OcontG O cont Ax. Fx[IA]l G x) (cont_parint)
cont F O finite A O cont (A x. F x\ A) (cont_hide)

Especially the last two theorems can pass as "highly non-trivial* even by mathema-
tically rigorous standards; as formal proofs, they must be considered as hard. Phrases
like "By Kdnigs lemma follows the existence of finitely many traces of the form ... "
required weeks of intensive work.

The collection of the above theorems (together witht_id andcont_const_-
fun) is used to instantiate Isabellsisnp_tac procedure (see [Pau 94]), that applies
them in a backward-chaining technique similarly to PROLOG-interpreters. This yields
a tactical program that decides the continuity of arbitrary CSP-expressions with finite
hide-sets as required for the application of the Knaster-Tarski theorem or for the
fixpoint induction.

40 Haykal Tej and Burkhart Wolff

4.6 Laws

From the definitions of the CSP-operators the usual CSP-laws can be derived as
formally proven theorems. Among them there is also the list drawn from [BR 85]:

POP=P PO Q=QOP

Po Qu RR=(Po QO R Po QMR =FPoQrm(POR)
P@o R)=Prm1 Qo (®Pr R) PO Stop=P

a- P Q=a-Pria-Q a-Poa-Q=a-Prma-Q
PP=P P1Q=QmP
PO@QmR)y=(PmQrmR

PllQ=QIIP PIQIR=FIQAIR
PIQMIR)=P| QM P|IR

a->P|]|b-Q=Stop ifa#zb a-PJ|lb-Q=a-(P||Q)ifa=b
P || Stop = Stop

PllQ=QlllP PIlQIIR)=CIAIR

PINQMR)=PIQMPIIR
a-Pllb-Q=a~ (Pllb-Qnob- (a-PllQ)

Skip; P=P Stop ; P = Stop
(@-PyQ=a- (P;Q P,Q:;R=(P:Q);R
P.QMR)=(P;Qm(P;R) Q@QMR);P=@Q;P)1 (R;P)
P\ {a\ {a} = P\ {a} P\{a}\{b} = P\ {b}\ {a}

(a - P){b} =a - P\b} fazb (a - P)\{a}=(P\{a})
Qm R)IV\A=Q\AMm R\A

Note that the lavP ||| Stop = P (as in [BR 85]) does not hold as a consequence of its
definition based on the parallel interleave operator. Instead, we have:

P|||Stop=P;Stop.

5 Proof Support for CSP

Fixpoint theory comes with a general induction principle called fixpoint induction.
We will see that it can be expressed particularly elegant in HOL. Moreover, it will be
shown that fixpoint induction can be used as proof principle for refinement proofs.

5.1 Fixpoint Induction

The idea of this proof principle is to induce a propéttgver ascending chains in
directed sets. IP isadmissiblei.e. if validity of P for all elements of a directed sét
always implies validity oP for the least upper bound ¥f then the task of proving
a propertyP for a fixpoint fix f reduces to prove for all its approximations.

Admissibility is a second order concept and can not be represented inside a first-
order logic. In the days of the late Edinburgh LCF-prover, the task was resolved by
built-in syntactical checks over predicates, the principles of which had been worked
out by meta-theoretic reasoning. These checks were a constant source of errors and an-
noyance since they inherently conflicted with the overall design goal to keep the core
of a theorem-prover small and simple.

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 41

In HOL admissibilityadm: (a::cpo — bool) — bool is just an ordinary predi-
cate (to our knowledge, the idea of an object-logical representation of admissibility is
due to [Reg 94]) defined by:

adm P =0Y. directed YO (Ox:Y.Px) O P(lub Y) (adm_def)

which leads naturally to a list of theorems that implement the reminiscent syntactic
checks in ordinary derived proof-rulesidethe logic:

adm (Ax.c) (adm_const_fun)
adm P Oadm QO adm (Ax. P x 0Q x) (adm_conj)

adm P Oadm QO adm (Ax. P x 0Q x) (adm_disj)
contf Ocont gO adm (Ax. fx<g x) (adm_ord)

etc.

Admissibility is used in the fixpoint induction principle in the following way:

[cont f Dadm P O(@ x. Px O P x) [0 P (fix f) (fix_ind)

The crucial question arises, if the refinement ordering is also admissible. This is vital
for the applicability of fixpoint induction for the highly desirable refinement proofs.
To our knowledge, this question has not been risen so far in the literature.

Of course, such a property cannot be proven in the generic fixpoint theory (as all
theorems above) but only in the process instance.

Proposition: The refinement ordering is admissible, i.e.
cont f Ocont g0 adm (Ax. fxc g x) (adm_ref_ord)

Proof-Sketch: Let f andg be continuousy be directed and let
(Ox:Y. f x £ g x) hold. Letf'Y andg"Y denote the image sets
of Y w.r.t.f andg. Then the figure aside gives an overview over the
situation. f"Y
Here x andxa denote the lub's w.r.&. As a consequence of
ord_imp_ref and of transitivity ofz, bothx andxa must be upper
bounds w.r.tc for f'Y. The question arises if they are also related
viac. The answer is positive as a consequend&odq_lim_proc
and the definition of, i.e.x is alsoleastupper bound w.r.t.
This fact gives us that living with two orders in CSP (as a price for unbounded
nondeterminism) is perhaps inelegant and uncomfortable, but perfectly possible.

5.2 Take Lemmas

Fixpoint induction proofs are usually quite ingenious proofs. In this section we will
discuss a more specialised proof-scheme that is more amenable to automated
reasoning. This principle will also shed some light on the potential of model-chec-
king techniques (seen from the perspective of symbolic reasoning).

The principle of take lemmas is enclosed in the take operator. process. —
nat - proces<, that cuts a behaviour of a process up to a depth n, for example:

fix (\x.a- x) | 1=a- Bot.

The definition of this operator along the usual lines yields the characterising
theorems:

42 Haykal Tej and Burkhart Wolff

FPiLnN)=FPO{(s, X)|sODP: n)}

DP L N) =DPO{s"t||s|=rtick-free sOfront-tick-free(t)0s 0 traces P}
From there the followingutting-rulesare derived:

P1 0= Bot @-P)in=a- (Pl n-1)

Q@MR)In=(Q! nmARIL n)

The principal characteristic of this operator is that it is monotone .r.t.
n<m0O Pin<Pim

This fact allows us to specialise the fixpoint-induction toghake-lemma:
Om(@n.n<mOPinc Qin)d Pimec Qim) O Pc Q

Note the strong similarity of this rule to Noetherian induction. Using this take-
lemma, we can perform the following backward-proof example:

fix(AX. a > X)c fix(AX. a > XM AX. b » X)
0 {by <-take-lemmé,l-intro, O -intro}
[[On.n<mO fix(Ax. a - X)Inc fix(AXx. a - XM AX. b - x)in]| O

fix(AX. a - X)Imc fix(AXx. a—- XM AX. b - xX)Im

{ by knaster-tarski}
[[..]1 0 (a- fix(..))tmc (@ - fix(..) b - fix(...))tm
{ by cutting rules}
I[..]1 0 a-(fix(..)m-1)c a - (fix(...)i m-1)m b - (fix(...) m-1)
{ by refinement projection left}
I[..]] O a - (fix(...)i m-1)c a - (fix(...)t m-1)
{ by refinement monotonicity}
[[On.n<mO fix(..)tnc fix(...)in]| O fix(...)m-1c fix(...)t m-1
{ by arithmetic and assumption}
True
Even without knowing anything about tactical programming in Isabelle, it is not hard
to see how this proof-technique can be mechanised. The essential difficulties are to
unfold fix-terms only in a controlled way, to "drive inside" the take-operator
occurrences while decreasing their offsets and to control the necessary backtracking for
refinement projection left rsp. refinement projection right.

The technique resembles very much the usual graph-exploration techniques in la-
belled transition diagrams (as implemented in FDR). The nodes in the graph corres-
pond to equivalence-classes on take-terms, the edges applications of the refinement
monotonicity. If problematic pathological cases were avoided (so-calleadontrac-
ting bodies of fix like fixdx.x)), and if graph-regularity can be assured, this tactical
program will be a (proven correct) decision procedure.

o o o o od

6 Example

The following example is drawn from [For 95], pp. 5. It specifies a proaC&RY

that behaves like a one place buffer. Then an implementation using a separate sender
SENDand receiver processBEC communicating via a channaid and an acknow-
ledgementack Instead of using model-checking for a known, finite alphabet of
events, we will prove via fixpoint induction for arbitrary alphabets that the
implementation refines the specification. Note, however, that the alphabets must still

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 43

be finite because of the hiding operator St STEM which is known to be
noncontinuous for infinite alphabets (see [BR 86]).

On the top-level of our CSP theory in Isabelle, new syntax for channels has been
introduced. Hencevriting cla - P is represented bfc,a) — P andreceiving c?x - P
x is mapped to an appropriate representation with multi-prefixes.

Our can be represented in an Isabelle theory by introducing a data type for all
involved channels. This can be done in an ML-like definition:

datatype channel = left | right | mid | ack

The proces€OPY : process (channel x %) is defined as follows:

COPY = (letrec COPY = left?x — rightlx — COPY in COPY (COPY_def)

The definition of the implementation reads as follows:

SYSTEM =(letrec SEND = left?x - midlx - ack?y — SEND;
REC = mid?x - rightlx - ack!x - REC
in SEND [| SYN [REC)\SYN) (SYSTEM_def)

whereSYN = {x | fst x = mid O fst x = ack}.
Now we can state the desired proof-go@PY = SYSTEM (under premise Pfinite
SYN) with COPY acting as specification of the behaviouSMfSTEM.

In the following presentation of the backward-proof, we suppress the required
proofs of continuity (which were eliminated by an appropriate tactic). For conve-
nience, we introducé as abbreviation for the often re-occurring term:

(Au. (left?x - mid!x - ack?y - fst u, mid?x - right!x - ack!x - snd u))

Then, the main steps of the refinement proof are:

COPY Cc SYSTEM
O {by COPY_def, SYSTEM_def, fix_ind, adm_ref_ord }
1) Fixpoint induction base:
Bot = SYSTEM
O {byBotc X}
True
2) Fixpoint induction step:
[xc (fst (fix G) [SYN [] snd (fix G)) \ SYN]| O
left?xa — right'lxa - x
cC
(fst (fix G) [SYN [I snd (fix G)) \ SYN

O {by knaster_tarski over both fix-terms, fst-snd-simplificatipn
[[..]1 O

left ? xa - right! xa - X
C
(left?’x — midlx - ack?y - fst (fix G)
[ISYNI
mid?x — right!x - ack!x - snd (fix G)) \ SYN

44 Haykal Tej and Burkhart Wolff

O {by distributive laws of the hiding operator, the
parallel interleave operator and the Mprefix opekator
I[..]1 0
left?xa — rightlxa - X
C
left?x — right!x - ((fst(fix G)|]SYN[|snd(fix G)\SYN)
O {by monotonicity of multiprefix operator w.r.t refinement
order ¢ and by assumption}
True
The premise P was only used in the proof of admissibility, when applying
adm_ref_ord. A careful analysis of its proof reveals that it can be strengthened to
cont f Omono g O adm (Ax. f x c g x), while on the other hand a proof of
monotonicity for the hide operator with arbitrary sets seems feasible. This seems to
suggest that at least the class of typical refinemémtsc (fix g)\A (provided that
f andg continuous)with one outermost hiding operator hiding away an arbitrary
internal communication channel introduced by the refinement step can be handled also
in the infinite case.

7 Conclusion

We have presented a corrected, shallow embedding of CSP into higher-order logic that
nevertheless preserves the algebraic properties of CSP for which we have formal,
machine-checked proofs. This embedding forms an implementation of a "CSP
Workbench" that allows interactive theorem proving in CSP-specifications with infi-
nite alphabet (complementary to the FDR-tool that allows automatic proofs on spe-
cialised, finite CSP-specifications). The collection of theories has been converted di-
rectly by Isabelle into a "textbook on CSP theory" available under "http://www.
informatik.uni-bremen.de/~bu/isa_doc/CSP/doc/html/index.html".

Some remarks should be given on the amount of verification work. The theory
presented so far required one man year (excluding a first attempt of five man months
invested in a model much closer to [Hoa 85] that turned out to be infeasible). This
effort could probably have been reduced by better expert advice, since our major
problems came from wrong theoretic foundations, gaps in proofs etc. and not from
the technicalities of "embedding"” or proving. Although the effort still may be quali-
fied as considerable, we see a need for more machine assisted verification work, since
there is a tendency to dilute the formal core of a research programme, especially a
successful one. In the meantime there are so many different variants of CSP, that they
are very likely to be incompatible. Due to the high publication pressure, authors tend
to modify the definitions according to their needs and cite the proofs from elsewhere
("proof is done analogously to [XY ??]"). In such a situation, research peers can shift
more research effort wanonicaltheory representations that were verified by machine
assistance.

We are not denying that formal proof activity without mathematical intuition is
blind, but we would like to emphasise that intuition tends to delude more often in
foundational theories of computer science that in other mathematical research areas,
perhaps due to their discrete nature and resulting combinatorial complexity. The tre-
atment of tick is an example for a unintuitive, combinatorically complex part of a
complex theory. Obviously, the situation gets even worse if combinations of formal

A Corrected Failure-Divergence Model for CSP in Isabelle/HOL 45

methods — as envisaged by the UniForM project[8%] — are undertaken. Never-
theless, such combination-methods are particularly desirable since "there is no single
theory for all stages of the development of software [...]. Ideas, concepts, methods and
calculations will have to be drawn from a wide range of theories, and they are going
to have to work together consistently [...]" (again from Hoare's invited lecture at
FME'96).

7.1 Future Work

We will investigate to prove the denotational semantics as described in this paper con-
sistent with the operational semantics of FDR [For 95], i.e. we prove consistency
with the formal specification of this tool (we are not planning to "prove FDR" w.r.t.
this specification). As a result, one can embed the FDR-tool as a proof-oracle
(external decision procedure) within Isabelle in order to build up a logically
consistent, combined environment for the reasoning over CSP. This is particularly
attractive, since both tools deliver complementary deduction support: Isabelle/CSP
provides interactive proof support for infinite CSP, while FDR excels at automatic
refinement proofs for specialised, finite CSP specifications. In such an environment,
general requirements-engineering is possible, followed by a sequence of "massage
steps"” that make a specification amenable for FDR, concluded by combined proof-
efforts of FDR and Isabelle/CSP.

We are interested in designing a transformational methodology in CSP. This
means that a collection of "transformation rules" in the sense of [KSW 96a] should be
designed that allow the construction of a CSP-process by identifying and refining
design-patterns

We work at a safe and semantically clean integration of CSP with other industry-
standard specification languages like Z (whose representation in Isabelle/HOL has
been worked out in [KSW 96b]). First conceptual studies for such an integration are
[Fis 97].

Finally we admit that an encapsulation of the Isabelle/CSP embedding in an inte-
gratedtool is of crucial importance for further acceptance in industry. Following the
lines of [KSW 96a], a generic user interface has been developed that can be instantia-
ted with LCF-style theorem-prover in order to encapsulate them as a specialised tool
(see [KLMW 96]). An instance of this technology with Isabelle/CSP has been envisa-
ged. Moreover, an even wider goal of UniForM is to provide a workbench to integrate
these tools and to provide them with inter-tool communication, version-management
and development-management. We believe that this technology should ease the con-
struction of powerful formal methods tools and simplify the technical side of
interchanging information between them.

Acknowledgement. We would like to thank A.W.Roscoe for several hints helping

us to bridge big steps in rigorous mathematical proofs. Prof. Bernd Krieg-Briickner,
Thomas Santen, Sabine Dick, Christoph Lith and Clemens Fischer read earlier ver-
sions of this paper.

46 Haykal Tej and Burkhart Wolff

References

[And 86]
[BH 95]
[BR 85]
[Cam 91]
[Chu 40]
[Fis 97]
[For 95]

[GM 93]

[Hoa 85]
[KLMW96]

[Kri t95]

[KSW 964a]

[KSW 96D]

[Pau 94]
[RB 89]

[Reg 94]

[Ros 88]

[Ros 96]

P.B. AndrewsAn Introduction to Mathematical Logic and Type Theory:
To Truth Through ProgfAcademic Press, 1986.

J. P. Bowen,M. J. Hinchey: Seven more Myths of Formal Methods:
Dispelling Industrial Prejudices, ifRME'94: Industrial Benefit of
Formal Methods proc. 2nd Int. Symposium of Formal Methods
Europe, LNCS 873, Springer Verlag 1994, pp. 105-117.

S.D. Brookes, A.W. Roscoe: An improved failures model for communi-
cating processes. In: S.D.Brookes (ed.): Seminar on Semantics of Con-
currency. LNCS 197, Springer Verlag, pp. 281-305. 1985.

A.J. Camillieri: A Higher Order Logic Mechanization of the CSP Fai-
lure-Divergence Semantics. G. Birtwistle (eldjth Higher Order Work-
shop Banff 1990. Workshops in Computing, Springer Verlag, 1991.

A. Church: A formulation of the simple theory of typdeurnal of
Symbolic Logi¢c5h, 1940, pp. 56-68.

C. Fischer: Combining CSP and Z. Submitted for publication.

Formal Systems (Europe) Ltd: Failures-Divergence Refinement: FDR2,
Dec.1995. Preliminary Manual.

M.J.C. Gordon,T.M. Melhamintroduction to HOL: a Theorem Pro-
ving Environment for Higher order Logic€ambridge Univ. Press,
1993.

C.A.R.Hoare: Communication Sequential Processes.Prentice-Hall, 1985
Kolyang, C. Lith, T. Meier, B. Wolff: Generic Interfaces for Formal
Development Support Tools. In: Workshop for Verification and Valida-
tion Tools, Bremen. to appear in LNCS.

B. Krieg-Briickner, J. Peleska, E.-R. Olderog, D. Balzer, A. Baer, :
Uniform Workbench — Universelle Entwicklungsumgebung fir formale
Methoden. Technischer Bericht 8/95, Universitat Bremen, 1995. See
also the project home-page: http://www.informatik.uni-
bremen.de/~uniform.

Kolyang, T. Santen, B. Wolff: Correct and User-Friendly Implementa-
tions of Transformation System®&roc. Formal Methods Europe,
Oxford. LNCS 1051, Springer Verlag, 1996.

Kolyang, T. Santen, B. Wolff: A structure preserving encoding of Z in
Isabelle/HOL. In J. von Wright, J. Grundy and J. Harrison (eds):
Theorem Proving in Higher/Order Logics — 9th International Con-
ference, LNCS 1125, pp. 283-298, 1996.

L. C. Paulsonlsabelle - A Generic Theorem ProveNCS 828, 1994.
A.W. Roscoe, G. Barett: Unbounded Nondeterminism in CSP. In: M.
Main, A.Melton,M.Mislove,D.Schmidt (eds): 9th International Con-
ference in Mathematical Foundations of Programming Semantics.
LNCS 442,pp. 160-193, 1989.

F. Regensburger: HOLCF: Eine konservative Einbettung von LCF in
HOL. Phd thesis, Technische Universitat Miinchen. 1994.

A.W. Roscoe: An alternative Order for the Failures Model. In: Two
Papers on CSP. Technical Monograph PRG-67, Oxford university
Computer Laboratory, Programming Research Group, July 1988.

A.W. Roscoe, e-mail communication with the authors.

HOL-Z 2.0:
A Proof Environment for Z-Specifications

Achim D. Brucker
Albert-Ludwigs-Universitat Freiburg
brucker@informatik.uni-freiburg.de

Frank Rittinger
Albert-Ludwigs-Universitéat Freiburg
rittinge@informatik.uni-freiburg.de

Burkhart Wolff
Albert-Ludwigs-Universitat Freiburg
wolff@informatik.uni-freiburg.de

Abstract: We present a new proof environment for the specification language Z.
The basis is a semantic representation of Z in a structure-preserving, shallow em-
bedding in Isabelle/HOL. On top of the embedding, new proof support for the Z
schema calculus and for proof structuring are developed. Thus, we integrate Z into a
well-known and trusted theorem prover with advanced deduction technology such as
higher-order rewriting, tableaux-based provers and arithmetic decision procedures. A
further achievement of this work is the integration of our embedding into a new tool-
chain providing a Z-oriented type checker, documentation facilities and macro support
for refinement proofs; as a result, the gap has been closed between a logical embedding
proven correct and a tool suited for applications of non-trivial size.

Key Words: Theorem Proving, Refinement, Z
Category: D.2.1, D.24, F.3.1, F4.1

1 Introduction

Tools for formal specification languages can roughly be divided into two categories:
straightforward design which implements a specification environment directly in a pro-
gramming language, and embedded design which implements it on the basis of a logical
embedding in a theorem prover environment, e.g. Isabelle [Paulson, 1994]. Examples of
the former are Z/EVES [ZEVES, 2003], KIV [KIV, 2003] or FDR [FDR, 2003], exam-
ples of the latter are VHDL [Reetz, 1995], HOL-Unity [Paulson, 2000], HOL-CSP [Tej
and Wolff, 1997] and HOL-OCL [Brucker and Wolff, 2002].

The advantage of embedded designs such as HOL-Z (whose underlying conservative
embedding of Z into the higher-order logic (HOL) instance of Isabelle has been de-
scribed in [Kolyang et al., 1996]) is their solid logical basis: all symbolic computations
on formulae are divided into “logical core theorems” (i.e. derived rules) and special
tactical programs controlling their application. Thus, logical consistency of a tool for
specification languages can be reduced to the consistency of the underlying meta-logic
and the correctness of the underlying logical engine, which is in our case a well-known
and accepted one. When scaling up to a tool, the problems with embedded designs are
threefold:

48 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

1. A tool-oriented logical embedding must be designed for effective deduction. This
usually conflicts with other design goals such as provability of meta-theoretic prop-
erties (e.g. completeness).

2. Embeddings often present the embedded language in the form of meta-logical for-
mulae: this has negative effects on presentation and error-handling.

3. The embedding and the concrete prover may suggest unstructured proof attempts
(“unfold everything into meta-logic, bust the pieces there ...”) and an unnatural
proof organization. This may be too low-level for larger developments.

In order to meet these problems, we improved our logical embedding called HOL-Z.
The integrated environment — still called HOL-Z for simplicity — offers the following
features:

1. HOL-Z is a “shallow embedding” [Kolyang et al., 1996]; types are handled on the
meta-level, and many elements of Z are “parsed away” and represent no obstacle
for deduction.

2. HOL-Z is based on a new front-end consisting of an integrated parser and type
checker; this paves the way for professional documentation and high-level error-
handling.

3. HOL-Z offers technical support of methodology (such as refinement, top-down
proof development or proof obligation management), and support of particular
“structured proof idioms” such as the schema calculus in Z.

Our first contribution in this paper consists in a proof calculus for the schema calculus
of Z and its implementation based on derived rules. As the second contribution, we
provide an integration of HOL-Z into a specific tool-chain in order to “scale up” the
previous work on embedding Z into Isabelle/HOL to a proof environment that has been
applied in several larger case studies.

2 Foundations

2.1 Isabelle/HOL

Higher-order logic (HOL) [Church, 1940; Andrews, 1986] is a classical logic with equal-
ity enriched by total polymorphic higher-order functions. It is more expressive than
first-order logic, since e.g. induction schemes can be expressed inside the logic. Prag-
matically, HOL can be viewed as a combination of a typed functional programming
language like Standard ML (SML) or Haskell extended by logical quantifiers.

When extending logics, two approaches can be distinguished: the aziomatic method on
the one hand and conservative extensions on the other. Extending HOL via axioms
easily leads to inconsistency; given the fact that libraries contain several thousand the-
orems and lemmas, the axiomatic approach is too error-prone in practice. In contrast,
a conservative extension introduces new constants (by constant definitions) and types
(by type definitions) only via axioms of a particular form; a proof that conservative
extensions preserve consistency can be found in [Gordon and Melham, 1993].

The HOL library provides conservative theories for the HOL-core based on type bool,
for the numbers such as nat and int, for typed set theory based on 7 set and a list
theory based on 7 list.

Isabelle [Paulson, 1994] is a generic theorem prover. New object logics can be intro-
duced by specifying their syntax and inference rules. Among other logics, Isabelle

HOL-Z 2.0: A Proof Environment for Z-Specifications 49

supports first-order logic (intuitionistic and classical), Zermelo-Frankel set theory (ZF)
and HOL, which we choose as a framework for HOL-Z.

Following the tradition of LCF-style provers, Isabelle consists of a logical engine encap-
sulated in an abstract data type thm in SML; any thm object has been constructed by
trusted elementary rules in the kernel. Thus Isabelle supports user-programmable ex-
tensions in a logically safe way. A number of generic proof procedures (tactics), written
in SML, have been developed. A special tactic is the simplifier based on higher-order
rewriting and proof-search procedures based on higher-order resolution.

2.2 Z by Example

The formal specification language Z [Spivey, 1992] is based on typed set theory and
first-order logic with equality. The syntax and the semantics are specified in an ISO-
standard [ISOZ, 2002]; for future standardization efforts of operating system libraries
or programming language semantics, Z is therefore a likely candidate. Z provides con-
structs for structuring and combining data-oriented specifications: schemas model the
states of the system (state schemas) and operations on states (operation schemas),
while the schema calculus is used to compose these sub-specifications to larger ones.
We present these constructs using a standard example, Spivey’s “birthday book”. This
simple system stores names and dates of birthdays and provides, for example, an op-
eration to add a new birthday. In Z, abstract types for NAME and DATE can be
declared that we use in a schema (consisting of a declaration part and a predicate
part) to define the system state BirthdayBook. For transitions over the system state,
the schema AddBirthday is used:

— BirthdayBook —— AddBirthday
known : P NAME ABirthdayBook
birthday : NAME + DATE n?: NAME; d?: DATE
known = dom birthday n? ¢ known
birthday' = birthday U {n? — d?}

ABirthdayBook imports the state schema into the operation schema in a “stroked”
and a “non-stroked” version: BirthdayBook' and BirthdayBook. The resulting variables
birthday' and birthday are conventionally understood as the states after and before the
operation, respectively.

This system is refined to a more concrete one based on a state BirthdayBook1 containing
two (unbounded) arrays and an operation that implements AddBirthday on this state:

—— BirthdayBook1 — AddBirthday1
names : N - NAMFE ABirthdayBook1
dates : N+ DATE name? : NAME; date? : DATE
hwm : N Vi:1..hwm e name? # names(i)
Vi,j:1..hwm e i#j hwm' = hwm + 1
= names(i) # names(j) names’ = names ® {hwm’ — name?}

dates’ = dates ® {hwm' — date?}

The relation between abstract states (captured by the schema Birthday) and the con-
crete states (captured by Birthdayl) is again represented in a schema in Z, namely

50 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

PR type checkin o
generate specification Thd HOL.Z® specification
literate specification proof generated corL\gier:swn and obllgatlons_ n
UZing obligations proof obligations ZFT%\ HOL-Z notation
IATEX-based hglszmsgt -
Z notation Sty
l?i?iuz;f{nigt verify proof obligations
! - .
fulfillment using
of obligations Isabelle/HOL-Z

Figure 1: A Tool Chain supporting Literate Specification

the schema Abs; the relation defines known as the range of the names-array (upto
high-water-mark hwm) and the relation from positionally associated names and dates
as equal to the relation birthday from the abstract state Birthday:

— Abs
BirthdayBook
BirthdayBook1

known = {i:1.. hwm e names(i)}
Vi:1..hwm e birthday(names(i)) =

dates(1)

One can use the schema calculus to combine different operation schemas into one oper-
ation. For example, one could strengthen the AddBirthday operation with an operation
schema AlreadyKnown which expresses the fact that the entry that should be added
already exists in the birthday book:

Add == AddBirthday V AlreadyKnown
The birthday book will be our running example throughout the rest of the paper.

3 A Tool Chain for Literate Specification

The core of HOL-Z, namely the logical embedding discussed in the next chapters, is
now integrated into a chain of tools. We briefly describe the data flow of our tool-chain
as depicted in Fig. 1; in the following sections we will describe the components of the
tool-chain in more detail.

At the beginning, a normal I TEX-based Z specification is created; the specification may
contain formal text, macros for proof obligation generation and informal explanations
in a mixed, “literate specification” style. Running KTEX leads to the expansion of
proof obligation macros, and also generates an Isabelle-script that checks that the
obligations are fulfilled (to be run at a later stage). ZETA takes over, extracts all
Z definitions from the ITEX source (including the generated ones) and type checks
them or provides animation for some Z schemas. Our plug-in into ZETA converts the
specification (sections, declarations, definitions, schemas, ...) into SML-files that can
be loaded into Isabelle. In the theory contexts provided by these files, usual Isabelle
proof-scripts can be developed.

The elements of our tool chain can be technically organized in various ways. One
way is to build a front-end by integrating ZETA into XEmacs (which is our preferred

HOL-Z 2.0: A Proof Environment for Z-Specifications 51

setting since, for example, a click on a type-error message leads to a highlighting of the
corresponding source) and a back-end based on Isabelle. Another way is an organization
into usual shell scripts, that allows for easy integration of the specification process into
the general software development process, including in particular version management
that allows for semantically checked specifications. In this setting, for example, one can
assure that new versions of the specification document are accepted as main versions
only when the proof obligation check scripts run successfully, etc.

3.1 The EBTEX-based Z Specification

The formal text in a specification document closely follows the ITEX format of the Z
standard described in [ISOZ, 2002]. In this section, we therefore focus on our add-on
holz.sty, a macro package for generating proof obligations. We decided to use KTEX
itself as a flexible mechanism to construct and present proof obligations inside the spec-
ification — this may include consistency conditions, refinement conditions or special
safety properties imposed by a special method for a certain specification architecture.
Our KTEX package holz.sty provides, among others, commands for generating re-
finement conditions as described in [Spivey, 1992]. For our running example of the
birthday book’s AddBirthday operation, we instantiate the refinement condition that
AddBirthday is refined by the more concrete AddBirthdayl as follows:

\zrefinesOp [Astate=BirthdayBook, Cstate=BirthdayBookl1,
Aop=AddBirthday, Cop=AddBirthdayl,
Args={n?: NAME; d7: DATE}, Abs=Abs]{Add}

Here, Astate contains the schema describing the abstract state and Cstate holds the
schema describing the concrete state. Based on this input, our BTEX package auto-
matically generates the following two proof obligations:

Addy ==V BirthdayBook; BirthdayBookl; n?: NAME; d?: DATE e
(pre AddBirthday N Abs) = pre AddBirthdayl
Addy ==V BirthdayBook; BirthdayBookl; BirthdayBookl'; n? : NAME;
d? : DATE e (pre AddBirthday N\ Abs A AddBirthdayl)
= (3 BirthdayBook' e Abs' N AddBirthday)

These proof obligations are type-checked using ZETA and are converted to HOL-Z by
our ZETA-to-HOL-Z converter.

3.2 The ZETA System

ZETA [Zeta, 2003] is an open environment for the development, analysis and animation
of specifications. Specification documents are represented by units in the ZETA system
that can be annotated with different content like WXTEX mark-up, type-checked abstract
syntax, etc. The system is aware of dependencies between the units and attempts to
exploit this when units change. An integration of ZETA into the editing environment
XEmacs greatly facilitates changes and the management of consistency checking in
large specifications. The contents of units is computed by adaptors, which can be
plugged into the system dynamically.

Two plugins are available that are particularly important for our purpose: one consists
in a type checker for Z based on I¥TEX covering a large part of the Z standard; the
other is an animator for Z that allows for the evaluation of Z expressions, in particular
schemas. Thus, specifications can be tested easily during the specification work helping
to avoid spurious errors.

52 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

[[s]l‘-, [T, [] in ZFSN @

Semantics [Gordon and Melham, 1993

Z-Encoder

Figure 2: An Overview of Semantic Relations

3.3 ZETA-to-HOL-Z Converter

The converter consists of two parts: an adaptor that is plugged into ZETA and converts
the type-checked abstract syntax of a unit more or less directly into an SML-file. On
the SML side, this file is read and a theory context is built inside Isabelle/HOL-Z. This
involves the conversion into the internal HOL-Z representation by the Z-Encoder (see
Sec. 4.1), followed by an independent type checking of the result by Isabelle (ruling
out that implementation errors in the Z-Encoder may yield inconsistency), followed
by a check of conservativity conditions for schemas and some optimizations for partial
function application in order to simplify later theorem proving.

In its present state, the converter can translate most Z constructs with the exception
of user-defined generic definitions, arbitrary free types or less frequently used schema
operators like hiding and piping.

4 Representing Z in Isabelle/HOL: The Foundations

In order to be self-contained, we present the foundations of the HOL-Z embedding.
While most basic concepts of this embedding have been developed by one of the authors
jointly with Santen and Kolyang [Kolyang et al., 1996], the implementation of the
new “Z-Encoder” is a complete redevelopment; this also involves new machinery for
converting types, bindings, and schema calculus constructs.

4.1 Conformance with “The Standard”

For any embedding of a logic, the question of the faithfulness of the encoding of one
calculus in another has to be raised. This question seems to be very critical for HOL-Z
since the semantics in the Z standard [ISOZ, 2002] (ZFSN) is based on Zermelo-Frénkel
set theory (ZF) and not on typed set theory as HOL. ZFSN does not define a deductive
system: It provides a semantics in set theory and requires “conformance” of a deductive
system for 7, i.e. the soundness of all rules of the system with this semantics.

The core of the ZFSN semantics consists of the definition of the partial functions
[7]7, [e]° and [p]” that assign to each element of each syntactic category (types T,
expressions e and predicates p) a type resp. a value (meaning). A calculus conforms
to the standard if it reflects the semantic function where it is defined. The semantic
functions are interpreted in an untyped universe of ZF. In the semantic universe, objects
like {0, {0}} may occur that are illegal in the typed set theory of HOL. This does not
mean that {0, {0}} is legal in Z; in fact, one of the major objectives of [7]" is to rule
out such expressions by a type-discipline that can be injectively mapped into the typed
A-calculus underlying HOL.

Fig. 2 outlines the semantic situation: Let HOL, be the set of HOL-terms of simple
type 7. Moreover, let Z, denote the set of Z-expressions of a Z-type 7z, and ZF the

HOL-Z 2.0: A Proof Environment for Z-Specifications 53

class of sets in ZF into which all elements of Z; are mapped. The two type systems
are both interpreted in a universe, i.e. a ZF-set. According to ZFSN, the Z universe is
closed under Cartesian products and powerset-construction. According to [Gordon and
Melham, 1993], the HOL universe is a set closed under function construction A — B
and the type bool. The crucial point for the correctness of the overall approach is that
both universes are isomorphic. Slightly simplified, the types 7z and 7, are defined as:

Tz = integer T» = bool
| 72 X - X 77 | integer
| Ty ~ T2y ooy Ty ~> T2) | 72 X T
| P7y | 7n — T

The injection from 77 to 7, is now defined as follows: integers are mapped to themselves,
multiple Cartesian products 7z X --+ X Tz to binary products associated to the right,
bindings (i.e. records) { 7, ~ 7z,...,Tn, ~ Tz |} to n-ary Cartesian products sorted
by their tag names 7, and P77z to 7, — bool. From this mapping, it can be seen
that HOL-Z is slightly more liberal than 77 (it admits mixtures of Cartesian products
and bindings that are not allowed in Z, for example), but the semantic domains are
still isomorphic to each other. In particular, the typed set theory of Z is converted to
the theory of typed characteristic functions in HOL'. Thus, the Z-Encoder maps all
terms in Z; to specific HOL,-terms, such that the diagram in Fig. 2 commutes up to
isomorphism for all 7. Our argument works for a monomorphic type universe. For more
details and an extension to polymorphic types, see [Santen, 1998].

It is perhaps surprising to discover that the semantic basis of Z as described in the
rather complex ZFSN is just an equivalent to the standard model of the typed A-
calculus. It remains to evaluate the syntactical, notational facet of Z can be handled
by our Z-Encoder (to be discussed in the next section).

4.2 Encoding Schemas

Semantically, schemas are just sets of bindings of a certain type. However, a reference
to a schema can play different roles in a specification: it can serve as import in the
declaration list of other schemas (e.g. reference A in schema B in Fig. 3), it can serve as
set (e.g. reference A or B in schema C in Fig. 3), or it can serve as predicate in the so-
called schema calculus (see below). Moreover, references to schemas may be decorated
by a stroke, which results in a renaming of the variables in a schema and of the tag
names in the corresponding schema type by suffixing them with a stroke. Schema
operators like AA are syntactic synonyms for A A A’. Note that several occurrences of
declarations (e.g. a2 in schema B) in a schema are identified and their associated sets
S2 and T are intersected (provided that their underlying types are equal; otherwise, the
whole declaration is illegal). It is this particular feature of Z that excludes a treatment
of schemas by sets of “extensible records” [Naraschewski and Wenzel, 1998; Brucker
and Wolff, 2002].

The first key idea for the design of HOL-Z is to compute a raw type, the schema-
signature Sx for all expressions of schema type. More precisely, a schema-signature
Ss P @1 — T1,...,Z, — Ty | is just the ordered list of tag names [z1, ..., 2,]. In the Z-
Encoder, schema-signatures are abstracted from 7z-types which are available whenever

! In our implementation, however, the situation is slightly more complex: the above
said is true for schema types P(7, ~ 7z,...,7Tn, ~ 7z |); all other P-types are
mapped to the type-constructor set — which is defined isomorphic to characteristic
functions, but distinguished from them by the type-system of HOL. This optimiza-
tion gives better access to HOL-libraries and a bit more type-safety in HOL-Z.

54 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

— A
I Sl
€2 SQ
P
—B— — C
A; A y:B
z0: T z:seq A

Figure 3: Schemas and their Use

ZETA is used as front-end. When using the weaker typed e-mail format (as in locally
stated proof-goals; see Sec. 5.5), they are approximated on the basis on schema syntax,
on previously compiled schemas from an environment, and on computations of the
effect of schema operators over schema subexpressions.

The second key idea is to represent schemas “as predicates” by default, i.e. as charac-
teristic functions over bindings, that are represented as products. This is achieved by
a pre-translator on parsed terms in the Z-Encoder, that makes implicit bindings in Z
expressions — expressed by their schema-signature — explicit and generates coercions
of schemas according to their role. For example, the schema declaration A, as depicted
in Fig. 3, of type P{ 1 — 71,22 — 72), is converted into the constant definition:

AE)\(ZM,:DQ)OleSl/\ZEQGSz/\P

As a result of this presentation, the treatment of schema references as import or as set,
as used in schema B, can be represented truthfully as follows:

B =X, 22,71, 1) @ Az, 22) AN A(zf,m3) AN22 € T A Q

while an expression AUA will be represented by (asSet A)U(asSet A) (with the coercion
asSet from characteristic functions to typed sets in HOL).

As mentioned, there is a further role in which schema references may be used: in the
schema calculus, one may write a schema expression A A B which has the schema type
P 21 +— 71,22 — T2, T{ =TI, Th T2). Such an expression will be represented by

Mz, 72, 21, 75) ® A(z1, 22) A B(21, 22, 71, 25)

The schema type of the conjunction of two schema expressions is the union of the
schema signatures, provided that each tag name is associated with the same type.
Thus, having “parsed away” the specific binding conventions of Z into standard \-
calculus, Isabelle’s proof-engine can handle Z as ordinary HOL-formulae. There is no
further “embedding specific” overhead such as predicates stating the well-typedness of
certain expressions, etc; these issues are handled inside the typing discipline of HOL.
Note, moreover, that our representation keeps the structure of the original Z specifica-
tion — previous attempts [Bowen and Gordon, 1995] had been based on “flattening”
(unfolding) of the schema notation — and allows for a controlled unfolding of schemas
in the course of a proof.

So far, the presentation of binding is adequate for automatic proofs; however, in prac-
tice, realistic case studies require proofs with user interaction. This leads to the re-
quirement that intermediate lemmas can be inserted “in the way of Z”, intermediate

HOL-Z 2.0: A Proof Environment for Z-Specifications 55

results are presented “Z-alike”, and the proof style imposed by Z (cf. [Woodock and
Davies, 1996]) can be mimicked. Therefore, we define a special “annotated” abstraction
operator SBinder semantically equivalent to the pair-splitting A-abstraction from the
example above:

consts SBinder0 . V[string, 8= 4] = (8 = 90)”
”SBinder0 An P = P”
SBinder i P[string ,[B,y] = 6] = ((B * v)=9)"
’SBinder An P = (X (x,y). (Pxy))

and introduce the notation:
SB “Z,” ~> x’ “y” ~> y7 “z” ~> Z.P

for:
SBinder “z” (A z.SBinder “y” (A y.SBinder0“z” (A z.P)))

Using these operators, the example above is pretty-printed by:

SB “$1” ~ 117 “.TQ” ~ .’I)Q, “I{” ~s Ig, “iEQ,” ~ T4 .A(l'l,.'L'Q) /\ B(Il,]?2,$3,1'4)
where each field name is kept as a (semantically irrelevant) string in the representation.
Thus, while the “real binding” is dealt by Isabelle’s internal A, which is subject to a-
conversion, the presentation of intermediate results is done on the basis of the original
field-names from the user’s specification.

5 Proof Support for Z

Based on the semantic representation of Z in Isabelle/HOL presented in the previous
section, we will now describe structured proof-support for Z.

5.1 The Mathematical Toolkit of Z

7 comes with a large toolkit of mathematical definitions concerning relations, functions,
sets and bags one can build on when specifying software systems. Based on the obser-
vation that the semantic domains are equivalent, it is now straightforward to embed
this “Mathematical Toolkit” conservatively in HOL.

The type of relation (written A<—B) is defined as the set of all pairs over A and B.
Thus, in contrast to HOL, all functions are encoded by their graph. This allows for
partial function spaces and for operations like the union of two functions.

The toolkit is presented as a suite of constant definitions (the technique is equivalent
to [Bowen and Gordon, 1995]). On the right-hand side of the type definition some
parsing information is given together with the binding values.

consts
partial func ::7[a set,B set] = (a < 3) set” ("o -~ 7 [54,53] 53)
total_func 2V aset,Bset] = (o B) set” ("o — 7 [54,53] 53)
partial_inj w7 aset,B set] = (a «— B) set” (- -~ 7 [54,53] 53)
func_overrid 7 [a < 3, a— Bl = (a<= B ("- (+) 7 [55,56] 55)
defs

total _func_def ’S —- R
partial_inj_def 7S

{s. s €S - R A dom s= S}’
{s.s€S - RA (Vmry. (21,y) €s

A (22,y) €s — m=m)}
(

func_overrid-def 7S (+) dom R < S) UR”

56 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

Conformance of the set operators +,—, ...,& of the mathematical toolkit is easy to
verify: Just compare these definitions (and there are hundreds) with the ones in ZESN.
Furthermore, the laws given in [Spivey, 1992] can be derived as theorems. Especially

the theorem:
ﬂ P(z) = {y.true}
z:{}

holds, in contrast to ZF where the result of this intersection over the empty index set
is defined equal to {} because there are no universal sets in this untyped theory. In
typed set theories like in Z or in HOL, the complement of a set is always defined.

5.2 Proof Support for the Schema Calculus

As discussed in the previous section, schemas can be used as predicates in the schema
calculus, for which we implemented syntax and proof support. Besides the usual logical
connectors A,V,— ,= that may be used to connect schema expressions, there are also
schema-quantifiers in the schema calculus. For example, the schema expression V Ae B
is a schema of type P({ 2 — 71,7 — 72 |}). In HOL-Z, it is represented by:

SB”x{” ~» 337 25" ~> 14 @ ¥(71, 72) : asSet A @ B(z1, 72, T3, 74)

Analogously, the following operators are defined:

— the existential quantifier 3 A e B,

— the hiding operator B \ (z1,22) equivalent to 3 M e B (where M is a schema with
empty predicate part and schema-signature [z1, 72]), and

@)

— the pre B operator that hides all variables that have a stroke or a “!”-suffix.

The latter schema operator is motivated by the convention in Z to give variables de-
noting components of a successor state a stroke suffix, while variables denoting output
get a “I”-suffix.

Schema quantifiers play an important role for the formulation of proof obligations
and lemmas in Z. The proof obligation Add; for the refinement in the BirthdayBook
example (see Sec. 3.1) is a pure schema expression. For inserting local lemmas into
Isabelle, proof goals can be inserted directly by a suitably adapted parser (using the Z-
Encoder internally) based on the compact ASCII-based e-mail format defined in ZFSN.
For example, one can insert an already simplified version of Add; described in [Spivey,
1992, p. 138]*

zgoal thy

7Y BirthdayBooke N BirthdayBookl eV n? e NAMEeVd? € DATE e
(n? € knownA known= {n. 3i€4#1..hwm. n=names i}
= (Vi € #1..hwm. n? # names i))”;

which opens an Isabelle proof state.

Note that this statement, directly drawn from a prominent Z textbook, is strictly
speaking not a Z-formula in the sense of ZFSN; since there are logical connectors that
have a schema expression on one side and a HOL expression on the other, such mixed
expressions can not be entered in the ZETA-frontend. Such use of mixed formulae in
the course of proofs is in fact quite common in the Z literature (see also [Woodock
and Davies, 1996]). Instead of developing a somewhat artificial, closed proof calculus

2 For the purpose of our presentation we use the usual mathematical notation.

HOL-Z 2.0: A Proof Environment for Z-Specifications 57

on schema expressions (as in [ISOZ, 2002; Henson and Reeves, 1998]), we opted for a
calculus supporting such mixed forms.

The question has to be settled how the issue of binding is treated in mixed forms.
Here, the general rule we adopted is that scopes introduced by schemas also extend
to HOL subformulae, i.e. in V.S ® S’, all bindings introduced by the schema-signature
of S are also used to bind any free variables in S’, regardless if it occurs in a schema
expression or not. Moreover, the question has to be solved how schema expressions (i.e.
expressions with a non-empty schema-signature) are treated logically at the top-level,
since expression of the form are encoded into predicates over this schema-signature. Our
answer is that we treat such “free variables” declared in a schema-signature but never
bound as universally quantified; this is achieved by defining the F operator equivalent
to the universal quantor V of type (o« — bool) — bool and adding it at the root of any
schema expression. Conceptually, this means that S (or: “valid S”) has the meaning
that the predicate must hold for all elements in the schema.

From the perspective of a mixed form calculus, it is quite clear what is needed for
a joint calculus: for any construct of the schema calculus, a pair of introduction and
elimination rules must be added. Since in the case of schema expressions, argument lists
of predicates vary over schema-signatures, these rules are in fact rule schemes, whose
individual instances are just equivalents for the usual (bounded) quantifiers and set
comprehensions. In the following, we use x; to denote a vector of variables 1, ..., Zn;
the juxtaposition x;y; of two vectors represents their concatenation. With X we denote
a permutation of a vector x. In the following, we represent the rule schemes of schema
quantifiers in natural deduction style (to which Isabelle is mainly geared):

.)
/\ x;.5(x:) turnstilel FS R turnstileE
FS R
S(x.)] S(t), T(63,)]
/\ x;. T(xiy;) sch_alll(*) VSeT R sch_allE(*)
VSeT R
S(y/t\’_t/') [S(YJX;XIC')]
it :
T prel(¥) pre S /\ x5! R preE(¥)
pre S
R
o) sie) S65¥)
o) 2y sch_exI(*) 3SeT /\ X;. R sch_exE(¥)

JdSeT

R

Note that the turnstilel rule introduces the equivalent of fresh free variables into a
backward proof-state; consequently, schema expressions are not necessarily closed in
our calculus. This motivates the following proviso (*) on most of the rules above: we
require that yy is the vector of free variables corresponding to the schema signature of
the conclusion P (in the introduction rules) or the type of the first premise P (in the
elimination rules); i.e. we require y, = Sx(7) where 7 is the type of P.

In HOL-Z, for each of these rule schemes a special tactic is provided for both forward
and backward proof. While the former corresponds to a transformation on objects
of type thm — representing formulae accepted by Isabelle as valid —, the latter is a

58 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

tactic that may be applied to the i-th subgoal of the current proof state. These tactics
are collected in the SML package ZProofUtils and have the format:

val strip_turnstile : thm — thm
(¥ erases topmost turnstile F S *)

val strip_schball : thm — thm
(¥ erases topmost schema quantifier V z: A e P z *)

val intro_sch_all_tac : int — tactic

(¥ pseudo introduction rule of a schema-universal quantifier
V S e P; in backwards reasoning, it eliminates a topmost
schema-quantifier and replaces them by parameters, that
were suttably renamed *)

val elimsch_all_tac : int — tactic

(¥ pseudo elimination rule of a schema-universal quantifier
V S e P; in backwards reasoning, it eliminates a topmost
schema-quantifier in the assumption list and Teplaces them
by schema wvariables. *)

An introduction and elimination rule pair for schema comprehensions {S | P e E}
(semantically represented as {m | 3x; : asSetSe P(x;) A m = E(x;)}) is also provided.
Its definition is straightforward and not really a semantic extension of HOL, merely a
syntactic paraphrasing of HOL rules.

While the correctness of the calculus is assured by formal, machine-checked proofs
of more atomic rules that were used inside the tactics implementing the above rule
schemes, the question of (relative) completeness is more difficult to answer. Of course,
since HOL includes the axiom of infinity, HOL is incomplete wrt. standard models
as a consequence of Godels incompleteness results. However, from the form of the
rule schemes, it is obvious that they “transform” all schema expressions into stan-
dard higher-order predicate expressions in the course of a proof; this means, that for
monomorphic expressions, the completeness result [Andrews, 1986, p. 197] applies here
wrt. Henkin models and a calculus presented there. To the best of our knowledge, there
is no (relative) completeness result for the polymorphic case and the precise form of
rules used in Isabelle/HOL.

5.3 Interfacing Schema Expressions into Proof-Contexts

These tactics have been implemented and combined to new tactics, for example to
a tactic that “strips off” all universal quantifiers (including schema quantifiers) and
implications. These operators are available both in a forward and backward version
and are declared as:

val stripS : thm — thm
(¥ erases topmost combination of operators as above *)

val stripS_tac : int — tactic

(¥ generalization of HOL’s strip_tac - removes leading
turnstiles, untversal schema, bounded and unbounded
quantifiers and implications ... *)

HOL-Z 2.0: A Proof Environment for Z-Specifications 59

These tactical operations serve as proof-technical adaptors between Z-style lemma for-
mats and a presentation in terms of the built-in logic Pure of Isabelle. If one thinks of a
schema-signature as an interface to the parameters of its context proof state, both the
forward and backward combinators work as kind of interface adaptors: in a backward
proof, stripS_tac opens the local bindings hidden internally in the schema quantifiers
by converting them to a parameter context, i.e. a vector of variables bound by Isabelle’s
meta-logic quantifier A (traditionally used to implement provisos in logical rules of the
form “this variable must not occur in the assumptions”, etc.). Conversely, a Z-style
lemma may be logically “massaged” via stripS before introducing it into a backward
proof; such a massage consists in erasing all schema binders and replacing bound vari-
ables in the formula by meta-variables that may be instantiated by the parameters of
the proof context by Isabelle’s resolution. We would like to emphasize again that all
these highly non-trivial transformations on the binding structure in a mixed form of
HOL-Z are based on rules derived from the definitions of the schema-logical quantifiers
and thus proven correct within Isabelle. The applications of these elementary rules are
controlled by tactical programs, that also apply elementary renaming tactics to present
the bound variables of the proof-state in terms of user-defined names stemming from
the specification.

5.4 Semantic Projections “on the fly”

From a pragmatic point of view, schemas represent nested containers of semantic knowl-
edge of the specification. Experience shows that just expanding schemas of realistic size
in the course of a proof is usually infeasible; proof states tend to become too large to
be accessible to both interactive and automatic reasoning. For this, in the course of a
proof, expansions of schemas should be avoided. Rather, if a particular consequence
of a schema is needed, a semantical projection lemma should be used; for our example
schema B (see Fig. 3), these are the following lemmas in mixed form:

FB=— A FB=2cT FB = A FB= Q

We provide special functions that generate semantic projections “on the fly” whenever
they are needed:

val get_decl : theory — string — int — thm
val get_conj : theory — string — int — thm

The first lemma in the list of semantic projection lemmas for B can be generated by
get_decl thy "B" 1, while the last is constructed by get_conj thy "B" 1 (“give the
first conjunct of the predicate part of schema B). Via the stripS-combinator, semantic
projection lemmas can be converted into Isabelle’s meta-logical format “on the fly” and
therefore be used in a backward proof (see the example in the next section).

5.5 An Example for Structured Proofs in HOL-Z

In order to demonstrate the proof techniques introduced in the previous sections, we
use a standard textbook proof [Spivey, 1992, p. 138] for the first proof obligation of the
refinement of AddBirthday by AddBirthdayl. Spivey argues that this theorem can be
immediately reduced to the following simplified form:

zgoal thy

”Y BirthdayBooke Y BirthdayBookl ¢V n? € NAMFEeVd? € DATFEe
(n? € knownA known= {n. 3i€#1..hwm. n=names i}
= (Vi € #1..hwm. n? # names 1))”;

60 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

and the application of
by (stripS_tac 1);

transforms the goal into the following proof state:

1. Abirthdayknown dates hwm names n? d? i.
[BirthdayBook(birthday, known); BirthdayBookl (dates, hwm, names);
n? € NAME; d? e DATE;
n? & knownA known= {n. Ji€#1..hwm. n=names i};
i € (#1 .. hwm)] = n? # names i

Note that the quite substantial reconstruction of the underlying binding structure still
leads to a proof state that is similar in style and presentation to [Woodock and Davies,
1996].

Besides the “schema calculus”, Z offers a large library of set operators specifying rela-
tions, functions as relations, sequences and bags; this library (the Mathematical Toolkit)
substantially differs in style from the Isabelle/HOL library, albeit based on the same
foundations. For HOL-Z 2.0, we substantially improved this library and added many
derived rules that allow for higher degree of automatic reasoning by Isabelle’s standard
proof procedures. For example, the goal above is simply “blown away” by:

auto();

which finishes the proof automatically.

Unfortunately, a more careful analysis of the initial proof obligation Add; (Sec. 3.1) and
the “simplified” formulation above represents a gap in Spivey’s proof. The implicitly
assumed lemmai:

FBirthdayBookA (Vi€#1..hwm. n? #names 1) = pre AddBirthdayl

states that a valid concrete state BirthdayBookl and the syntactic precondition (i.e.
the conjoints in the predicate part of a schema that contain only occurrences of
variables without stroke or with a “?”-suffix) implies the semantic precondition (i.e.
pre S meaning “there is a successor state”). In other words, any reachable state
{ names’ == a, hwm’ == b, dates’ == c) fulfills the state invariant BirthdayBook’,
ie. Vi,je#l..hwm’. i#] = names’(i)# names’(j). This proof constitutes in fact 80
percent of the overall proof task and is omitted here (see our example documentation
in the HOL-Z 2.0 distribution).

Instead, we focus on a sample proof that shows how the bits and pieces can be brought
together: We start the proof with the generated proof obligation Add;; its formula is
bound to a constant that is unfolded during the initialization of the proof:

{ goalw thy [Add-1def] ”Add-1";}

V BirthdayBooke (¥ BirthdayBookl (¥ n7Te NAME. Vd?€e DATE.
pre AddBirthday AAbs = pre AddBirthdayl)))

The next steps represent the opening of the bindings and some structural normalization:

by (stripS_tac 1);
{by (Step-tac 1);

HOL-Z 2.0: A Proof Environment for Z-Specifications 61

Vbirthday known dates hwm names n? d?.
[BirthdayBook(birthday, known); BirthdayBookl (dates, hwm, names);
n? € NAME; d? e DATE;
pre (AddBirthday(birthday, birthday’, d?, known, known, n?));
Abs (birthday, dates , hwm, known, names) |
= pre AddBirthdayl

We apply lemmal and eliminate its premise BirthdayBook from the proof context:

by (rtac (stripS lemmal) 1);
<— br conjl 1;
by (convert2hol_tac [] 1);

Vbirthday known dates hwm names n? d?.
[BirthdayBook(birthday, known); BirthdayBookl (dates, hwm, names);
n? € NAME; d? e DATE;
pre (AddBirthday(birthday, birthday’, d?, known, known, n?));
Abs (birthday, dates , hwm, known, names) |
=V i€ #1 .. hwm. n? #names i

Now we weaken the assumptions by applying lemma2 (this simple lemma can be found
in the HOL-Z 2.0 distribution and is not explained here), and by applying a semantic
projector into schema Abs yielding its first conjunct:
bd (stripS lemma2) 1;
bd (stripS (get_conj thy “Abs” 1)) 1;

Nbirthday known dates hwm names n? d?.
[BirthdayBook(birthday, known); BirthdayBookl (dates, hwm, names);
n? € NAME; d? e DATE; n? €known,;
known= known= {n. 3i€#1..hwm. n=names i} |
=V i€ #1 .. hwm. n? #names i

We are now in the position described before in Spivey’s simplified proof, such that
Isabelle’s standard proof procedure can take over and complete the proof:

< {auto();}

‘ True

This closes our example proof. For the sake of the presentation, we deliberately chose
the procedural proof-language of Isabelle and not the more recent, declarative one called
Isar. We consider an integration into Isar as an add-on that complicates matters here.
In any case, an integration into Isar would be a useful extension of the actual HOL-Z
environment.

6 Conclusion and Further Work

We have presented HOL-Z, a tool-chain for writing Z specifications, type-checking
them, and proving properties about them. In this new setting, we can write our Z
specifications in the type setting system KTEX, we can automatically generate proof

62 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

obligations, import both of them into a theorem prover environment, and use the exist-
ing proof mechanisms to gain a higher degree of automation. With the proof support for
the schema calculus, realistic analysis of specifications, in particular refinement proofs,
becomes feasible.

We applied HOL-Z to several large specifications, e.g. an architecture of CVS (the Con-
current Versions System) [Brucker et al., 2002] and the CORBA Security Service [Basin
et al., 2002], with a focus on security analysis of CVS and CORBA. The large CORBA
example (approx. 90 pages (!) that are converted and loaded in less than 5 minutes on a
standard PC using PolyML) shows the feasibility of our approach for real world exam-
ples. The case studies also involved significant proofs of the refinement of an abstract
architectural description to the implementation.

A consequence of our implementation of the converter is that there is no direct inter-
action between ZETA and HOL-Z. A closer integration of HOL-Z into ZETA would be
desirable but has not been realized so far.

We will investigate if the introduction and elimination tactics can be integrated much
deeper into Isabelle’s fast_tac procedure; this would pave the way for a tableaux-
based approach of reasoning over the “schema calculus” — which would be, to our
knowledge, a new technique for automated deduction on Z specifications.

References

[Andrews, 1986] Andrews, P. B. (1986). An Introduction to Mathematical Logic and
Type Theory: To Truth Through Proof. Academic Press.

[Basin et al., 2002] Basin, D., Rittinger, F., and Vigano, L. (2002). A formal analysis
of the CORBA security service. In Bert, D., Bowen, J. P., Henson, M. C., and
Robinson, K., editors, ZB 2002: Formal Specification and Development in Z and
B, LNCS 2272, pages 330-349. Springer.

[Bowen and Gordon, 1995] Bowen, J. P. and Gordon, M. J. C. (1995). A shallow em-
bedding of Z in HOL. Information and Software Technology, 37(5-6):269-276.

[Brucker et al., 2002] Brucker, A. D., Rittinger, F., and Wolff, B. (2002). A CVS-
Server security architecture — concepts and formal analysis. Technical Report
182, Albert-Ludwigs-Universitat Freiburg.

[Brucker and Wolff, 2002] Brucker, A. D. and Wolff, B. (2002). A proposal for a for-
mal OCL semantics in Isabelle/HOL. In Munoz, C., Tahar, S., and Carrefo,
V., editors, Theorem Proving in Higher Order Logics, LNCS 2410, pages 99-114.
Springer.

[Church, 1940] Church, A. (1940). A formulation of the simple theory of types. Journal
of Symbolic Logic, 5:56—68.

[FDR, 2003] FDR (2003). Failures-divergence refinement — FDR2 user manual. http:
//www.fsel.com/fdr2_manual.html.

[Gordon and Melham, 1993] Gordon, M. J. C. and Melham, T. F. (1993). Introduc-
tion to HOL. Cambridge University Press.

[Henson and Reeves, 1998] Henson, M. C. and Reeves, S. (1998). A logic for the
schema calculus. In Bowen, J. P., Fett, A., and Hinchey, M. G., editors, ZUM’98:
The Z Formal Specification Notation, LNCS 1493, pages 172-191. Springer.

HOL-Z 2.0: A Proof Environment for Z-Specifications 63

[ISOZ, 2002] ISOZ (2002). Z formal specification notation — syntax, type system and
semantics. ISO/IEC 13568:2002, International Standard.

[KIV, 2003] KIV (2003). http://illwww.ira.uka.de/ kiv/.

[Kolyang et al., 1996] Kolyang, Santen, T., and Wolff, B. (1996). A structure preserv-
ing encoding of Z in Isabelle/HOL. In von Wright, J., Grundy, J., and Harrison,
J., editors, Theorem Proving in Higher Order Logics, LNCS 1125, pages 283—298.
Springer Verlag.

[Naraschewski and Wenzel, 1998] Naraschewski, W. and Wenzel, M. (1998). Object-
oriented verification based on record subtyping in Higher-Order Logic. In Grundy,
J. and Newey, M., editors, Theorem Proving in Higher Order Logics, LNCS 1479,
pages 349-366. Springer.

[Paulson, 1994] Paulson, L. C. (1994). Isabelle: a generic theorem prover. LNCS 828.
Springer, New York.

[Paulson, 2000] Paulson, L. C. (2000). Mechanizing UNITY in Isabelle. ACM Transac-
tion on Computational Logic, 1(1):3-32.

[Reetz, 1995] Reetz, R. (1995). Deep Embedding VHDL. In Schubert, E., Windley,
P., and Alves-Foss, J., editors, International Workshop on Higher Order Logic
Theorem Proving and its Applications, LNCS 971, pages 277-292. Springer.

[Santen, 1998] Santen, T. (1998). On the semantic relation of Z and HOL. In Bowen,
J., Fett, A., and Hinchey, M., editors, ZUM ’98, LNCS 1493, pages 96-115.

[Spivey, 1992] Spivey, J. M. (1992). The Z Notation: A Reference Manual. Prentice Hall
International Series in Computer Science.

[Tej and Wolff, 1997] Tej, H. and Wolff, B. (1997). A corrected failure-divergence
model for CSP in Isabelle/HOL. In Fitzgerald, J., Jones, C., and Lucas, P.,
editors, FME 97, LNCS 1313, pages 318-337. Springer.

[Woodock and Davies, 1996] Woodock, J. and Davies, J. (1996). Using Z. Prentice
Hall.

[Zeta, 2003] Zeta (2003). http://uebb.cs.tu-berlin.de/zeta/.

[ZEVES, 2003] ZEVES (2003). http://wuw.ora.on.ca/z-eves/welcome.html.

64 Achim D. Brucker and Frank Rittinger and Burkhart Wolff

| (Wil DE 1USCLLCU DY ULLIC CuluvulL)

UML/OCL— Semantics, Calculi, and
Applications in Refinement and Test

Achim D. Brucker', Burkhart Wolff?

! Information Security, ETH Ziirich, ETH-Zentrum, CH-8092 Ziirich, Switzer-
land, e-mail: brucker@inf.ethz.ch

2 Institut fiir Informatik, Universitit Freiburg, George Kohler Allee 52, D-79110
Freiburg, Germany, e-mail: wolff@informatik.uni-freiburg.de

The date of receipt and acceptance will be inserted by the editor

Abstract We present a formal semantics of the Object Constraint
Language (OCL) as a conservative shallow embedding in Isabelle/HOL
striving for compliance with the OCL 2.0 standard. On this basis,
we formally derive several equational and tableaux calculi for OCL,
which form the basis for automatic proof support, including quan-
tifiers ranging over infinite sets. We show applications of our proof
environment to data refinement based on an adapted standard refine-
ment notion, and by using tableaux calculi for automated test-case
generation.

Keywords: Isabelle, UML, OCL, shallow embedding, theorem prov-
ing, refinement, specification based testing

1 Introduction

The Unified Modeling Language (UML) [42] has been widely accepted
throughout the software industry for modeling object-oriented soft-
ware systems and is successfully applied to diverse domains [30]. UML
is supported by major CASE tools and integrated into an object-
oriented software development process model that stood the test of
time. The Object Constraint Language (OCL) [41,56,55] is a formal,
textual extension of the UML, in particular of UML class diagrams.
Being in the tradition of languages like Z [50] or VDM [27], OCL is
also a data-oriented specification formalism. OCL is based on a three-
valued logic with equality that is used to specify data invariants or
pre-conditions and post-conditions of methods. Thus, OCL allows for

66 Achim D. Brucker and Burkhart Wolff

specifying constraints on the state of an object-oriented program con-
sisting of object instances linked via references, i.e. its object graphs,
and the transition relation over the state.

To achieve a maximum of acceptance in industry, UML/OCL is
currently developed within an open standardization process by the
Object Management Group (OMG); this process also led to a proposal
for a mathematically rigorous semantics recently [56]. However, some
details like the treatment of the underlying data-universes are han-
dled semi-formally, and some aspects of the semantics (like recursion
and late-binding) are not treated at all. Attempting to be a “practi-
cal formalism” [55], OCL has a particularly executable flavor which is
useful when generating code for assertions or when animating spec-
ifications but adds some complexity to reasoning. Further, not all
aspects of the language specification are consistent with the design
rationale to favor executability.

The contribution of this paper is fivefold:

1. We present our work of a formal semantics [11] striving for compli-
ance with [56]. Our semantics is purely based definitional axioms
Isabelle/HOL [38]. In particular, we provide a shallow embedding
that is suited as a basis for an OCL-tool in Isabelle.

2. Based on this embedding, called HOL-OCL, we provide several novel
proof calculi consisting of derived rules constructed by machine-
checked proofs, in particular equational and tableaux calculi.

3. We develop new proof automation, both on the level of the data
structures implied by a class diagram (for which a parser is pro-
vided), and on the level of the derived rules. In particular, we
integrate the tableaux calculus into Isabelle’s proof procedures.

4. We present a recently developed refinement notion [9] similar to
data refinement [50,58], but adopted to OCL’s logic; moreover, we
show how this notion fits into our proof framework.

5. We present how our proof environment can be applied to refine-
ment proofs and automated test-case generation based on parti-
tioning analysis [16].

Additionally, we show that our semantics can be extended by general
fixpoint semantics based on complete partial orders [57] for recursion
and by temporal quantifiers, which would pave the way for OCL to
annotate behavioral UML specifications such as state-charts. In the
following, we describe our contributions in more detail.

In the OCL language specification [56], a semantic function is de-
fined based on a mixture of mathematically rigorous definitions and
prose such as “The OCL type Integer represents the mathematical
concept of integer”. As a starting point for our work, we present a

UML/OCL Semantics, Calculi, and Applications. . . 67

formal, machine-checked semantic model based on definitional ax-
ioms, also called conservative embedding, that strives for compliance
with [56]; we deviate from it only in case of underspecification or
logical problems or explicitly stated extensions. As a representation
technique for this semantic model, we chose a shallow embedding [6],
since we aim at efficient reasoning in OCL specifications and not at a
meta-theoretic analysis of OCL!. In a shallow embedding, the types of
OCL language constructs have to be represented by types of higher-
order logic (HOL), type correctness in the representation therefore
implies type correctness in OCL; no reasoning over the type correct-
ness of OCL expressions is therefore necessary (or possible). However,
a shallow representation of an object-oriented language represents a
particular challenge for the “art of embedding languages in theorem
provers” [39], where concepts such as undefinedness, mutual recur-
sion between object instances, dynamic types, and extensible class
hierarchies have to be managed. We meet this challenge by a partic-
ular encoding of subtyping in parametric polymorphism in HOL and
a modular organization of our semantic representation.

In the OCL language specification [56] requires for the type
Boolean a Kleene Logic, i.e. besides the constants true (t) and false (t)
there is an explicit value undefined (L) that is assigned to expressions
denoting illegal access to the underlying state or illegal arithmetic ex-
pressions. The logic underlying OCL is in fact a Strong Kleene Logic
(SKL), i.e. the logical connectives evaluate to a defined value when-
ever possible: for example, L. A f = f. However, no calculus has been
presented in the OCL literature that attempts to follow the language
specification so far. While deduction systems have been developed
only for small fragments such as the SKL core logic, we provide the
first calculi for a more comprehensive subset of the language and pro-
vide machine-checked soundness proofs (by deriving them from the
semantic definitions) together with an analysis of the completeness
based on rigorous proofs.

The implementation of specialized (semi-) decision procedures for
many-valued logics such as SKL has been investigated before, in par-
ticular based on analytic tableaux methods [28,21,23] or — due to
the algebraic richness of SKL— on term-rewriting. Instead of start-
ing an ad-hoc implementation from scratch, we decided to reuse the
generic, i.e. largely logic-independent prover engine of Isabelle which
is geared towards classical two-valued logics. In this paper, we present

' A deep embedding such as [43] (for a subset of Java) has typically the opposite
characteristics.

68 Achim D. Brucker and Burkhart Wolff

a calculus for OCL in form of a labeled deduction system [19] that can
be embedded inside this generic engine.

In a formal software development, a seamless transition from more
abstract to more concrete object-oriented models, i.e. a formal re-
finement notion is necessary. While for “established” formal methods
such as e.g. Z or CSP a wealth of refinement notions has been in-
vestigated and appropriate tool support is available, mechanically
verifiable refinement notions for object-oriented models have raised
merely academic interest so far (see [52,33,25,49,15] for general ap-
proaches, and [2] for a direct refinement to code). To our knowledge,
we are the first that develop a refinement notion for OCL. We adapted
Spivey’s data refinement for Z [50] to OCL while attempting to exploit
the three-valued logic instead of defining its effects away.

Since large parts of OCL are executable, OCL constraints have been
used for run-time checking of classes and components [17,8]. In this
paper, we apply the proof-procedures based on proven correct logi-
cal rules to implement known techniques [16] to generate systemati-
cally test-cases from a given OCL specification for its implementation.
Thus, we present a specification-based (also called black-box) test set-
ting for OCL. Again, we exploit the three-valence of OCL rather than
avoiding it and show how to generate test-cases for testing normal
behavior or faulty behavior.

Except a little detour consisting in a introduction into UML/OCL
and our proof environment Isabelle/HOL in the second section, this
paper follows the structure of our list of contributions: the third sec-
tion is devoted to the conservative embedding of the semantics of
UML/OCL, the forth section to the derivation of the proof calculi and
its integration into Isabelle, and the fifth and sixth sections to the
issues of refinement and test-case generation.

2 Preliminaries
2.1 A Guided Tour Through UML/OCL

The UML provides a variety of diagram types for describing dynamic
(e.g. state charts, activity diagrams, etc.) and static (class diagrams,
object diagrams, etc.) system properties. One of the more prominent
diagram types of the UML is the class diagram for modeling the un-
derlying data model of a system in an object oriented manner. The
class diagram in our running example (inspired by [15]) in Fig. 1 il-
lustrates a simple banking scenario describing the relations between
the classes Bank, Account and its specialization InterestAccount. To

UML/OCL Semantics, Calculi, and Applications. . . 69

Bank
Topen(a:Account): void - Account InterestAccount
+select(a:Account): void -balance: Real = 0 +interestRate: Real
+b§1ance(a:Account): void) +getBalance(): Real <—+setRate(rate:Rea1=1.0): void
+withdraw(a:Account,p:Real): void +withdraw(amount:Real): void| +payInterest(): void
+deposit(a:Account,p:Real): void +deposit(amount:Real): void +withdraw(amount:Real): void

Figure 1 Modeling a simple banking scenario with UML

be more precise, the relation between instances of the classes Account
and InterestAccount is called subtyping. A class does not only describe
a set of object instances, i.e. record-like data consisting of attributes
such as balance, but also functions (methods) defined over them.

It is possible to model relations between classes (association), pos-
sibly constrained by multiplicities. In Fig. 1, the multiplicities of the
association between Account and Bank requires that every object in-
stance of Account is associated with exactly one object instance of
Bank. This captures the requirement that every account belongs to a
unique bank. In the other direction, the association models that an
instance of class Bank is related to a (non-empty) set of instances of
class Account or its subtypes.

Understanding OCL as a data-oriented specification formalism, it
seems natural to refine class diagrams using OCL for specifying in-
variants, pre-conditions and post-conditions of methods, e.g. we can
give the specifications for the class Account as follows:

context Account::getBalance(): void
post: result = balance

context Account::withdraw(amount: Real): void
pre: amount >0
post: balance = balance@pre - amount

context Account::deposit (amount: Real): void
pre: amount > 0
post: balance = balance@pre + amount

where in post-conditions @pre allows one to access the previous state.

It is characteristic for the object-oriented paradigm that the func-
tional behavior of a class and all its methods are also accessible for all
subtypes; this is called inheritance. A class is allowed to redefine an
inherited method, as long as the method interface does not change;
this is called overwriting, as it is done in the example for the method
withdraw().

Moreover, we can refine the constraints of the overwritten method
withdraw in the class InterestAccount by specifying:

context InterestAccount::withdraw(amount: Real): void
pre: balance >= amount + 10

70 Achim D. Brucker and Burkhart Wolff

context InterestAccount::setRate(rate: Real): void
post: interestrate = rate

context InterestAccount::payInterest(): void
post: balance = balance@pre * (l+interestrate)

In UML, class members can contain attributes of the type of the defin-
ing class. Thus, UML can represent (mutually) recursive data types.
Moreover, OCL introduces also recursively specified methods [41];
however, at present, a dynamic semantics of a method call is missing
(see [10] for a short discussion of the resulting problems).

Note, that many diagrammatic UML-features can be translated
to OCL-expression without loosing any information, e.g. associations
can be represented by introducing implicit set-valued attributes into
the objects with an suitable data invariant describing the multi-
plicity. These transformations are already described in the UML-
standard [42]. For our work we assume, that these transformation
were already applied to the UML/OCL-model, e.g. we have not to
provide a special handling for associations in our proof environment.

2.2 The Syntax of OCL.

In this paper we will use a simplified concrete syntax for OCL which is
given by in EBNF notation (see Tab. 1). In particular, we omit many
syntactic variants resulting from naming expressions.

Note that this simplified concrete syntax used to denote our ex-
amples contains some redundancies: the variant expr->simpleName
is semantically equivalent with dereferencing expr.simpleName, it is
a tribute to the OCL convention to distinguish the application of op-
erations on collections such as X->union(Y). In principle, this also
holds for the prefix and infix operators. However, the semantics of this
applications may be call-by-name or call-by-need; this is handled for
each operator individually.

2.3 Formal and Technical Background of HOL in Isabelle

2.8.1 The Meta-Language HOL Classical higher-order logic (HOL) [13,
3] is based on a typed version of the A-calculus. In this paper, we
use types 7 which are defined as 7 1= a = £ | x(7,...,7), where
the set of type variables « is ranging over «, 3, ..., where the set of
type classes & is ranging over e.g. term and order, and where the
set of type constructors x contains - — _ bool, integer, set, etc.

UML/OCL Semantics, Calculi, and Applications. .. 71

invSpec ::= context pathName inv : expr
opSpec ::= context operation pre : erpr post : expr
operation ::= [pathName ::] NAME ([varDecl {, varDecl}]) [: type]
varDecl ::= NAME [: type] [= expr]
type ::= pathName | collKind (type)
expr = literal | —expr | not expr | expr infixrOp expr
| pathName [Qpre] | expr. NAME [Qpre] | expr— >NAME
| expr([{expr,}expr]) | expr(varDecl|expr)
| expr— >bindOp(varDecl[;varDecl]|expr)
| if expr then expr else erpr endif
| let warDecl {, varDecl} in expr
infixOp =% | /| div|mod |+ | — | <|> | <=|>=|=]| <>
| and | or | xor | implies
bindOp ::= iterate | forall | exists
literal ::= Integer | Real | String | true | false | OclUndefined
| collKind{{collLitPart,}collLitPart}
collKind ::= Set | Bag | Sequence | Collection | OrderedSet
collLitPart ::= expr | expr..expr
pathName ::= [pathName::]NAME

Table 1 Formal Grammar of OCL (fragment)

Annotations with the default type class term can be omitted, i.e.
instead of « :: term we may just write «. Further, instead of - —
(71, T2) we write 71 — 79. The terms of HOL are A-terms defined as
Au=C |V | AV.A| AA, where C is the set of constants like True,
False, etc. and where V is the set of variables like x,y,z. Abstractions
and applications are written A\z.e and e €' or e(e’) respectively. A
subset of A-terms may be typed, i.e. terms may be associated to types
by an inductive type inference system similar to the programming
language Haskell or (to a lesser extent) SML. We do not give a formal
definition of the type inference system here and refer the interested
reader to [37], where also a type inference algorithm is described.
Throughout this paper, we will only show type-checked A-terms and
use an intuitive understanding of types.

The logical terms of HOL are based on the logical connectives —,
A, V and — which are constants of type bool — bool or bool —
bool — bool (also written as [bool, bool] — bool). Quantifiers are
represented by higher-order abstract syntax; this means that V and
3 are usual constants of type (a« — bool) — bool and that terms of

72 Achim D. Brucker and Burkhart Wolff

the form V(Az.P x) were written Vz.P (3 analogously). The Hilbert
operator ex.P returns an arbitrary x that makes P x true; in itself,
the Hilbert operator turns HOL into a classical logic. Further, there is
the logical equality = of type [, @] — bool. HOL may be interpreted
in standard or non-standard models assigning types to carrier sets,
logical operators in functions over them, etc.; since a notion of model
for HOL is not necessary in this paper, we only refer to [20] here.

The logic of HOL is based on a surprisingly small set of axioms or
elementary inference rules; besides implication introduction, modus
ponens and (P = True) V (P = False), only the usual laws for ax-
iomatizing equality (reflexivity, symmetry, transitivity, extensionality
and substitutivity) are needed. Finally, the axiom of infinity allows
for specifying a type constructor ind to have an infinite carrier set
and builds the basis of natural numbers and data types.

This logical core of HOL can be extended by solely using defi-
nitional axioms — so called conservative extensions; c.f. [20] — to
a rich specification language comprising a typed set theory (by ab-
stracting characteristic functions), least and greatest fixpoints, well-
founded orderings and well-founded recursion, products and sums,
natural numbers, integers, and even a theory on real numbers and
non-standard analysis.

Pragmatically, HOL can be viewed as a typed functional program-
ming language like Haskell extended by an extensional equality and
logical quantifiers. The libraries offer a “semantic toolkit” consisting
of mathematical standard structures enabling to give formal seman-
tics to programming and specification languages.

2.3.2 The Logical Framework Isabelle Isabelle [38] is a logical frame-
work providing a logical core language based on an intuitionistic
fragment of higher-order logic. As such, it implements the same term-
language and type system as previously described for HOL. The built-
in logical core language comprises a congruence =, a meta-implication
—> and a meta-quantifier /\ x.Px. The meta-implication is used to
represent logical rules: a Horn-clause A1 — ... = A, = A,+1,
written [A1;...; An] = Any1, is viewed as a rule of the form “from
assumptions A; to A,, infer conclusion A,1”:

[Ad]
A

At =

A ... A,

UML/OCL Semantics, Calculi, and Applications. . . 73

To the right, we see the natural deduction rule “if As can be inferred
from assumption A, infer A” which is represented as the “second-
order” Horn-clause (A; = Ay) = A.

In general, the meta-quantifier is used to represent eigenvariables
and turns out to be flexible mechanism to represent skolemizations for
quantifiers; dually, Isabelle’s term language comprises meta-variables
(denoted 7r, %y, 7z,...) that represent “terms to be substituted” dur-
ing proof. For example, the universal quantifier for HOL is captured
by the two rules?:

Va.P(z) /\xP(:zc)
P(7) Va.P(x)

The deduction engine of Isabelle is based on higher-order resolution;
this means that the meta-variables are substituted during the infer-
ences as needed (and usually automatically). Isabelle is integrated
into the programming language SML and can be extended by user-
programmed tactics in a logically safe way.

The “raison d’étre” of Isabelle is to encode other logical languages,
both with respect to their their syntax as well as their deductive sys-
tem. The syntax of a language can be described using higher-order
syntax and powerful pretty-printing mechanisms. The deductive sys-
tem may be specified by logical rules in the built-in logical core lan-
guage, let it be particular axioms or derived rules. Many logics have
been encoded this way; HOL is only one of many possible choices.

3 A Formal Semantics of UML/OCL in Isabelle/HOL

As part of the OCL standard, a semi-formal semantics is given via
a semantic interpretation function. As usual, the semantic interpre-
tation function I maps syntactic expressions e of the language and
contexts v to values in some semantic domain Z. In general, contexts
can be environments (traditionally mapping variable symbols to val-
ues) or stores (usually mapping references to values) or combinations
thereof. As we will see, our semantic construction is in large parts
independent from the precise form of the context.

In the OCL standard, the semantic function is built over ex-
pressions accessing two underlying states. In post-conditions, path-
expressions can access the current state and the previous state. Ac-
cesses on both states may be arbitrarily mixed, e.g. self.xQpre.y

2 The presentation of the first rule is in fact slightly simplified: in the rule, all
free variables are treated as meta-variables; however, applying a rule in Isabelle
usually leads to immediate substitutions of them except 7.

74 Achim D. Brucker and Burkhart Wolff

denotes an object that was constructed by dereferencing in the previ-
ous state and selecting attribute x in it, while the next dereferencing
step via y is done in the current state. Thus, method specifications
represent state transition relations, i.e. the context will be a pair of
system states.

The concepts of semantic function I and semantic domain & are
realized in a shallow embedding as follows: consider a semantic func-
tion defined for the case of a binary operator (as in [56, Def. 5.40(iv)]):

Ile+ ey =1I[e] y& I[e] ~

where + is a syntactic symbol of the logical language to be de-
fined (the object-language, e.g. OCL) and @ is an operation of
the logical language in which the semantic function is described
(the meta-language, e.g. HOL). Introducing a particular combinator
lifto f XY v = f(X 7)Y ~) allows for the following alternative
representation of the scheme above:

Ie + €] = lifty(@) I [e])(I[€])

The core idea of a shallow embedding is to implement [in this equa-
tion by the identity, which has a number of consequences:

1. Definitions consequently have the form: e + ¢’ = lift, ® e € or
just: + = lift, & (exploiting extensionality).

2. Variables of the object language are represented by variables of
the meta language denoting functions from context to values. En-
vironments in the traditional sense are lifted to the meta level.

3. The type of e + €’ is identified with the type 7 of the semantic
domain. Using a type-indexed family of domains Z7, the meta
language implements a type structure of the object language.

In this paper, instead of the “textbook-style” description of se-
mantics using I, we will use the “combinator-style” semantics shown
equivalent above. Besides brevity and conciseness, this style enables
one to formalize certain aspects of the semantic definition once and
for all by defining suitably combinators for them. Here, this aspect is
concerned with the parameter passing of the context; in the following
sections, these aspects are the handling of strictness, and undefined
values. Moreover, we develop generic theorems for these combinators,
which greatly facilitates the automatic derivation of many properties
resulting from the definitions. Further, it is straight-forward to gen-
erate textbook-style semantics from combinator-style semantics via
unfolding the combinators and inserting I automatically.

We now turn to the previously mentioned type-indexed domains
and its resulting typing discipline, which should be an approximation

UML/OCL Semantics, Calculi, and Applications. . . 75

of the type discipline of OCL. On the one hand, in order to repre-
sent the typing of expressionsin a shallow-style, for each type 7 of
OCL a Z7 is needed. On the other hand, there must be a universe
% of domains in order to model the underlying store as a function
of type ref — %/ . Conceptually, the universe can be understood as
the sum 2™ + --- + 2™ and attribute accessor functions and their
combinations (hence: path expressions) are projections from a state
over the universe to type-indexed domains. This is complicated by
the fact that 7; may be a subtype of 7; which should be reflected by
the set inclusion of the corresponding domains: 2™ C 27i. Further,
adding a class to a class hierarchy leads to a new type 7,41; thus,
extending a universe naively to ™ + .- + ™1 results in a differ-
ent type. This is unsatisfactorily both for theoretical and practical
reasons: theoretically, the relation between these universes should be
explicit (although constructions like “the set of all universes” are too
large in a set-theoretic sense), and pragmatically, it should not be
necessary to rerun of all proof scripts whenever we extend a class
diagram of a system.

For the rest of the section, we proceed as follows: after intro-
ducing basic combinators we present the principles of the extensible
semantic universe % for a class-hierarchy; this universe construc-
tion leads to a semantic coding scheme that gives semantic to OCL
path expressions to attributes. Based on %/, concepts like the sys-
tem state and relations over the object were built together with state
access operations such as X.allInstances(). We describe the se-
mantics in the expression language for the built-in operators like
if ¢ then e else €' endif, for the logical operators like x and y or
library operators like X =>union (Y'). Finally, we describe the seman-
tics of the method specification together with method invocation.

3.1 Preliminaries: Lift Combinators

In this section, we will complete our treatment of context lifting com-
binators that are a prerequisite of our shallow representation. The
following type constructor VAL, (7) makes this process explicit

types VAL,(T)=0— T

The lift combinators that are representing the passing of context
implied by the semantic interpretation function are defined as follows:

lifty = a— VALy(«)
liftg f = Ast.f

76 Achim D. Brucker and Burkhart Wolff

lifty (o — B) — VALs(ar) — VALy(B)

lift, f = 2X st.f(X st)

lifty ([a,ﬁ] — fy) — [VALU(Oé), VALJ(ﬁ)] — VALJ(’)/)
lifta f=AX Y st.f(X st)(Y st)

The types of these combinators reflect their purpose: they “lift” op-
erations from HOL to semantic functions that operate on the context.

3.2 Preliminaries: Undefinedness and Strictness Combinators

In OCL the notion of explicit undefinedness is part of the language,
both for the logic and the basic values [56, p. 2-9]. This postulates
the strictness of all operations (the logical operators are explicit ex-
ceptions) and rules out a modeling of undefinedness through under-
specification. Thus, the language has a similar flavor to LCF or SPEC-
TRUM [7] and represents a challenge for automated reasoning.

To handle undefinedness systematically, we introduce a special
type class bot which requires that each type in this class pos-
sesses a particular constant 1. For all types in this class, concepts
such as definedness DEF(x) = (x # L) or strictness of a function
isStrict(f) = (f(L) = L) are introduced. We define a combinator

strict f x = if DEF (z) then f(z)else L

that produces a strict version out of an arbitrary functions f. Again,
we favor combinator-style to textbook-style semantics. The operator
@ (used in Sec. 3.1 and corresponding to I(+) in [56, A-11]) is defined
in HOL-OCL by

@ = strict(Ax. strict(\y.| [z] + [y]]))

where + is now the usual addition from the HOL-theory Integer. In
the semantics of OCL [56, page A-11] this definition is presented as:

)i i) = {il iy (i A Landip £ 1
L otherwise

By unfolding the combinator strict, the reader may easily convince
himself that these two definitions are equivalent, up to the issue of
type lifting (requiring |-| and [_]; cf. [57]) which has been conse-
quently ignored throughout [56].

We represent type lifting in our framework by a type constructor
that assigns to each type 7 a lifted type 7, . All types lifted by this type

UML/OCL Semantics, Calculi, and Applications. . . 77

constructor are automatically in the type class bot but not necessarily
vice versa. The function |[_] : @« — a, denotes the injection, the
function [_] : oy — « its inverse. The case distinction function

c fxz=1

upCase(f,c,z) = {f(k’) if v = |k|

will also be written:

casexof| k] = f(k) | L=c.

3.3 FExtensible Object Models and Path Fxpressions

The main goal of our encoding scheme of class hierarchies is to provide
typed object constructor and object accessor functions for a given set
of classes to be inserted into an existing hierarchy. The coding scheme
will be presented in two steps: in this section, we will describe raw
constructors and accessors, while in Sec. 3.3.4 a scheme for accessors
reflecting the OCL types is presented.

3.3.1 Managing Holes in Universes Our solution to the extendibility
problem of universes is based on the observation that potential ex-
tensions both of new classes and inheriting ones can be represented
by type-variables. Pictorially spoken, we add domains into universes
with “holes”, which can be filled by new classes. Consequently, theo-
rems established over a concrete class-diagram implicitly hold over all
extensions of it, which will result in instantiations of these variables.

Since objects can be viewed as records consisting of attributes, and
since the object alternatives can be viewed as variants, it is natural
to construct the “type of all objects”, i.e. the semantic universe %
corresponding to a certain class hierarchy x, by Cartesian products
and by type sums (based on the constructors Inl : @ — « + 3 and
Inr : 8 — a+ [from the meta-language HOL).

In our scheme, a class can be extended in two ways: either, an
alternative to the class is added at the same level, which corresponds
to the creation of an alternative subtype of the supertype (the (-
instance), or a class is added below, which corresponds to the creation
of an initial subtype (the a-instance). This process is illustrated in
Fig. 2; in the first line a UML class diagram only consisting out of
one class A together with a abstract representation (a jigsaw-piece)
characterizing the two extension possibilities is presented. The type
%" of the universe describing this class diagram is also given.

78 Achim D. Brucker and Burkhart Wolff

A
i Integer

¥

i Integer

1 A OclA:
[30cLAny %(&A‘BUclAny) = A X a; + /6 o

\ 4

%i(,’ﬂDﬂAﬁndAny) =Ax (C X CKJC:
+D x ¥
+ 61

+ ﬁOclAny

@
s: String

Figure 2 Extending Class Hierarchies and Universes with Holes

The insertion of a class corresponds to filling a hole v by a record
T is implemented by the particular type instance v — ((T'x a1)+ ().
Thus, if we extend the universe % ' by two new classes A and B which
are both subtypes of A, we can construct a new universe %2 which
is just a type instance of % '. In particular: an a-extension with C
B-extended by D. Thus, properties proven over % ! also hold for % 2.

The initial configuration of any class hierarchy is given by the
OCL standard; the library for this basic configuration is described in
Sec. 3.4.4. This configuration corresponds to the indexed universes
consisting of the real numbers, strings, and bool:

Real = real | Boolean = bool |
String = string | OclAny, = o

combined into the universe %,:
Y., = Real + Boolean + String + OclAny,,

Note that the a-extensions are all extended by | elements. Thus,
there is a uniform way to denote “closed” objects, i.e. objects whose
potential extension is not used. As a consequence, it is possible to de-
termine the dynamic type of an object (its runtime type in a concrete
system state) by testing for closing L’s. For example, the OclAny
type has exactly one object represented by Inr(Inr(Inr L)) in any
universe %,. Thus, for each class C' a test function isC' can be gen-
erated that determines the dynamic type of an object. Note that all
user-defined classes are subtypes of OclAny which is represented by
the fact that an extension of the class hierarchy leads to a universe
that is instance of %,,.

UML/OCL Semantics, Calculi, and Applications. . . 79

3.3.2 Outlining the Coding Scheme: Types and Constructors OCL
types were mapped to types in HOL by the conversion function 7;
with respect to the basic type constructors Real, Boolean, String in-
troduced in the previous section and the constructors Set, Sequence
and Bag to be introduced in the subsequent Sec. 3.4.4, this mapping
is one-to-one. User-defined class types, however, were mapped to the
abstract type ref representing object identifiers (i.e. references) in the
sense of OCL. Note that the resulting type discipline described so far
is more liberal than OCL, where types of user-defined classes only
match if the corresponding classes are in subclass relation. We will
refine this in the second layer.

Now, assume a user-defined class T with previously defined su-
perclass S with the attributes ¢ : 71,...,t, : 7. The types Thase =
71X+ XTpand T = S X Thase are introduced, whereas T' also con-
tains the inherited attributes. By a filling of the a-variable of S or the
(-variables of the chain of sons by the record T ,ee, the new universe
% **+1 is constructed from %Z.

On this basis, a constructor mkT : T — % **! is generated, which
embeds a record of type T into the actual version of the universe (e.g.
mkBoolean : Boolean — %, defined by mkBoolean = Inr o Inl). Ac-
cordingly, a test isT : Z*T1 — bool, checking the dynamic type, and
an accessor getT : 1 — T, representing the corresponding projec-
tion, are generated. And a definition for a constant T : set(Z**1) by
its characteristic set of T, i.e. {x :: %Y isT(z)} is generated. Note
that since isT'(x) — isS(x), the subtype relation can be expressed
predicatively on the level of characteristic sets: T' C S.

Data invariants I are represented by making the constructor par-
tial with respect to I, i.e. the constructor will be defined only for
input tuples T' that fulfill 1.

3.3.8 System States and System Transitions We turn now to the con-
struction of the standard context in OCL, namely state transition
pairs over the universe of semantic objects. All accessor functions
and their compositions forming OCL’s path expressions can be inter-
preted in this context (see next section). The state is defined as a
partial mapping from object identities ref to objects in a universe,
and “state transitions” as pairs over states:

types state(a) = ref — « option
st(a) = state(a) x state(a)

Standard contexts motivate a particular form of context lifted types:

Va (T) - VALstate(%a) x state(%a) (T)

80 Achim D. Brucker and Burkhart Wolff

Thus, all expressions with OCL type 7 will be represented by an HOL-
OCL expression of type VAL, (T); e.g. all logical HOL-OCL expressions
have the type vALy(Boolean).

3.3.4 Outlining the Coding Scheme: Accessors Now we define the ac-
cessor functions with the HOL types that we give each translated
OCL-expression. We introduce the type mapping 7, which is simi-
lar to 7 but replaces all ref-occurrences by %, (where = represent
the current state of the universe). An OCL type Set(A) will then be
approximated by set(%,). Let 71 X --- X 7,, be the type of an OCL
constructor or function, than the representation in HOL will have the
type Vo (71) X - - - X Voo (7). We will close the gap between the approxi-
mative HOL types for references of user-defined classes by introducing
type predicates T ->includes () (see Sec. 3.5 for details), where vio-
lations of these type predicates were treated as undefinedness; hence,
on the level of the logics we do not distinguish in our model if a
reference is simply undefined in the store or is referencing an object
of wrong type. Thus, the logical overhead for representing types as
predicates is reduced to undefinedness reasoning that is unavoidable
in OCL anyway.

In a simple example, an accessor obj.t : T in an object 0bj.C
must have the HOL type %, — VALy(T). This is ensured by the
following construction: first we get the reference to obj with getC'.
If the reference is not L (tested via upCase) we project the required
attribute (by its position in the record structure, e.g. via snd). If the
attribute is valid in the current state (which can be similarly tested
via optionCase as states are maps) we dereference (using image for
a single object) and lift it to get an object. Outermost we have an
additional abstraction to meet the required type.

If the class has a class invariant, a test for the invariant must be
added (violations are considered as undefinedness). If the accessor
yields an OCL type with references to other classes (e.g. in Set(A4)),
these references must be accessed and inserted into the surrounding
collection; this may involve smashing (see the discussion of collection
types in Sec. 3.4.4).

Following this extended code scheme, we can define conservatively
new accessors over some extended universe whenever we extend a
class hierarchy; note that our technique enables for mutual data re-
cursion that is introduced by extending class hierarchies while main-
taining as much static type-checking as possible.

3.3.5 Encoding the Running Fxample To encode our earlier presented
UML model (see Fig. 1), we declare the type for the class Account

UML/OCL Semantics, Calculi, and Applications. .. 81

(abbreviated by A). Due to space reasons, we skip InterestAccount
(abbreviated by IA) and Bank (abbreviated by B). An account is
a tuple describing the balance (of type Monetary) and the encoded
association end bank (of type set(ref)). For our first universe, with
the two “holes” a and (3, we define:

types AccountType = Monetary x set(ref)
Account = AccountType |

1 —_—
%QA,ﬁoclAHy) — %(AccountTypexaﬁ—i—ﬁocuny)

We need the raw constructor for an account object. Note that this
function “lives” in the universe %(i A GA o8 gochay) which contains all

classes from Fig. 1.

mkAccount : AccountType — %(i'A,BA,aB, ociany)
mkAccount = mkOclAnyo|_| o Inl olx.(x, L)

For defining the accessor, we strictly follow the description given in
the previous section, e.g. for the association end bank (of type Bank)
in the current state s':

ba/nk : %i&IA,ﬂA,O&B,,@’OClAny) — VAL(alAyﬂAyaB7ﬁﬂclAny) (Bank)
obj.bank = \(s,s'). upCase(|_] o (image(Ax. optionCase L
getBank(s' x))) o snd)(L)(getAccount(obj))

Where snd selects the second attribute (bank) of the class Account.
Analogously, we define the association end .bank@pre for accessing
the value in the previous state s:

.bank@pre : %(?O)zIA,ﬁA,aB,ﬂDCIAny) — VAL(aIA’ﬁA’aB,BUclAny) (Bank)
obj.bank@pre = (s, s'). upCase(|_| o (image(Az. optionCase |
getBank(s x))) o snd)(L)(getAccount(obj))

The two definitions differ only in the states used within getBank.

3.3.6 Implementation Details For HOL-OCL, we implemented a class
loader, i.e. a compiler, which loads a description of a class diagram
and generates a theory containing declarations and definitions for ac-
cessors, types and characteristic sets, including the infrastructure for
method invocations (see Sec. 3.5) and theorems about definedness
and membership in characteristic sets, etc. Our class-loader handles
the extension of an existing class hierarchy with new classes and also
expands associations and other UML constructs. At present, our class

82 Achim D. Brucker and Burkhart Wolff

diagrams are stored in a Standard ML based syntax. A parser for read-
ing files in a simple text-format that is also used by the USE tool [46]
and a deeper integration into standard CASE tools (e.g. ArgoUML [1])
will be provided in future.

3.4 Semantics for OCL Expressions

We proceed by defining OCL expression semantics roughly following
the concrete syntax of OCL as presented in Tab. 1.

3.4.1 System State Access Operations Based on state transitions, we
define the only form of universal quantification of OCL: the opera-
tor allInstances extracts all objects of a “type” (represented by
its characteristic set) from the current state. The standard specifies
allInstances as being undefined for Integer or Real or String in
order to avoid infinite sets in an ad-hoc manner; a compliant defini-
tion following the intention of [56] looks as follows:

allInstances : set(%,) — Va(Set())
allInstances T = A(s, s').if(T = Integer V T = Real vV T' = String)
then | elseif (7" = Boolean)
then|Boolean | else|T N (ran s') |

Note that set(7) denotes the constructor of the HOL type set, whereas
Set(7') constructs a OCL set (to be defined in Sec. 3.4.4).

However, we propose a different version allInstances’() which
omits the ad-hoc constraints and returns the (infinite) characteris-
tic sets of types (see Sec. 3.3.2): allInstances’() is just the iden-
tity. Defining OCL operators like oclIsNew : %, — V,(Boolean) or
oclIsTypeOf is now routine; the former checks if an object is defined
in the current but not in the previous state, the latter redefines isT.

3.4.2 Fqualities Defining an equality for HOL-OCL in combinator style
is now easy. There are two possibilities: a logical equality called strong
equality (£) and a strict version of it called weak equality (=) that is
executable and therefore the default in [56]:

2 = lifty(\xy.|z = y])
= = lifty(strict(Az. strict(\y. |z = y])))

The OCL syntax uses = for the weak equality; we propose to extended
the OCL syntax by using == for the strong equality. Since the predicate

UML/OCL Semantics, Calculi, and Applications. . . 83

for definedness is part of the OCL logic (see Sec. 3.4.3) one of these
equalities may be alternatively defined as a shortcut in OCL itself.

Another issue to be raised here is the semantics of equality; are
two objects equal only if their object identifier is equal or are two ob-
jects equal if their values are equal? The OCL semantics is not specific
here since equality is defined as equality over values [56, Def. 5.2.2],
and since objects are values, but object identifiers are not distin-
guished from object values [56, (Def. 5.1.2.1)]. The definition of =
and = above results in shallow value equality (cf. [5]). However, since
many object-oriented programming languages are centered around
referential equality (which gave the motivation to opt for the latter
in [2]), HOL-OCL can be configured such that the above definition leads
to referential equality. The trick is done by adding an extra field in
each object which contains its own unique object identifier; this can
be assured by specific constructors that have access to the reference
management in the system state.

3.4.3 Logical Operators We turn now to a key section of the OCL se-
mantics: the SKL logics. According to the OCL standard (which follows
SPECTRUM here), the logic operators have to be defined as Kleene-
Logic, requiring that any logical operator reduces to a defined logical
value whenever possible.

In itself, the logic is completely independent from an underlying
concept of contexts which is also reflected by their types. An OCL
formula is a either true, false or undefined depending on its underlying
context. Logical expressions are just special cases of OCL expressions
and must produce Boolean values. Consequently, the general type of
logical formulae is:

types Boolean, = VAL, (Boolean)

The logical constants true and false can be defined as constant
functions that yield the lifted value for meta-logical undefinedness,
truth or falsehood, i.e. the HOL values of the HOL type bool. Moreover,
the predicate def checks for any OCL expression X whether its value
(evaluated in the context c) is defined or not.

def : VAL,(B,1) — Boolean, def(X)= Ac.|DEF(X ¢)]

1y : Boolean, o = lift (L)
true : Boolean, true = lift (| True|)
false : Boolean, false = lift,(|False])

We indicate the undefined constant with ly whereas OclUndefined
of type OclVoid is used in the OCL standard. Further note that

84 Achim D. Brucker and Burkhart Wolff

def | not | and |false 1l true or |fa1se le true
false false false false|false ly true
false ly de de le 1o true

false Jly true true | true true true

false false
false|true false|true de

1y |false do | do true
Table 2 Truth tables for the OCL operations def, not, and, and or.

true | true true

actual versions of OCL [56] define operations for checking, if a
value z is defined or not, e.g. OclIsUndefined(x) evaluates to
true if z is undefined and false otherwise. Thus, we provide
two operations, OclIsUndefined(x) and OclIsDefined(z) with
OclIsUndefined(z) = not(0OclIsDefined(x)).

Defining the strict not : Boolean, — Boolean, and the non-strict
and : [Booleana, Booleana] — Boolean,, is now straight-forward:

not = lift, (strict(|-] o = o [_]))
Sand T = Ac.if DEF(S c¢)thenif DEF(T c¢)then|[S ¢| A [T c]] else
if (S ¢ = |False]) then|False| else L else
if (T ¢ = |False]) then|False| else L

From these definitions, the elementary reduction rules (R-rules) of
the truth table were derived (see Tab. 2 for details). These tables
correspond exactly to the definitions in the OCL standard. The logical
connectives or, xor, and implies can be defined as usual: SorT =
not((not .S) and (not 7)), Sand T = (S or T') and not(S and T'), and
S implies T = (not.S) or 7. In OCL, quantifiers are considered as
operations on collections and will therefore be discussed in the sequel.

3.4.4 Expressions: Standard Operations of the Library Beside the
logic, the OCL standard defines a library of data types consisting
of the basic data types (Integer, Real and String), special types
(OclAny, OclVoid). The construction of them is straight-forward; the
paradigm of these definitions has already been presented in Sec.3.2;
an automatic technique for deriving standard theorems such as com-
mutativity and associativity has been described in [12].

The OCL library considers Set, Sequence and Bag as subclasses
of the abstract class Collection. We focus on Set in the sequel; the
other cases are analogous. OCL [56, Sec. A.2.5.2] allows for collections
to include 1y, i.e. the constructor of sets and the membership tests
are non-strict. This has several undesired consequences for executabil-

UML/OCL Semantics, Calculi, and Applications. .. 85

ity>. Instead of a standard compliant version of sets Set (A), we will
therefore present smashed sets SSet(A) throughout this paper which
can be directly implemented in e.g. Java; the derivation of our com-
pliant version Set (A) is straight-forward by leaving out the smashing
combinators smash, Repgset, and Absgge: in the definitions.

Smashing data-structures is a key-concept in denotational seman-
tics [34,57]. For example, pairs are smashed if (a, 1) is identified with
1 asine.g. Java or SML, or, with respect to sets, {a, L.} = L. Formally
in OCL, smashing is introduced by a smashing operator inducing a
quotient construction over lifted sets. The smashing operator yields
for any data-construction | whenever it “contains” L:

constdefs smash 2 [[B :: bot, « :: bot] — bool, a] — «

smash contain X = if contain L X then | else X

For the case of sets, the containment relation is instantiated with &
on lifted sets set(a) . We build the type SSet(X) as the set of all
smashed data, i.e. on all data where smash is the identity:

typedef SSet(a) = {X :: set(a :: bot),.smashe X = X}

where 2 € X = pEF X AN x € [X]. Note that « :: bot is the class of
all types that possess a |-element. A type definition is a conserva-
tive extension scheme (cf. Sec. 2.3), where a bijection between the
smashed sets over a and the type SSet(«) is stated. In more detail,
the two constants Absgget of type set(a); — SSet(«) and Repsget of
type SSet(a) — set(a), and the bijection axioms are postulated:

smash€y=y — RepSSet(AbSSSet y) =Y
Absgset (Repsset) =

Apart from smashing sets, the definitions of set operations such
as includes, union or intersection follow the usual pattern, e.g.:

->includes = lifty(strict(AX. strict(Ax.|z : [Repsset X1])))
->union = lifty(strict(AX. strict(\Y.

Absgset (| [Repsset X |1 U [Repsset Y11))))

3 So far, le can be interpreted as exception and non-termination of recursion;
the language except the def and Z-construct is still executable in this interpreta-
tion. The standard’s definition of non-strict sets rules out all set operators in this
setting as executable operations.

86 Achim D. Brucker and Burkhart Wolff

For the quantifiers forall and exists we follow the definitions for
SKL already presented in [29]. They have the type (vAL,(SSet(5)) —
Boolean,) — Boolean, and are represented as follows:

S->forall(P) = Ast.if DEF(S st)then
if Vo : [Repgset (S st)].P(Ast.x st = true)
then true
elseif 3z : [Repgset(S st)].P(Ast.x st = false)
then false

else 1y

else 1y
S->exists(P) = not(S->forall (Az.not(P(z)))

This definition deviates from the standard for three reasons: first, the
standard’s definition based on ->iterate, a foldr-like algorithm on
collection types is not necessarily conservative?. Second, we intended
to provide a definition for infinite sets, such that e.g. types can be
handled appropriately. Third, since X ->includes(z) implies def(x),
OCL-calculi are greatly simplified. Throughout this paper, we will
therefore assume smashed semantics for all collection types.

3.5 Operation Specifications vs. Method Invocation

In the previous sections, we described the semantics of built-in oper-
ators or library methods. We turn now to user-defined methods and
their invocation. The semantics of an operation specification:

[context C ::op(p1:Th,...,pn:Tyn): Thy1 pre: Ppost: Q] =R

is defined as relation on states (o,0’); making syntactic side-
conditions explicit the following definition conforms to [56]:

R self p;...p, result = {(0,0') |

4 Tt has to be shown that its instance is associative, commutative and idempo-
tent in order to be well-defined.

UML/OCL Semantics, Calculi, and Applications. . . 87

where (0,0") E A = I[A](0,0') = |True| and self is the usual
argument referring to the contextual instance [56] and result the
return value of a method.

Since the type discipline in HOL-OCL is too coarse so far, we in-
troduce type predicates T' -=>includes (p;) in order to close the gap
between the HOL-OCL and the OCL type discipline. We convert a type
T; to T/ = lifty(T;) with the conversion function 7. For its definition,
three cases have to be distinguished:

1. Basic Types such as OCL type String are mapped to the constant
String = |Absget({x :: String | True})| (Integer, Real, etc. are
treated analogously)

2. User-defined Class Types were represented by their characteristic
sets (cf. Sec. 3.3.2)

3. Collection Type Cases such as Set(X) are converted to Set(X)
where the constant function Set(Y) is defined as the set of all
subsets of Y, i.e. [Absget{y | [y] C [Y|}] (Sequence, Bag, etc.
are treated analogously).

Note that, by construction, 7] has HOL-type VALy(Set(T;)) (cf.
Sec. 3.3.4). Further note, that since x :: String € {x :: String | True}
holds trivially, for all types constructed over OCL base types and OCL
collection types, the type predicates T] ->includes (x;) are trivially
true and can be reduced automatically to def(x;) based on the results
of the HOL type check. Thus, in these common cases, type predicates
do not represent an obstacle for deduction; only when subtyping be-
tween class types is involved, reasoning over them may be necessary.
In HOL-OCL, we use a slightly different formulation of R which is
both technically more elegant and conceptually more powerful:

R’ self p;...p, result =
Ty ->includes (self) and 7, ->includes (result)
and 7 ->includes (p;) and - - - and 7}, ->includes (p,)

and P self p;...p,and Q) self p;...p, result

where and is the strict logical conjunction. Instead of a relation on
states (i.e. a set of state pairs isomorphic to a function of state-pairs
to bool), R’ is defined as a function mapping state pairs to Boolean.
A state transition may thus be mapped to | True|, |False| or L which
we interpret as possible, itmpossible and unknown transitions, who are
not restricted by the method specification. Distinguishing impossible
from undefined transitions paves the way for more powerful refine-
ment notions for OCL specifications. This distinction turns R’ simply

88 Achim D. Brucker and Burkhart Wolff

into a richer structure; erasing it transforms R’ into R again as the
obvious theorem reveals:

Rself p;...p,result = {(0,0")|(0,0") = R self pi...p, result}

We now turn to the counterpart of method specification: invoca-
tion. OCL is intended to be call-by-value language in general. Beyond
that, the semantics of OCL is deliberately underspecified in several re-
gards: first, OCL provides only a method specification construct which
means a relation between input and output states, arguments and re-
sults — some concrete function has to be chosen arbitrarily that fits
to this relation. Second, in the presence of overloading, it is: “the
programming language may choose an arbitrary overloaded method
that matches”, which is combined with the pragmatic guideline to
follow Liskov’s principle [31]. We believe that the following definition
scheme follows the intention of the standard. For each method m, we
assume an invoke-operation defined as:

[X.m(p1,...,pn)] = if (def(X) and def(p;) and...and def(p,))
then invoke,, X p1 ... ppelsely

where

invokeym X p1...pn (8,8) =
eresult.(s,s’) = (choose,, X) X pi...py, result
choosen(X) (s, s') = ovltab,,(eCS € dom(ovitab,,). X (s,s") € CS)

Here, HOL’s Hilbert operator (c.f. 2.3) is used to model both the
underspecification of the invocation as well as the non-determinism
of an implementation wrt. its method specification. The overloading
table ovltab,, is a finite map that associates to a particular type
(represented by its characteristic set) the method specification R'.

3.6 Possible Extensions

Our semantics has been constructed in a modular way. We will exploit
this modularity by discussing modifications or extensions.

3.6.1 Alternative Logical Connectives We consider the introduction of
strict versions of the logical connectors as useful — the introduction
of a strict conjunction and, for example, helps on the methodological
level as well as on the level of code generation.

UML/OCL Semantics, Calculi, and Applications. . . 89

With respect to the logical implication in SKL, several possibilities
have been investigated in the literature:

Aimplies B =not Aor B (1a)
Aimplies’ B = (undef A) or (not A) or B (1b)
A implies” B = (not A) or (A and B) (1c)

For these variants of implies we derived the truth tables, their be-
havior differs only for undefined operands. The difference is that
the variant (1b) evaluates to true if the assumption is undefined,
while (1c) evaluates to ly. The former has been proposed for proof-
theoretic reasons [21], while the latter was suggested as a consequence
of methodological criticism [26]. While we see no clear advantage for
the latter [9], the former will be discussed in more detail in Sec. 4.

3.6.2 Method Invocation and General Recursion. In our view, the un-
derspecification of overload resolution and recursion is a major ob-
stacle in the further development of semantic libraries (such as the
mathematical toolkit of Z) for OCL, which hamper its use both in pro-
gramming as well as theorem proving environments. The problem is
best presented with an example, assume a method fac of class p:

context p.fac(i:Integer):Integer
pre: true
post: return = if i >= 0 then 1 else i*self.fac(i-1)

The standard makes no clear statement how to interpret recursive
function: is it an illegal statement (the recursion loops for negative
arguments), or should it yield ly which was the intention in the
OCL Manifesto [14], or should it yield 1y only for negative argu-
ments. In the presence of overloading, the situation is worse since the
operational interpretation of a method invocation is underspecified;
approximations to the semantics can only by done under the quite
broad side-constraint “Liskov’s principle will always be respected in
any overloading” (albeit a formalization of this is possible in our
framework, we believe it is highly unpractical).

With respect to overloading, we argue for choosing the method
associated to the least characteristic set (see the extended version
of [11]); this mirrors the semantics in object oriented languages such
as Java and is more deterministic than the standard. Note that such
a particular choice for the invocation semantics does not impose any
constraint on the object oriented implementation language.

With respect to recursion semantics, we argue in favor of standard
denotational fixpoint semantics as in [57]. Technically, this means that

90 Achim D. Brucker and Burkhart Wolff

the type class bot is extended to the class of complete partial orders
(¢po), for which operationally approximately fixpoints exist. There
are several HOL theories available that provide this type class exten-
sion and a suitable body of theorems, (see [35,51]) whose integration
is straight-forward.

As an alternative to denotational recursion semantics, one could
use well-founded recursion [57]; this would require additional syntax
providing a measure function and a mechanism that assures that
inner calls in a recursive definition were either applied to arguments
with “smaller” measures or were Jlg.

3.6.3 Alternative Quantifiers. The operator allInstances is a pro-
jection into a finite state and thus always restricted to a finite set or
sequence. For infinite types such as integers or strings, the operator is
defined to be undefined. From the point of view of a higher-order logic
proof environment for OCL, it is both highly desirable and feasible to
omit these restrictions, which makes algebraic laws like

Integer.alllnstances ‘(). forall(x,y | x + y ==y + x)

representable in HOL-OCL. Moreover, it is also desirable and straight-
forward to introduce a second-order quantifier allMethods:
allMethods (m(p:Integer) :Boolean |

Integer.alllInstances ().forall(x, y, k |

m(k) and forall(y | m(y) implies m(y + 1))
implies (y >= k implies m(y))))

which represents a standard induction scheme over integers larger k.

Such a allMethods-construct would not only enable us to formu-
late induction schemes for the infinite types inside OCL, in connection
with general recursion it also allows for a class to be constrained to
an inductive data type such as trees — a necessity already pointed
out in the OCL Manifesto [14]. Technically, this can be done by a
function computing the “depth” of the data type and requiring in
the class invariant that this function is always defined. Intuitively,
this excludes the possibility of “cycles” in an object graph.

A highly interesting extension line of OCL are temporal quanti-
fiers. Instead of considering just one state transition from one object
graph to the next, it is also possible to admit infinite sequences or
traces of states. In our definition of HOL-OCL, this would only require
slight changes in the semantics of path-expressions; most semantic
definitions in this paper refer to vAL,(T) and not to V,(T) and are
therefore independent from the structure of the underlying contexts.
A context may therefore be changed from a state transition st(%,,) to
a Kripke-structure nat — state(%,). Thus, temporal quantifiers such

UML/OCL Semantics, Calculi, and Applications. . . 91

as P (in all subsequent states, P holds) or QP (there is a subse-
quent state where P holds) could be introduced into OCL as suggested
by [18]. This extension of OCL makes it possible to annotate behav-
ioral specifications in UML such as state-charts or sequence diagrams,
or to define their semantics with temporal OCL.

4 A Proof Calculus for OCL

We will now develop several deduction systems for OCL. In particular,
we define two equational calculi (UEC and LEC) usable for interactive
proofs or proofs by hand, and a tableaux calculus (LTC) geared to-
wards automatic reasoning in OCL. We will only present rules derived
within Isabelle from the semantic definitions of the previous section.
Therefore we can guarantee the logical soundness, with respect to the
core logic, of all these rules. Finally, these three calculi were used to
instantiate Isabelle’s (two-valued) generic proof-procedures yielding
decision procedures for certain OCL fragments.

4.1 Validity and Judgments

Since all OCL terms of OCL type T are represented as I[X] : a —
T or just X : vaL,(T), the HOL equality = induces via I[X] =
I[Y] (or just X = Y) a congruence on OCL terms. We call this
universal congruence on OCL since it means equality for two terms
for all contexts due to the extensionality of the HOL equality; a local
congruence is induced by I[X] st = I[Y] st and makes reasoning
over specific contexts possible, in particular over state transitions
st = (o,0") or classes thereof. With respect to formulae, i.e. OCL
terms of type vAL,(Boolean), three cases are possible: I[X] st may
yield |True|, |False] or L. This leads to the following definitions of
local validity judgments of an OCL formula:

stFy X = (X st = | True])

stFs X = (X st = |False])
stE, X = (Xst=|L1])

We will use its semantically equivalent definitions:

stEy X = (X st = true st)
stFf X = ((not X) st = true st)
stEy X = ((not(def(X))) st = true st)

92 Achim D. Brucker and Burkhart Wolff

which have the advantage that F; subsumes F¢, and F¢ subsumes F,,.
We say for stF¢ X that a context st is (locally) valid for formula
X (or locally invalid or locally undefined, respectively). Note that
sty X is equivalent to the satisfaction notion (opre,opost) F X of
pre-conditions and post-conditions in the OCL standard [56, Def.5-
32]. In the context of tableaux calculi for multi-valued logics (see
Sec. 4.5.1), distinguishing these three validity judgments paves the
way for labeled deduction systems [24] for OCL enabling to represent
a three-valued logic in a two-valued format of rules.

First, let us point out that universal and local congruences are
related via three “bridge theorems”:

/\st.(sti:tX) = (stFtY) /\st.(stl:fX) = (stF¢Y)
X=Y

(22)

/\st.(sti:tX) = (st Y) /\st.(sthu X)=(stF,Y)
X=Y

(2b)

/\st.(stIZfX) = (stF¢Y) /\st.(sti:uX) = (stF,Y)
X=Y

(2¢)

Note that since a validity statement like st Fy X has the type bool in
HOL, all equalities in the premises of these rules can be seen as logical
equivalences st Fy X < st F; Y; as such, they can be decomposed into
implications from left to right and vice versa.

4.2 A Universal Equational Calculus for OCL

The basis of an universal equational calculus (UEC) for OCL are Horn-
clauses over universal congruences; due to the rich algebraic structure
of SKL, UEC allows for logical reasoning in formulae and local validity
judgments. A proof of a formula in UEC is simply a derivation of a
formula to true.

Based on the elementary reduction rules (R-rules) for the logical
operators (see Sec. 3.4.3), it is not difficult to derive the laws of the
surprisingly rich algebraic structure of Kleene-Logics: both and and
or enjoy associativity, commutativity and idempotency. The logical
operators also satisfy both distributivity and de Morgan laws. It is
essentially this richness and algebraic simplicity that we will exploit
in the applications (see Sec. 5).

UML/OCL Semantics, Calculi, and Applications. .. 93

false and X = false not(not X) = X
trueand X = X (XorY)and Z = (X and Z) or (Y and Z)
true or X = true Zand (XorY)=(Zand X)or (ZandY)
falseor X = X (XandY)or Z = (X or Z) and (Y or Z)
XopX=X Zor(XandY)= (ZorX)and(ZorY)
XopY=Yop X (X and Y) = not(not(X) or not(Y'))
XopYopZ)y=(XopY)opZ not(XandY)=mnot(X)ornot(Y)
where op € {and, or} not(X orY) = not(X) and not(Y)

(a) Lattice

X implies false = not X X implies true = true
false implies X = true true implies X = X
def(X) = true = (X implies X) = true
X implies (Y and Z) = (X implies Y) and (X implies Z)
X implies (Y or Z) = (X implies Y) or (X implies Z)

(X andY) implies Z = X implies (Y implies Z)

(X orY) implies Z = (X implies Z) and (Y implies Z)
X implies (Y implies Z) =Y implies (X implies Z)

(b) Logic

Pl =P lo Ptrue= P true P false= P’ false cp(P) cp(P’)

PX=P X

(¢) Trichotomy

def(X) = true def(Y) = true

, where op € {def,not, and, or, xor, implies}.

def(X op Y) = true

(d) Definedness(Fragment)

cp(P) cp(P')

cp(AX.X) cp(AX.C) cp(AX.(P X) op (P X))

(e) Context Passing

Table 3 The Propositional Universal Equational Calculus (UEC)

94 Achim D. Brucker and Burkhart Wolff

The logical implication is also representable in this equational
reasoning style, which is particularly intuitive and therefore greatly
facilitates “by-hand-proofs”, see Tab. 3(b); these rules form the
core of the logical calculus. However, the crucial assumption rule
(def(X) = true = (XimpliesX) = true) that allows one to deduce
that a fact follows from a list of assumptions leads to a complication:

Ajand---and Ay and B and A1 and ---and A, implies B
=A; and ---and A, and B implies B
=Ajand---and A, implies (B implies B)
=A;and ---and A,, implies true [def(B) = true]

—true

This means that a side-calculus for the definedness predicate is
needed, moreover, this means that each application of the assumption
rule leads to a subproof over the definedness of the assumption.

It is worth to consider an alternative definition of implies (1b)
on page 25, which was investigated in [21]. The counterparts to rules
presented in Tab. 3(b) holds for this version of implication, except
two details:

1. We have (X implies’ X) = true such that the subproof for
def(B) = true is not necessary. The handling of this implication
in proofs is therefore more intuitive.

2. However, there is no free lunch: the problem is only shifted to the
“reductio ad absurdum”-rule (X implies false) = not X, whose
counterpart requires now the proviso for definedness.

In classical logic, whenever we know that the conclusion does not
hold, only a contradiction in the assumptions can make the implica-
tion valid. Results on the proof complexity [21] are therefore related
to the concrete tableaux calculi and not to the definition of implies.
We turn now to rules that infer the definedness of an OCL-term;
the general scheme for these inferences is presented in Tab. 3(d). Note,
that even not and if _ then _else _endif follow this principle:

def(X) = true = def(not X) = true
def(X) =true def(Y)=true def(Z)=true

def(if X then Y else Z endif) = true
The rule Tab. 3(d) is completed by the canonical rule set:

def(def (X)) = true

UML/OCL Semantics, Calculi, and Applications. . . 95

def(X and Y) = (def (X

) and def(Y)) or (def(X) and not X)
or (def(

Y) and not Y)
def(XorY) = (def (X) and def(Y))
or (def(X) and X) or (def(Y) andY)
def(X xorY) = def(X) and def(Y")
def(X impliesY) = (def(X) and def(Y"))
r (def(X) and not X) or (def(Y) and Y)

def(if X then Y else Z endif) =
def(X) and ((X and def(Y)) or (not X and def(Z)))

4.2.1 A Further Proof Principle of LEC: Trichotomy. An interesting
technique for proving P X = P’ X is based on a case split over
1y, true or false. The enabling rule Tab. 3(c) is called trichotomy;
it requires a particular constraint over the treatment of the implicit
context st inside P and P’. In principle, it would suffice to require
that st is changed “on its way through P and P’” in the same way.
However, since all OCL constructs including the logical connectives
are lifted over the contexts (see Sec. 3.1), we apply a slightly stronger
restriction, namely that st is unchanged, i.e. P or P’ are context
passing with respect to st. It turns out that this concept is necessary
for other calculi, too. Formally, we can define context passing cp(P):

cp(P) =3EVX st.P X st = E(X st)

Because all operators constructed by the lifting combinators lift, lift,
and lift, are context passing, all OCL operators enjoy the invariance
properties in Tab. 3(e). Thus, the property of being context passing
can easily inferred in a backward proof whose size is equal to the size
of the term. These inferences use inherently higher-order concepts.

4.2.2 Completeness of UEC

Definition 1. The propositional fragment of OCL s the induc-
tively defined set of OCL-formulae (i.e. the set of OCL-terms of type
Boolean,) that is built over variables, true, false, ly, def, undef,
not, and, or, xor, implies, and if _ then _else _endif.

Definition 2. A proof in UEC is a derivation of a formula of the
form A = C with C € {true,false, ly}.

96 Achim D. Brucker and Burkhart Wolff

Definition 3 (Completeness with respect to a rule set S). If
A = C 1s a valid HOL formula, then there is a derivation applying
reflexivity, transitivity, and substitutivity of = together with all R-
rules and rule set S.

Theorem 1. UEC is complete with respect to UEC for propositional
HOL-OCL.

Proof. Let A = C be a valid proof statement with C &
{true, false, ly}. By induction over the number of variables occur-
ring in A, we show that there is a finite reduction to C' = C.

Basis: If no variables occur, i.e. |vars(A)| = 0, then we only apply
R-rules. Since this rule set yields a canonical rewrite system, the
thesis holds.

Step: Assume that the thesis holds for all terms B with | vars(B)| <
| vars(A)|. Then we show that the thesis holds for A. Let = €
vars(A). Instantiating the trichotomy-rule (Tab. 3(c)) by [X ~ z]
and applying it yields the following five proof obligations:

1. Alx ~ 1y =C

2. Alx ~ true] =C

3. Alx ~~ false] =C

4. cp(Az. Az ~ 2])

5. cp(Az.C)

For the first three cases, the hypothesis applies. The last case
follows from the center rule of Tab. 3(e). The fourth obligation can
be discharged by at most n applications of the rules of Tab. 3(e),
where n is the size of A.
O

Note that this proof only uses elementary rules and trichotomy (plus
cp related rules). Its constructive flavor gives rise to a particular
decision procedure we implemented in HOL-OCL .

4.3 A Local Equational Calculus for OCL (LEC)

Analogously to universal equality, a local validity calculus can be
developed. Tab. 4(a) shows the general scheme of LEC congruence
rules. For several operators, stronger logical rules can be derived, that
accumulate semantic knowledge for sub-derivations from the context
in which they are applied in; these rules are presented in Tab. 4(b).
This information can be used by the third group of rules in Tab. 4(c),
which allows for generalizing sub-terms in larger contexts (which must
be context-passing) according to assumptions.

UML/OCL Semantics, Calculi, and Applications. .. 97

Ast=A"st Bst= B st

(A op B)st = (A" op B) st

(a) Congruence Rules (for op € {not, or, xor})

[st Fe A]

sty def (A) Bst=B'st

(A op B)st= (A op B') st

[stFe A] [st F¢ A]

Bst = B’ st Cst=C"st

(if A then B else C endif) st = (if A then B’ else C’ endif) st

(b) Context Rules (for op € {and, implies})

stEy A P true st = P’ true st cp(P) cp(P)

PAst=P A st

stEe A P falsest = P’ falsest cp(P) cp(P")

P Ast=P Ast

stE, A P ly st = P' 1o st cp(P) cp(P")

P Ast=P Ast

(c) Local Validity Propagation

Table 4 The Local Equational Calculus LEC

The calculus LEC is particularly suited for backward-proofs; when
applied bottom-up, formulae were decomposed deterministically via
the congruence and the context rules. During this process, semantic
context knowledge is accumulated in the assumption list, which can
be exploited via the propagation rules who replace sub-terms by true,
false, or ly which leads in in combination with GEC in practice to
drastic simplifications of the current proof-goal.

A proof in LEC is a derivation that leads to A st = true st, which
is notationally equivalent to stk A.

98 Achim D. Brucker and Burkhart Wolff

4.4 Reasoning over OCL-FEqualities

When extending the propositional fragment of OCL by strong and
weak equality (where strong equality implies weak equality), the usual
rules of an equational theory with reflexivity, symmetry and transi-
tivity except substitutivity holds. Our variant of substitutivity needs
again that the term-context P is context passing:

st Frarelb st FtPa cp(P)
st B¢ P b

where rel € {=,=}. The side-condition cp(P) captures the fact that
our congruences hold on HOL-OCL-terms, but not on arbitrary HOL
terms. Note that from st F;a = b follows the definedness of a and b.

4.5 A Local Tableaux Calculus for OCL (LTC)

The tableaux methodology is one of the most popular approaches
to design and implement proof-procedures. While originally geared
towards first-order theorem proving, in particular for non-clausal for-
mulae accommodating equality, renewed research activity is being
devoted to investigating tableaux systems for intuitionistic, modal,
temporal and many-valued logics, as well as for new families of log-
ics, such as non-monotonic and substructural logics. Many of these
recent approaches are based on a special labeling technique on the
level of judgments, called labeled deduction [19,54]. Of course, label-
ing can also be embedded into a higher-order, classical meta-logic.
Being a special case of a many-valued logic, tableaux calculi for SKL
based on labeled deduction have been extensively studied [29,24,23].
In the following, we present a version for SKL roughly following [29]
that can be processed by Isabelle’s generic proof procedures, which
are geared towards natural deduction. We show the completeness of
this core calculus, and outline optimized versions that are more effi-
cient.

Tableau proofs may be viewed as trees where the nodes are lists
of formulae. Tableau rules extend the leaves of a tree by a new sub-
tree, i.e. by adding one or more leaves below, where the latter case
is called “branching” and is used for case splits. Classical tableau
rules are purely analytic: each rule captures the full logical content
of the expanded connective. Backtracking from a rule application is
never necessary. The goal of the process is to construct trees in a de-
terministic manner, where the leaves can eventually all be detected
as “closed”, i.e. a logical contradiction is detected. This last step,

UML/OCL Semantics, Calculi, and Applications. .. 99

—(stFEr A) = (stFe A) V (stEy A) —(stFfA) = (stFc A) V (st Ey A)
—(stEyA) = (stEr A) V (stFe A) = st Frdef(A)

(a) Judgment Negation

[stFe A] [stFe Al [—(st Es A)]
st ¢ def (A) R R st A stE A stErdef(A)

R stErdef(A) stErdef(A) stFEyA

(b) Definedness Introduction and Elimination

stFe(not A) stFEt A stFEy(notA) stE, A stFi(not A) stEfA

stFt A stEf(not A) stF, A stEu(not A) stEf A stFE¢(not A)

(¢) Negation

[st E¢ A, st F B [st Es A] [stEs B

stFy Aand B R stF¢(A and B) R R

R R

[-(stF¢B)| [stFedef(B))] [stFidef(A)] [stFidef(B)]

stEt A stEB stEe A stFedef(A) stEr A stk B

stF¢(A and B) st F¢(A and B) stFy(A and B)

[stFy A, stEyB] [stFyA,stE:B] [stF:A,stEyB]

stFy(A and B) R R R

R

(d) Conjunction Introduction and Elimination

st A stEeA stEA st A stiErA st A stEdef(A) stFA stEfA

R R R R stEdef(A) stEidef(A)

(e) Contradictions

Table 5 The Core of LTC

100 Achim D. Brucker and Burkhart Wolff

however, may be combined with the non-deterministic search for a
substitution making this contradiction possible.

4.5.1 A Natural Deduction Tableaux Calculus for OCL. The particu-
lar format of a rule as a Horn-clause is the reason for the well-known
symmetry of rule-sets (similar to sequent calculi): for each logical
connective, two corresponding rules — called introduction and elimz-
nation rules — have to be introduced; the former act on conclusions
of a goal, the latter on one of the assumptions.

As already mentioned, the Tableaux Method requires decomposi-
tion rules that capture the full logical content of the expanded con-
nective. It is instructive to consider the example of the disjunction
introduction rule (-B = A) = AV B respectively the disjunction
elimination rule [AV B; A = R; B = R] = R for HOL, which
are usually presented in the textbooks as:

5] 4] (8]
A AVB R R (4)
AV B R

Using the introduction rule, a proof state (which has again the
format of a Horn-clause) X = Y V Z can be transformed into
[X;-Z] = Y, while a goal [XVY; A] = Z can be transformed via
the elimination rule into the goals [X; A] = Z and [Y; 4] = Z.
Note that the former proof state transformation does not lose the
information that the goal is satisfiable if Z holds (this leads to a con-
tradiction in the assumption list). The latter transformation performs
a case distinction.

Keeping these remarks in mind, the presentation of LEC in
Tab. 5(a) is pretty much straight-forward: first, we present a group
of rules that translates negative judgments, then follow the groups of
tableaux rules for definedness, not and and, and we conclude with a
group of rules for closing clauses.

Negative judgments can be replaced by HOL-disjunctions as a
consequence of the following fundamental property for judgments,
namely that judgment is either valid or invalid or undefined:

(stEr A) V (stEg A) V (stFy A)

which justifies the identities presented in Tab. 5(a).

The next group of rules is concerned with definedness. Four
(Tab. 5(b)) of the six cases are straight-forward, while the latter two
constitute contradictions and are presented as closure rules later.

UML/OCL Semantics, Calculi, and Applications. . . 101

Now, we consider the case for not in Tab. 5(c). These rules are
a consequence of not(not(X)) = X and eliminate these situations
at the root of a formula. These elimination rules have a particularly
simple form and can therefore be used directly as so-called destruction
rules that are used to weaken assumptions in a Horn-clause directly.
Note that the last two rules of the group are notational equivalences
resulting from our notational conventions for F;; they are thus not
explicitly inserted into the rule set.

Finally, we describe the rules that close such Horn-clauses. Built-in
in HOL, there are already three rules that detect satisfiable Horn-
clauses, namely the (HOL) not-elimination, classical contradiction
not-introduction rules and assumption (from left to right):

[—P] [P]
-P P False False P
R P -P P

Besides these HOL-logical rules for closing a goal, there are also
OCL-logical rules motivated by the satisfiability of a Horn-clause
(Tab. 5(e)).

This gives rise to a very flexible format of a proof state in LTC; it
is a Horn-clause of one of the two forms:

Hi...Hi,~(Hi1)...~(Hy) Hy...H;,~(Hip1)...=(Hp)
Hm—H _‘(Hm—i—l)

where H; has the form st =¢, A;. Standard proof states in UEC
can be converted automatically in proof states of this form via one
of the bridge-theorems (2a)-(2c¢). The elimination and introduction
rules shown above reduce or split proof steps of this form in logically
equivalent steps to new ones. Eventually, the process results in a
sequence of Horn-clauses with labeled literals.

4.5.2 An Example Derivation. In Tab. 6 a little example is presented,
showing LTS at work. For a proof state, we write Ay,..., A, F Apy1
where the left-hand side of the F-symbol denotes the assumption list
and the right-hand side the goal to show. In this example, the proof
starts with no assumptions and the commutativity of and, denoted as
F Aand B = Band A. The proof proceeds in a deterministic, bottom-
up manner (backward-proof), which finally leads to proof states that
can be closed via the closing rules. At the beginning, the bridge-
theorem (2b) is applied in order to start the proof-process. We omit
the meta-quantifiers which are irrelevant in this sample proof. Note,
that Isabelle proves such properties completely automatic.

102 Achim D. Brucker and Burkhart Wolff

st Fy B,

st Fy B,
stEL A stE A
st A F stk B
stEy Band A stEy Band A bt
FostE A b stk B subtree
stFy Aand B stFy Band A stE, Aand B stF, Band A

F stk Band A bstEtAand B + stEy,Band A |+ stE,Aand B

F stFEi Aand B < sty Band A - stF, Aand B < stF, Band A

F Aand B = Band A

where subtree is:

- stk B,
stEy A,
stEy B
sty B
—stE, A, —stEyA, —stEA, - stFfnot B, ~—stFfnotB, - stF¢notB,
stEy A, stEy A, stE A, stEy A, stE, A, stEL A,
stE, B stEy B stFE, B stFE, B stFy B stFE, B
FstE, B - stEy B - stE, B FstE, B FstE, B FstE, B
stE, A and B, stF, A and B,
- stk A - stFfnot B
FstFEy B FstF, B
stEy, A and B stEy, A and B stEy, A and B

b stEfdef(B) anddef(A) F stFfdef(A)andnot A F st Ffdef(B) andnot B

stFy,Aand B | stF, Band A

Table 6 A Example OCL Derivation

4.5.83 Completeness

Theorem 2. LTC is complete for propositional HOL-OCL.

Proof. We transform an LTC proof goal into a conjunction of goals
(i.e. Horn-clauses) in an equivalent normal form: first, we eliminate
all negative judgments by applying the identities (5(a)) and dis-
junction introduction and elimination (4). Throughout these goals,
we expand or, implies, xor by their definitions. With respect to

if _ then _ else _ endif, we apply a particular instance of the
trichotomy-rule (Tab. 3(c)):

stEy P ly stEyPY stk P Z cp(P)
stEFy P(if X then Y else Z endif)

together with its variant as an elimination rule in order to eliminate
all occurrences of if _ then _ else _ endif. Both normal forms can be
computed in finitely many steps, are logically equivalent, and unique.

UML/OCL Semantics, Calculi, and Applications. . . 103

In the resulting sequence Horn-clauses with positive judgments,
the core rules of Sec. 4.5.1 can now subsequently applied until after
finitely many steps all judgments are reduced to variable or con-
stant formulae. We formally prove that the resulting Horn-clause se-
quence is again equivalent by a number of lemmas that prove the
“«"-direction of the equivalence of each logical rules of Sec. 4.5.1.
Thus the original goal is only satisfiable if the resulting sequence of
Horn-clauses is closeable, i.e. one of the close-rules can be applied.
O

4.5.4 Handling Quantifiers. In the following, we discuss an exten-
sion of the propositional OCL fragment to a language with bounded
quantifiers introduced for collections. For brevity, we will concen-
trate on the quantifiers on Set. Recall that in HOL-OCL we defined
Integer.alllnstances’ () to be the infinite set of integers (instead
of 1y as prescribed by the standard); thus, quantifications over such
sets reach the full power of arithmetics.

First, we present some universal equalities of the universal quan-
tifiers, which also satisfy the usual context passing rules (Tab. 7(c)).
With respect to strictness rules, the universal quantifier (and its dual
the existential quantifier) follows the usual scheme:

ly->forall (z|Pz) = 1y
ly->exists(z|Px) = 1y
X->forall(ly) = 1y

The distributivities of SKL can be extended to the quantifiers, see
Tab. 7(b). Note that if x->includes(S) is valid, we know that x
must be defined. This is a characteristic property of smashed sets
that yields the following property:

st Fy x =>includes (S) = st def(x)

Following the usual “scheme of six rules” as for the logical connec-
tives, we present the rules for the bounded universal quantifier. These
rules are simply variations of standard quantifier rules in HOL, but
subsume also definedness-reasoning. We start with the “usual” in-
troduction and elimination rules for valid judgments. Note that we
use meta-quantifier and meta-variables to represent Skolem terms
and terms for witnesses; respectively (constructed during the proof
at need via unification and resolution), see Tab. 7(a).

The following introduction and elimination rules capture the
essence for undefined quantifiers: if the set S is defined (implying
that each element in it is defined), then there must be an instance

104 Achim D. Brucker and Burkhart Wolff

[st = P(7)]

/\ x. st |=t.P(a:)
sty S->forall (z|P(x))

[st Et?7x =>includes (S)] [st F¢?c ->includes (59)]

st Fy S->forall(z|P(z)) R R

R

[st(0) det(S)]

stEy P(‘7x)

st Ey S->forall(z|P(x))

[st Eu S] [st E+7x =>includes (S), st Fy P(7x)]
st Ey S->forall(z|P(x)) R R
R

stF¢%c ->includes (S) st Ef P(%x)

st F¢ S->forall (z|P(z))
[st Fe x =>includes S, st Fy P(z)]

st S->forall (z|P(z)) /\m R

R

(a) Skolem

def(X) = true = X->forall(true) = true
def(X) = true = X->forall(false) = false
X->forall(z|P(z) and Q(z)) = X->forall(z|P(z))
and X->forall(z|Q(x))

(b) Distributivities

cp(P) /\x.cp(P'm)
cp(AX.(P X)->forall(\z.(P' = X)))

(c) Context Passing for Quantifiers

Table 7 Extensions of LTC: Quantifiers

UML/OCL Semantics, Calculi, and Applications. . . 105

of the quantifier body P that is undefined. On the other hand, from
an undefined quantifier we have a case split for undefined S or for
witnesses of undefined P(7r): The rules for the existential quantifiers
follow easily from the definition and rules above and are omitted here.

4.5.5 Completeness

Definition 4. The predicative fragment of OCL is the inductively
defined set of OCL-formulae that is built over variables (or applica-
tions of variables to bound variables), the propositional fragment, and
the logical quantifiers (of OCL-Sets). Thus, the predicative fragment
1s an extension of the propositional fragment of OCL.

The rules of Sec. 4.5.4 are incomplete for predicative OCL in the
presented form, since any universal premise can be instantiated only
once. However, for this class of theorems called obvious theorems, a
concept attributed to Martin Davis and described by Rudnicki [47].

A complete version for predicative OCL can be obtained by adding
contraction rules such as the standard HOL-rule:

[P, Vx.P
Vz.Px R

R

Unfortunately, this type of rules can be applied infinitively many
times. This reflects the fact that the propositional fragment (as an
extension of first-order logic) is semi-decidable. A proof of complete-
ness for a predicative LTC calculus with contraction rules may be
adopted from [28].

With respect to full OCL including arithmetics and collection
types, the question of completeness has to be answered negatively
since the underlying theories are well-known to be too strong.

4.6 Lifting Theorems from HOL to the HOL-OCL Level

Since all operations in the OCL-library are defined canonically by
a combination of smashing, strictification and lifting operators, i.e.
since the definitions have a specific format, it is possible to derive au-
tomatically many rules from generic theorems for them. This applies
to context passing rules (see Tab. 3(e)), strictness rules, definedness
propagation etc. For example, some generic theorems have the form:

lifty(strict(Ax. strict(f x)))de X = 1y
lifty(strict(Az. strict(f x))) Xy = 1y
def (lifty(strict(Ax. strict(Ay.| f z y])) X Y)) = def(X) and def(Y)

106 Achim D. Brucker and Burkhart Wolff

From there, automatic derivations yield reduction rules like x + 1y =
1y which are added to the rewriting rules of GEC and LEC, enabling
them to reason over terms.

Moreover, we developed techniques to lift algebraic properties such
as X UY =Y UX of library operators from the meta-level to OCL
automatically. This covers a wide range of “folklore theorems” needed
in a theorem proving environment. For details of this technique which
is also required on combinator-style semantics, we refer to [12].

4.7 An Implementation in Isabelle

In this section, we present some details of our implementation us-
ing Isabelle. Isabelle’s proof engine is centered around Horn-clauses:
a proof state contains a list of Horn-clauses called goals. The proof
engine proceeds by applying tactics which represent logical transfor-
mations.Some tactics like atac eliminate goals, because a conclusion
follows from an assumption. A proof is finished if no goals remain.

In principle, UEC and LEC are both ideal for the rewriting engine
of Isabelle encapsulated in the tactic simp_tac. In particular, the rules
of LEC and GEC can be directly processed by the Isabelle rewriter.
Datatype related reasoning is also amenable to this technique.

With respect to the OCL-equalities, the form of the substitutiv-
ity rule is unusual for the generic rewrite engine due to the cp(P)
constraint that has to be checked at each rewrite redex. We imple-
mented two proof procedures: a canonizer ocl _hyp_subst_tac and a
(slow) rewriter ocl_simp_tac. The canonizer eliminates in a goal

[Ai(x);...5stErx rel t;...; Ap(2)] = Apt1(x)
a variable x and replaces it with ¢
[A1(2);- .5 An(t)] = An4a(t)

where rel € {£, =}, or implicit HOL equalities as occurring in st F z,
stEfx or sty x (where t € {true,false, ly}). The canonizer allows
for the propagation of local knowledge throughout a whole proof state
and paves the way for the ground reductions in UEC and therefore
substantial reductions of its size. The OCL rewrite procedure can
process general judgments of the form stF;t rel t' and applies them
from left to right; an integration into the standard rewriter is highly
desirable and may be possible in future versions of Isabelle.

Finally, we provided a setup of Isabelle’s generic tableau prover
blast_tac [44] with LTC. We applied a number of improvements:

UML/OCL Semantics, Calculi, and Applications. . . 107

1. Own LTC-rules were provided for all other OCL connectives such
as xor, implies or if _ then _ else _ endif. Thus, some of the
blowup of the proof size produced by the simplistic unfolding strat-
egy (as used in proof 4.5.3) can be avoided.

2. ocl_hyp_subst_tac is performed interleaved with the tableau pro-
cess whenever possible, followed by a simplification using strict-
ness rules.

3. Instead of translating away negative judgments by applying the
identities (5(a)), we chose to keep some of them following an idea
of Héhnle [23].

4. We introduced the usual contraction rules for universal quantifier
elimination in order to enable Isabelle to use its heuristic search
procedures for non-obvious theorems.

Since both procedures are integrated into the standard tactic auto,
they are used in the Isabelle/HOL-OCL environment as default.

5 Applications

In the previous sections, we described a formal, machine-checked se-
mantics for OCL and derived sound and complete calculi , which are
partly suited for automated reasoning over OCL specifications. Now
we present our vision how to take practical advantage of these results.
In practice, OCL has been most widely used for the capture of
requirements in object-oriented software analysis and for run-time
testing of software components, e.g. [8]. Therefore, the most likely
application scenarios for automated reasoning for the moment are:

1. analysis and simplification of specifications, and
2. optimization of run-time testing code.

When capturing the requirements for a larger software system, the
problem arises how to detect potential inconsistencies, contradictions
or redundancies in larger numbers of invariants or method specifica-
tions. For example, a specification may contain undefined subexpres-
sions; many of them like subpath-expressions may be unavoidable,
but it may be useful to inform the user of them. Contradictions may
easily arise when post-conditions conflict with invariants; automated
proof attempts of their conjunctions may reveal this. Redundancies
may be detected by partitioning formulae (e.g. by splitting it along
the topmost conjoints) and finding parts that are implied by others.

Since OCL’s semantic has been geared towards executability, a
number of tools have been developed (mostly based on [17]) to gen-
erate code from invariants and method specifications in order to check

108 Achim D. Brucker and Burkhart Wolff

a system component for violations at runtime. While this approach
is not really an analytic method, it allows at least for an a posteriori
analysis of crashes in large systems. Since the generated check-code
is running at each entry or exit of a method, for example, there is a
practical need for an optimization, be it by elimination of redundan-
cies, be it by replacing general operators in particular contexts by
more efficient ones (e.g. standard and by strict and) or by program
transformation rules like let-unfold or let-introduction rules for com-
mon subexpressions, if-then simplifications and variants thereof.
In the previous sections, we also laid the groundwork for more
advanced, future application scenarios, involving either challenges in
computational complexity or interactive theorem proving. These are:

1. systematic test-case generation, and
2. transition from more abstract to more concrete models.

Systematic test-case generation is characterized by an algorithm that
enumerates all test-cases for a specification or a program according to
a preconceived test adequacy criterion [59]. Such a criterion could be
partition coverage, range-bound coverage or control path coverage: a
test is adequate meaning “a program is tested enough”, if a test-case
from each partition of the specification has been successfully passed
by a program, or if for each control path in a program, there is a test-
case. In itself, systematic test-case generation is similar to abstraction
techniques leading to finite sub-models used for model-checking. We
will present this scenario for partition analysis in the next section.
The transition from abstract to concrete system models, in par-
ticular concrete code, via a defined and well-understood relation is
known as a refinement in the literature. So far, the OCL standard is
very restrictive here: it offers only a notion of satisfaction [56, A.34]
of a method implementation to an OCL method specification. Satis-
faction in this sense requires an implementation (seen as a function
F') to be just a subrelation of R (in the sense of Sec. 3.5). Thus, a
program must diverge whenever the specification is false or undefined
— and may not behave arbitrarily in this case, as in conventional op-
eration refinement as in [50], where only the restriction of F' to the
domain of R must be included in R. We will discuss ways to integrate
more liberal refinement notions into HOL-OCL in Sec. 5.2. Three-valued
logics inherently offer a number of advantages for testing and refine-
ment. More precisely, instead of interpreting the system specification
as transition relation set(state(%.) X state(%,)), we use the richer
structure V,(Boolean) = state(%,) X state(%,) — Boolean (recall
that Boolean is three-valued; c.f. Sec. 3.3.3). As already mentioned,
this paves the way for characterizing a state transition as possible,

UML/OCL Semantics, Calculi, and Applications. . . 109

impossible or unknown. Instead of identifying the impossible and un-
known case in order to return to the well-traced road of two-valued
logics (as suggested by the OCL standard), we argue that this richer
structure has many advantages for the envisaged applications of OCL.

For example, in test harnesses, it is natural to implement recur-
sive predicates occurring in pre-conditions and post-conditions by
“bounded recursion up-to test depth m”. Operationally, this can be
understood as a counter of recursion calls that lead to ly when ex-
ceeded; denotationally, this means that f™ (L) is used to approximate
fix(f) where f is the body functional of the predicate, cf. [57]. In a
two-valued setting, a test must simply be aborted whenever the test
depth was exceeded, in a three valued setting the remaining infor-
mation can still be systematically exploited and leading to a valid
test. Thus, it is possible to scale the ratio between test depth and
efficiency in a three valued setting.

In refinement, for example, the distinction between impossible and
unknown system transitions helps to avoid confusions [26]. In partic-
ular, if a pre-condition is false, the standard implies that a system
should not be able to make a transition; in many cases, however, it is
desirable to leave it up to the implementation how the system behaves
in this case. Our approach gives more expressiveness: the operators
toFalse(X) and toUndef(X) can be defined inside OCL; while the
former maps false and ly to false, the latter maps them to lg:

toFalse(X) = if def(X) then X else false endif
toUndef(X) = if X then X else ly endif

Thus, the specification may explicitly state if there is freedom for the
implementor or not.

5.1 Automatic Test-Case Generation

We now show, by a small example, that HOL-OCL can be used for
automatically partitioning the input domain. The adequacy criterion
underlying this specification-based method following [16] is described
as follows: for any method, and for each disjunction in the disjunctive
normal form (DNF) of the method specification, there must be a test-
case with generated input and results.

A prominent example for automatic test-case generation is the
triangle problem [40]: given three integers representing the lengths of
the sides of a triangle, a small algorithm has to check, whether these
integers describe an equilateral, isosceles,scalene triangle, or no tri-
angle at all. Assume a class Triangle with the operations isTri() (test

110 Achim D. Brucker and Burkhart Wolff

if the input describes a triangle) and triangle() (classify the valid tri-
angle), further assume a enumeration type TriType that enumerates
the possible result: Equilateral, Isosceles, Scalene, or Invalid:

context Triangle::isTri(s0, sl1, s2:Integer):Boolean

pre: (s0 > 0) and (s1 > 0) and (s2 > 0)

post: result = (s2 < (s0 + s1)) and (s0 < (sl + s2))
and (sl < (s0 + s2))

context Triangle::triangle(sO, sl1, s2:Integer):TriType
pre: (sO > 0) and (s1 > 0) and (s2 > 0)
post: result = if (isTri(s0,s1,s2)) then
if (s0 = s1) then
if (s1 = s2) then Equilateral
else Isosceles endif
else if (s1 = s2) then Isosceles
else if (s0 = s2) then Isosceles
else Scalene endif
endif endif else Invalid endif

In HOL-OCL this leads to the following method specification”:

triangle_spec =Ares s1 So s3.7€8 =
(if isTri(sq, 2, s3) then
if sg £ s1 then if s £ S9
then equilateral else isosceles endif
else if s1 £ S9 then isosceles else
if 59 £ s9 then isosceles else scalene

endif endif endif

else invalid endif)

For the actual test-case generation, we define triangle, which selects
via Hilbert’s epsilon operator (¢) an eligible implementation:

triangle sg s1 so = eres. Fy triangle_spec res sg s1 $2

In our setting, Dick-Faivre’s method leads to the following main steps:

1. Eliminate logical operators except and, or, and not.
2. Convert the formula into DNF.

3. Eliminate unsatisfiable disjunctions.

4. Select the actual set of test-cases.

® In the following, we omit the specification of isTri() for space reasons.

UML/OCL Semantics, Calculi, and Applications. .. 111

true

Figure 3 OCL specifications as labeled relations

HOL-OCL automatically calculates the DNF representation of the
triangle-specification. The simplification process makes heavily use
of congruence rewriting, which based on its deeper knowledge of the
used datatypes (exploiting, e.g. = F isosceles £ invalid) eliminates
many unsatisfiable disjunctions caused by conflicting constraints. At
the end, only six cases are left, respectively one for invalid inputs and
one for equilateral triangles, and three for isosceles triangles.

1. (res = invalid) and not isTri(sg, 51, 52)

2. (res = equilateral) and isTri(sg, 51, 52) and (sg = s1) and (51 = s9)
3. (res = isosceles) and isTri(sg, 51, 52) and (sg = s1) and (51 Z s2)
4. (res £ isosceles) and isTri(sg, 51, 52) and (sg = s2) and (sg 2 51)
5. (res £ isosceles) and isTri(sg, 51, 52) and (51 = s2) and (sg 2 s)
6. (res = scalene) and isTri(sg, s1,52) and (s9 2 s1) and (sg # S2) an

(s1 2 s2)

An exhaustive test has to select at least one concrete test input from
each of these six sub-domains and should also exploit boundary cases
like minimal or maximum Integers of the underlying implementation.

5.2 Refining OCL Specifications

For a discussion of refinement notions in a three-valued setting (cf.
Fig. 3), we need an extension of notions such as domain and image:

domy S ={o|30’.(0,0") E=x S}
a(S)x ={o'l(a,0") Ex S}

Note that these definitions, as well as the following ones, are stated in
HOL. Thus, we take advantage of having both HOL and OCL together
in our environment HOL-OCL.

On this basis, we can define a first refinement notion, called weak
satisfaction, which ignores the difference between undefined and im-
possible system transitions:

S Ty T = Va € domy(S).a(T), C a(S),

This means, for any input of S, and any possible result r, there must
be a system transition; and any possible system transition in the

112 Achim D. Brucker and Burkhart Wolff

implementation must be also possible in the specification. A notion
of strong satisfaction that takes explicitly impossible transitions into
account:

S Cs T =Va € domy S.a(T)), C a(S)),
AVa € domy T — domy S.a(S),; C a(T),

Both satisfaction notions presented above can be compared to oper-
ation refinements in the sense of [50, p. 135]. The following example
will shed some light on the difference of these two notions:

context A::spec(a, b:Integer):Integer
post: result >= a div b

context A::prog(a, b:Integer):Integer
post: result = if b = 0 then 0 else a div b endif

Let us state that the method specification relation spec of method
spec is refined by prog (interpreting prog). This can be done by
spec self a b result Cx prog self a b result where X € {s, f}.
Four cases can be distinguished:

1.b=0

2. b <> 0, result < a div b
3. b <> 0, result > a div b
4. b <> 0, result = a div b

In case 1, spec self a 0 result = ly holds and any transition will be
unknown, i.e. there is no element in domy(spec self a b result). In
case 2, both spec and prog yield false, any transition is impossible
and domy(spec self a b result) is again empty. In case 3, the spec
yields true and prog false; thus, any transition is possible in spec,
and a(prog self a b result|), = {} and a(spec self a b result|), =
{z | True}. For the last case 4, both spec and prog are true and
both sets of reachable states were equal. Summing up, the refinement
holds for both weak and strong satisfaction. Note that the argument
would be analogously if a and b would be attributes of self and not
parameters of the methods.

We only briefly sketch how to prove the satisfaction relation. The
key observation for the proof in HOL-OCL is the following lemma:

2(S)y € y(Thy = Veu(w,2) xS — (4,2) Ex T

After unfolding a proof goal spec s a r C,, prog s a r according to
the above definitions, a proof state remains that is amenable to LTS.

A principle limit of the satisfaction notions discussed above is a
consequence of the fact that the underlying states of spec and prog

UML/OCL Semantics, Calculi, and Applications. .. 113

(b) Proof Obligation IT

Figure 4 Data Refinement

are the same. Thus, it is impossible to relate methods stemming from
different class diagrams with another, since the underlying data uni-
verses are incomparable. Thus, it is impossible to handle data struc-
ture changes naturally occurring the transition from specification to
implementation. This limit can be overcome by data refinements sim-
ilar to [50, p. 138]. The key concept of data refinement is the abstrac-
tion relation R :: set(state(%.) x state(%3)) that relates abstract
states o, to concrete states o. underlying methods that may occur
in different classes or even class diagrams possible. A (weak) data
refinement S CF T = po, (S, R, T) A poy(S, R, T) comes in two parts
which turn into proof obligations when stated as proof goals. They
are best explained with a diagram, such as see 4(a). The first condi-
tion po; means that whenever the abstract operation S can make a
transition, the concrete operation 1" can make a transition too. More
formally, this is covered by:

po(S, R, T) =Vo, € domy(S).Vo..(04,0.) € R — 0. € domy(T)

The second condition po, is presented in diagram 4(b). It states that
whenever the concrete operation can make a step to a new system
state o7, then the abstract operation may be able to reach a state o,
that is in the abstraction relation to o.. This condition is presented
formally as follows:

poy(S, R, T) = Vo, € domy(S),0..(04,0.) € RA (0c,0L) Et T —
30!, (0a,0L) Ft S A (04,00,) € R

114 Achim D. Brucker and Burkhart Wolff

A proof of data refinements proceeds by unfolding the above defini-
tions and solving the resulting principal proof obligations in LTS.

Of course, other refinement concepts may be transferred to OCL
along the lines presented above; e.g. backward simulation [58]. Fur-
ther, it is possible to link method specifications to implementations
in concrete code of a programming language like Java. Technically,
this is an integration of a denotational semantics with a Hoare logic
(cf. [57]), see also the corresponding formal proofs in Isabelle; mean-
while, it is feasible to combine HOL-OCL with a Hoare logic for Nano-
Java [43]. Of course, such a combination will inherently be program-
ming language specific. An in-depth discussion of these alternatives,
however, is out of the scope of this paper.

6 Conclusion
6.1 Achievements

We presented a formal, machine-checked semantics of OCL in form of a
conservative embedding into Isabelle/HOL that strives for compliance
with the OCL standard. On the basis of this embedding, we derived
several calculi and proof techniques for OCL. Since deriving means
that we proved all rules with an interactive theorem proving assistant,
we can guarantee both the consistency of the semantics as well as the
soundness of the calculi. Our semantics is organized in a modular way,
allowing extension such as temporal aspects or general recursion. The
former may be used to give a formal semantics also to the other UML
diagrams such as statecharts or sequence diagrams, while the latter
may provide the basis to the development of powerful and executable
libraries within OCL.

We developed automatic proof support for the derived calculi UEC,
LEC, and LTC. In particular, the calculi led to rewriting and tableau
based decision procedures for certain fragments of OCL. Based on a
three-valued logic, many doubts have been expressed that OCL can
be used for efficient deduction in OCL. While clearly a price has to be
paid here, our experiments seem to indicate that in a predominantly
strict language, there is a sufficiently high potential for optimizations
such that effective reasoning in this language is actually feasible with
recent technology. Thus, we provided the basis for deduction based
OCL tools.

Finally, we demonstrated the potential for application of such de-
duction based tools for OCL. We adopted a classical data-refinement
notion to three-valued OCL and showed how this can be used to re-
late specifications to implementations, even if based on different data

UML/OCL Semantics, Calculi, and Applications. . . 115

universes. In another application scenario, we used our automated
deduction techniques for normal form computations of OCL specifi-
cations in order to yield automated test-case generation.

Thus, we believe that we have provided a solid basis for turning
object oriented modeling in the UML into a true formal method.

6.2 Related Work

Our work is related to four areas: formal tool support for OCL, formal
semantics for OCL, proof support for three-valued logics, and the
embedding of object-oriented languages into theorem provers.

6.2.1 Formal OCL Tool Support. The group of tools providing OCL
support beyond type checking can be roughly divided into three
groups: runtime checking of OCL constraints (e.g. [17,8]), using OCL
for model simulation and validation (e.g. [46]) and proof environ-
ments. The latter group contains only the integrated KeY tool [2];
which, as the many tools claiming to support OCL, is not compliant
to the OCL specification, but based on a two-valued version of dy-
namic first-order logic combined with a fragment of Java. Moreover,
it does not attempt to build up the theory of OCL by definitional ax-
ioms and thus has not formally investigated the issue of consistency.
However, KeY provides an easy-to-use integration into a CASE tool,
which is missing in HOL-OCL at the moment.

6.2.2 Proof Support for Three-valued Logics. The construction of spe-
cialized (semi-)decision procedures for many-valued logics such as
SKL has been investigated before, in particular based on semantic
tableaux methods [28,4]. Actually, the development of the tableaux-
based proof-procedure in Isabelle has been deeply influenced by the

leanTP [4], which in itself is just the “bare bones” of its ancestor P
based on SKL. However, one of our design goals is to provide a suit-
ably abstract calculi that can be processed in a generic (Isabelle-like)
prover engine.

6.2.3 Formal OCL Semantics. Previous semantic definitions of OCL
are based on “mathematical notation” in the style of “naive set the-
ory”, which is in our view quite inadequate to cover subtle subjects
of object-orientation, e.g. inheritance. Moreover, the development of
proof calculi and automated deduction for OCL has not been in the
focus of interest so far. In [32], an operational semantics together with

116 Achim D. Brucker and Burkhart Wolff

a formal type system for OCL 1.4 [41] was presented. The only seman-
tics for OCL 2.0 is given in a semi-formal way in the OCL standard [56]
(based on [45]). In contrast to the mentioned work, our version of OCL
can admit infinite states which turns allInstances into an infinite
universal quantifier and, as we strongly suggest, adding least-fixpoint
semantics for recursive methods.

6.2.4 Embedding of Object-oriented Languages Using a shallow em-
bedding for an object-oriented language is still a challenge. While
the basic concepts in our approach of representing subtyping by the
subsumption relation on polymorphic types are not new [48,36], we
included concepts such as undefinedness, mutual recursion between
object instances, dynamic types, recursive method invocation and
extensible class hierarchies.

6.3 Future Work

6.3.1 Improving Proof Support. While our existing proof procedures
for OCL are quite satisfactory, more work has to be done in order to
increase efficiency and to cover larger fragments of the language (in-
cluding automated procedures for arithmetics, for example). Combin-
ing techniques for multivalued logics [22] and optimized data struc-
tures (e.g. decision diagrams) should yield efficient proof support for
highly complex proofs usually occurring in test-case generations.

6.3.2 Tool Integration. Aiming for the broader acceptance of formal
methods, and with a tool like HOL-OCL we understand OCL as such,
a powerful integration into accepted CASE tools has to be provided.
This includes the building of powerful, easy to use, front-ends which
have to build on a improved, highly automated, proof support.

6.3.3 Applications. Beside larger case studies, e.g. in the area of secure
and safe system development, we see a great potential for a formal
refinements calculus for OCL. Such a refinement calculus would one
allow to use HOL-OCL in a consistent way over several stages of a
formally supported software development cycle and is in our opinion
a cornerstone for applying formal methods successfully.

Also, combining HOL-OCL with other theorem prover projects such
as pJava [39] opens a interesting field. Such combinations of formal
semantics for specification and programming languages can pave the
way for an integrated formal reasoning over specifications and code.

UML/OCL Semantics, Calculi, and Applications. .. 117

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

ArgoUML, July 2003. http://argouml.tigris.org.

W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Héahnle,
W. Menzel, and P. H. Schmitt. The KeY approach: Integrating object ori-
ented design and formal verification. Technical Report 2000/4, University of
Karlsruhe, Department of Computer Science, 2000.

P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Academic Press, Orlando, 1986.

B. Beckert and J. Posegga. leanT"P: Lean tableau-based deduction. Journal
of Automated Reasoning, 15(3):339-358, 1995.

E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella. Object-oriented query
languages: The notion and the issues. Trans. on Knowledge and Data Engi-
neering, 4(3):223-237, 1992.

R. Boulton, A. Gordon, M. Gordon, J. Harrison, J. Herbert, and J. V. Tas-
sel. Experience with embedding hardware description languages in HOL. In
V. Stavridou, T. F. Melham, and R. T. Boute, editors, Proceedings of the
IFIP, volume A-10, pages 129-156, Nijmegen, 1992. Elsevier.

M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nagzareth, O. Slo-
tosch, F. Regensburger, and K. Stglen. The requirement and design spec-
ification language Spectrum, an informal introduction (V 1.0), part 1 & 2.
Technical Report TUM-19312, Technische Universitdt Miinchen, 1993.

A. D. Brucker and B. Wolff. Testing distributed component bases systems
using UML/OCL. In K. Bauknecht, W. Brauer, and T. Miick, editors, Infor-
matik 2001, Tagungsband der GI/OCG Jahrestagung, pages 608-614. 2001.

A. D. Brucker and B. Wolff. HOL-OCL: Experiences, consequences and design
choices. In J.-M. Jezequel, H. Hussmann, and S. Cook, editors, UML 2002,
volume 2460 of LNCS. Springer-Verlag, Dresden, 2002.

A. D. Brucker and B. Wolff. A note on design decisions of a formalization of
the OCL. Technical Report 168, Albert-Ludwigs-Universitat Freiburg, 2002.
A. D. Brucker and B. Wolff. A proposal for a formal OCL semantics in
Isabelle/HOL. In C. Muifioz, S. Tahar, and V. Carrefio, editors, TPHOLs,
number 2410 in LNCS, pages 99-114. Springer-Verlag, 2002.

A. D. Brucker and B. Wolff. Using theory morphisms for implementing formal
methods tools. In H. Geuvers and F. Wiedijk, editors, Types 2002, number
2460 in LNCS. Springer-Verlag, Nijmegen, 2003.

A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56—68, 1940.

S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, and A. Wills. The
Amsterdam Manifesto on OCL. Technical Report TUM-19925, Technische
Univeritat Miinchen, 1999.

J. Derrick and E. Boiten. Refinement in Z and Object-Z. Springer-Verlag,
London, 2001.

J. Dick and A. Faivre. Automating the generation and sequencing of test
cases from model-based specications. In J. Woodcock and P. Larsen, editors,
FME 92, volume 670 of LNCS, pages 268—284. Springer, 1993.

OCL Compiler Suite, 2003. http://dresden-ocl.sourceforge.net/.

S. Flake and W. Mueller. An OCL extension for real-time constraints. In
T. Clark and J. Warmer, editors, Object Modeling with the OCL: The Ratio-
nale behind the Object Constraint Language, pages 150-171. Springer, 2002.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

38.

39.

118 Achim D. Brucker and Burkhart Wolff

D. M. Gabbay. Labelled Deductive Systems. Number 33 in Oxford Logic
Guides. Oxford University Press, 1997.

M. J. C. Gordon and T. F. Melham. Introduction to HOL. Cambridge Uni-
versity Press, 1993.

R. Hahnle. Towards an efficient tableau proof procedure for multiple-valued
logics. In E. Borger, H. Kleine Biining, M. M. Richter, and W. Schénfeld,
editors, Selected Papers from Computer Science Logic, CSL’90, Heidelberg,
volume 533 of LNCS, pages 248-260. Springer-Verlag, 1991.

R. Hahnle. Automated Deduction in Multiple-valued Logics. Oxford University
Press, 1994.

R. Hahnle. Efficient deduction in many-valued logics. In Proc. International
Symposium on Multiple- Valued Logics, ISMVL’94, Boston/MA, USA, pages
240-249. IEEE CS Press, Los Alamitos, 1994.

R. Hahnle. Tableaux for many-valued logics. In M. D’Agostino, D. Gabbay,
R. Hahnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 529—
580. Kluwer, Dordrecht, 1999.

S. Helke and T. Santen. Mechanized analysis of behavioral conformance in
the Eiffel base libraries. LNCS, 2021:20-42, 2001.

R. Hennicker, H. Hussmann, and M. Bidoit. On the precise meaning of OCL
constraints. In T. Clark and J.Warmer, editors, Advances in Object Modelling
with the OCL, volume 2263 of LNCS, pages 69-84. Springer-Verlag, 2002.

C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall
International, Englewood Cliffs, New Jersey, 1990.

M. Kerber and M. Kohlhase. A mechanization of strong Kleene logic for
partial functions. In A. Bundy, editor, Proceedings of CADE, pages 371-385,
Nancy, France, 1994. Springer Verlag. LNAI 814.

M. Kerber and M. Kohlhase. A tableau calculus for partial functions. Col-
legium Logicum — Annals of the Kurt-Gédel-Society, 2:21-49, 1996.

C. Kobryn. Will UML 2.0 be agile or awkward? CACM, 45(1):107-110, 2002.
B. H. Liskov and J. M. Wing. A behavioral notion of subtyping. ACM Trans.
on Programming Languages and Systems, 16(6):1811-1841, Nov. 1994.

L. Mandel and M. V. Cengarle. A formal semantics for OCL 1.4. In C. K.
M. Gogolla, editor, UML 2001, volume 2185 of LNCS. Springer, 2001.

A. Mikhajlova and E. Sekerinski. Class refinement and interface refinement in
object-oriented programs. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
FME 97, volume 1313 of LNCS, pages 82—101. Springer-Verlag, 1997.

P. D. Mosses. Denotational Semantics, chapter 11. In van Leeuwen [53], 1990.
O. Miiller, T. Nipkow, D. v. Oheimb, and O. Slotosch. HOLCF = HOL +
LCF. Journal of Functional Programming, 9:191-223, 1999.

W. Naraschewski and M. Wenzel. Object-oriented verification based on
record subtyping in higher-order logic. In J. Grundy and M. Newey, editors,
TPHOLs, volume 1479 of LNCS, pages 349-366. Springer, 1998.

T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 164—188. Cambridge Uni-
versity Press, 1993.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

T. Nipkow, D. von Oheimb, and C. Pusch. pyJava: Embedding a programming
language in a theorem prover. In F. L. Bauer and R. Steinbriiggen, editors,
Foundations of Secure Computation, volume 175 of NATO Science Series F:
Computer and Systems Sciences, pages 117-144. 10S Press, 2000.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

UML/OCL Semantics, Calculi, and Applications. .. 119

N. D. North. Automatic test generation for the triangle problem. Technical
Report DITC 161/90, National Physical Laboratory, Teddington, UK, 1990.

Object Constraint Language Specification, chapter 6. In Object Management
Group [42], 2001.

OMG Unified Modeling Language Specification, 2001.

D. v. Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited. In L.-H. Eriksson and P. A. Lindsay,
editors, FME 02, volume 2391 of LNCS, pages 89-105. Springer, 2002.

L. C. Paulson. A generic tableau prover and its integration with Isabelle.
Journal of Universal Computer Science, 5(3):73-87, 1999.

M. Richters and M. Gogolla. On formalizing the UML object constraint
language OCL. In T.-W. Ling, S. Ram, and M. L. Lee, editors, 17th Int.
Conf. Conceptual Modeling, pages 449-464. Springer, LNCS 1507, 1998.

M. Richters and M. Gogolla. OCL - syntax, semantics and tools. In T. Clark
and J. Warmer, editors, Advances in Object Modelling with the OCL, pages
43-69. Springer, Berlin, LNCS 2263, 2001.

P. Rudnicki. Obvious inferences. Journal of Automated Reasoning, 3(4):383—
394, 1987.

T. Santen. A Mechanized Logical Model of Z and Object-Oriented Specifica-
tion. PhD thesis, Technical University Berlin, 1999.

G. Smith and J. Derrick. Specification, refinement and verification of con-
current systems - an integration of Object-Z and CSP. Formal Methods in
Systems Design, 18:249-284, 2001.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall Interna-
tional Series in Computer Science, 1992.

H. Tej and B. Wolff. A corrected failure-divergence model for csp in is-
abelle/hol. In J. Fitzgerald, C. Jones, and P. Lucas, editors, Proceedings
of the FME 97 — Industrial Applications and Strengthened Foundations of
Formal Methods, LNCS 1313, pages 318-337. Springer Verlag, 1997.

M. Utting and K. Robinson. Modular reasoning in an object-oriented refine-
ment calculus. In R. S. Bird, C. C. Morgan, and J. C. P. Woodcock, editors,
Mathematics of Program Construction, pages 344-367. Springer-Verlag, 1993.
LNCS 669.

J. van Leeuwen, editor. Handbook of Theoretical Computer Science - Volume
B: Formal Models and Semantics. Elsevier, Amsterdam, 1990.

L. Vigano. Labelled Non-Classical Logics. Kluwer Academic Publishers, Dor-
drecht, 2000.

J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley, Inc., Reading, MA, USA, 2003.

J. Warmer, A. Kleppe, T. Clark, A. Ivner, J. Hogstrom, M. Gogolla,
M. Richters, H. Hussmann, S. Zschaler, S. Johnston, D. S. Frankel, and
C. Bock. Response to the UML 2.0 OCL RfP. Technical report, 2002.

G. Winskel. The Formal Semantics of Programming Languages. MIT Press,
Cambridge, Massachusetts, 1993.

J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice Hall International Series in Computer Science. Prentice Hall, 1996.

H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and ade-
quacy. ACM Computing Surveys, 29(4):366-427, Dec. 1997.

120 Achim D. Brucker and Burkhart Wolff

Contents

1 Imtroduction
2 Preliminaries

2.1
2.2
2.3

A Guided Tour Through UML/OCL
The Syntax of OCL.

2.3.1 The Meta-Language HOL
2.3.2 The Logical Framework Isabelle.

3 A Formal Semantics of UML/OCL in Isabelle/HOL

1
4
4
6
Formal and Technical Background of HOL in Isabelle . 6
6
8
9
1

3.1 Preliminaries: Lift Combinators 1
3.2 Preliminaries: Undefinedness and Strictness Combina-
tors 12
3.3 Extensible Object Models and Path Expressions . . . 13
3.3.1 Managing Holes in Universes 13
3.3.2 Outlining the Coding Scheme: Types and Con-
structorso 15
3.3.3 System States and System Transitions 15
3.3.4 Outlining the Coding Scheme: Accessors 16
3.3.5 Encoding the Running Example 16
3.3.6 Implementation Details 17
3.4 Semantics for OCL Expressions 18
3.4.1 System State Access Operations 18
3.4.2 Equalities o0 18
3.4.3 Logical Operators 19
3.4.4 Expressions: Standard Operations of the Library 20
3.5 Operation Specifications vs. Method Invocation 22
3.6 Possible Extensions 24
3.6.1 Alternative Logical Connectives. 24
3.6.2 Method Invocation and General Recursion. . . 25
3.6.3 Alternative Quantifiers. 26
4 A Proof Calculus for OCL. 27
4.1 Validity and Judgments 27
4.2 A Universal Equational Calculus for OCL 28
4.2.1 A Further Proof Principle of LEC: Trichotomy. 31
4.2.2 Completeness of UEC 31
4.3 A Local Equational Calculus for OCL (LEC) 32
4.4 Reasoning over OCL-Equalities 34
4.5 A Local Tableaux Calculus for OCL (LTC) 34
4.5.1 A Natural Deduction Tableaux Calculus for OCL. 36
4.5.2 An Example Derivation. 37
4.5.3 Completeness 38

4.5.4 Handling Quantifiers. 39

UML/OCL Semantics, Calculi, and Applications. . . 121

4.5.5 Completeness 41

4.6 Lifting Theorems from HOL to the HOL-OCL Level . . . 41
4.7 An Implementation in Isabelle 42

5 Applications. Lo 43
5.1 Automatic Test-Case Generation 45
5.2 Refining OCL Specifications 47

6 Conclusion 50
6.1 Achievements L. 50
6.2 Related Work 51
6.2.1 Formal OCL Tool Support. 51

6.2.2 Proof Support for Three-valued Logics. 51

6.2.3 Formal OCL Semantics. 51

6.2.4 Embedding of Object-oriented Languages . . . 52

6.3 Future Work 52
6.3.1 Improving Proof Support. 52

6.3.2 Tool Integration. 52

6.3.3 Applications. 52

7 Style Guide 58
8 Misc. Stuff 58
9 OCL Grammar o o v ittt e e e e 58

List of Tables

1 Formal Grammar of OCL (fragment) 7
2 Truth tables for the OCL operations def, not, and, and

OF. « v v v e e e e e e e e e 20
3 The Propositional Universal Equational Calculus (UEC) 29
4 The Local Equational Calculus LEC. 33
5 The Core of LTC 35
6 A Example OCL Derivation 38
7 Extensions of LTC: Quantifiers. 40

List of Figures

1 Modeling a simple banking scenario with UML 5
2 Extending Class Hierarchies and Universes with Holes 14
3 OCL specifications as labeled relations 47
4 Data Refinement 49

List of FIXME’s

122
7 Style Guide

8 Misc. Stuff

sumCase(f,g,p) =

9 ocL Grammar

classifierContextDecl ::
invDecl ::
operationContextDecl :

prePostDecl ::

operation :
varDeclList ::
varDecl ::
type ::

eTpr :

infixOperator ::

prefixOperator ::
literalExp ::
collLiteralExp ::
collKind ::
collLiteralPart ::

primitiveLiteral Exp
pathName

simpleName

Achim D. Brucker and Burkhart Wolff

f(z)
g(z)

if p= Inr(z)
if p= Inl(x)

context pathName invDecl

= [invDecl]| inv [simpleName] : expr

:= context operation prePostDecl

= [prePostDecl] pre [simpleName]| : expr
| [prePostDecl] post [simpleName] : expr
:= [pathName ::] simpleName ([varDeclList]) [: type]

[varDeclList ,| varDecl

= simpleName [: type] [= expr]
pathName | collKind (type)

:= literalEzp | pathName [Qpre]

| expr.simpleName [@Qpre] | expr— >simpleName
| expr([{expr,}expr]) | expr(varDecl|expr)

| expr(expr|:type][=expr|,varDecl|expr)

| expr[{expr,}expr][Qpre]

| exzpr— > iterate(varDecl[;varDecl]|expr)

| prefirOperator expr | expr infitOperator expr

| if expr then expr else erpr endif

| let varDeclList in expr

=x|/|div|mod |+ |- [<[>
| <=|>=|=]|<>|and | or | xor | implies
= — | not

collLiteralExp | primitiveLiteral Exp

collKind{{ collLiteralPart,} collLiteral Part}

Set | Bag | Sequence | Collection | OrderedSet

expr | expr..expr

::= Integer | Real | String | true | false | OclUndefined
::= [pathName::)simpleName

2= SIMPLE NAME

Formalizing Java’s Two’s-Complement Integral
Type in Isabelle/HOL

Nicole Rauch*

Universitat Kaiserslautern, Germany

Burkhart Wolff

Albert- Ludwigs- Universitit Freiburg, Germany

Abstract

We present a formal model of the Java two’s-complement integral arithmetics. The
model directly formalizes the arithmetic operations as given in the Java Language
Specification (JLS). The algebraic properties of these definitions are derived. Un-
derspecifications and ambiguities in the JLS are pointed out and clarified. The
theory is formally analyzed in Isabelle/HOL, that is, machine-checked proofs for
the ring properties and divisor/remainder theorems etc. are provided. This work
is suited to build the framework for machine-supported reasoning over arithmetic
formulae in the context of Java source-code verification.

Key words: Java, Java Card, formal semantics, formal methods, tools, theorem
proving, integer arithmetic.

1 Introduction

Admittedly, modelling numbers in a theorem prover is not really a “sexy
subject” at first sight. Numbers are fundamental, well-studied and well-
understood, and everyone is used to them since school-mathematics. Basic
theories for the naturals, the integers and real numbers are available in all
major theorem proving systems (e.g. [11,26,21]), so why care?

However, numbers as specified in a concrete processor or in a concrete pro-
gramming language semantics are oriented towards an efficient implementation
on a machine. They are finite datatypes and typically based on bit-fiddling
definitions. Nevertheless, they often possess a surprisingly rich theory (ring
properties, for example) that also comprises a number of highly non-standard
and tricky laws with non-intuitive and subtle preconditions.

I Partially funded by IST VerifiCard (IST-2000-26328)

124 Nicole Rauch and Burkhart Wolff

In the context of program verification tools (such as the B tool [2], KIV [3],
LOOP [5], and Jive [20], which directly motivated this work), efficient numeri-
cal programs, e.g. square roots, trigonometric functions, fast Fourier transfor-
mation or efficient cryptographic algorithms represent a particular challenge.
Fortunately, theorem proving technology has matured to a degree that the
analysis of realistic machine number specifications for widely-used program-
ming languages such as Java or C now is a routine task [13].

With respect to the formalization of integers, we distinguish two approaches:

(1) the partial approach: the arithmetic operations + — * / % are only de-
fined on an interval of (mathematical) integers, and left undefined when-
ever the result of the operation is outside the interval (c.f. [4], which is
mainly geared towards this approach).

(2) the wrap-around approach: integers are defined on [—2"~! . 2n=1 — 1],
where in case of overflow the results of the arithmetic operations are
mapped back into this interval through modulo calculations. These num-
bers can be equivalently realized by bitstrings of length n in the widely-
used two’s-complement representation system [10].

While in the formal methods community there is a widespread reluctance
to integrate machine number models and therefore a tendency towards either
(infinite) mathematical integers or the first approach (“either remain fully
formal but focus on a smaller or simpler language |[...]; or remain with the
real language, but give up trying to achieve full formality.” [23]), we strongly
argue in favour of the second approach for the following reasons:

(1) In a wrap-around implementation, certain properties like “Maxint + 1 =
Minint” hold. This has the consequence that crucial algebraic properties
such as the associativity law “a + (b + ¢) = (a + b) + ¢” hold in
the wrap-around approach, but not in the partial approach. The wrap-
around approach is therefore more suited for automated reasoning.

(2) Simply using the mathematical operators on a subset of the mathematical
integers does not handle surprising definitions of operators appropriately.
E.g. in Java the result of an integer division is always rounded towards
zero, and thus the corresponding modulo operation can return negative
values. This is unusual in mathematics. Therefore, this naive approach
does not only disregard overflows and underflows but also disregards un-
conventionally defined operators.

(3) The Java type int is defined in terms of wrap-around in the Java Language
Specification [12], so why should a programmer who strictly complies to
it in an efficient program be punished by the lack of formal analysis tools?

(4) Many parts of the JLS have been analyzed formally — so why not the
part concerning number representations? There are also definitions and
claimed properties that should be checked; and there are also possible in-
consistencies or underspecifications as in all other informal specifications.

Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL 125

As technical framework for our analysis we use Isabelle/HOL and the Isar
proof documentation package, whose output is directly used throughout this
paper (for lack of space, however, we will not present any proofs here. The
complete documentation will be found in a forthcoming technical report). Is-
abelle [21] is a generic theorem prover, i.e. new object logics can be introduced
by specifying their syntax and inference rules. Isabelle/HOL is an instance
of Isabelle with Church’s higher-order logic (HOL) [11], a classical logic with
equality enriched by total polymorphic higher-order functions. In HOL, in-
duction schemes can be expressed inside the logic, as well as (total) functional
programs. Isabelle’s methodology for safely building up large specifications
is the decomposition of problems into conservative extensions. A conserva-
tive extension introduces new constants (by constant definitions) and types
(by type definitions) only via axioms of a particular, machine-checked form; a
proof that conservative extensions preserve consistency can be found in [11].
Among others, the HOL library provides conservative theories for the logical
type bool, for the numbers such as int and for bitstrings bin.

1.1 Related Work

The formalization of IEEE floating point arithmetics has attracted the interest
of researchers for some time [8,1], e.g. leading to concrete, industry strength
verification technologies used in Intel’s IA64 architecture [13].

In hardware verification, it is a routine task to verify two’s complement
number operations and their implementations on the gate level. Usually, vari-
ants of binary decision diagrams are used to represent functions over bit words
canonically; thus, if a trusted function representation is identical to one gener-
ated from a highly complex implementation, the latter is verified. Meanwhile,
addition, multiplication and restricted forms of operations involving division
and remainder have been developed [15]. Unfortunately, it is known that
one variant particularly suited for one operation is inherently intractable for
another, etc. Moreover, general division and remainder functions have been
proven to be intractable by word-level decision diagrams (WLDD) [24]. For
all these reasons, the approach is unsuited to investigate the theory of two’s
complement numbers: for example, the theorem Javalnt-div-mod (see Sec-
tion 4.2), which involves a mixture of all four operations, can only be proven
up to a length of 9 bits, even with leading edge technology WLDD packages 2.

Amazingly, formalized theories of the two’s complement number have only
been considered recently; i.e. Fox formalized 32-bit words and the ARM pro-
cessor for HOL [9], and Bondyfalat developed a (quite rudimentary) bit words
theory with division in the AOC project [6]. In the context of Java and the
JLS, Jacobs [16] presented a fragment of the theory of integral types. This
work (like ours) applies to Java Card as well since the models of the four
smaller integral types (excluding long) of Java and Java Card are identical

2 Thanks to Marc Herbstritt [14] to check this for us!

126 Nicole Rauch and Burkhart Wolff

[25, § 2.2.3.1]. However, although our work is in spirit and scope very similar
to [16], there are also significant differences:

» We use standard integer intervals as reference model for the arithmetic oper-
ations as well as two’s-complement bitstrings for the bitshift and the bitwise
AND, OR, XOR operations (which have not been covered by [16] anyway).
Where required, we prove lemmas that show the isomorphy between these
two representations.

e While [16] just presents the normal behavior of arithmetic expressions, we
also cover the exceptional behavior for expressions like “x / 0” by adding a
second theory layer with so-called strictness principles (see Sect. 6).

The Java Virtual Machine (JVM) [19] has been extensively modelled in the
Project Bali [22]. However, the arithmetic operations in this JVM model are
based on mathematical integers. Since our work is based on the same system,
namely Isabelle2002, our model of a two’s-complement integer datatype could
replace the mathematical integers in this JVM theory.

1.2 Outline of this Paper

Section 2 introduces the core conservative definitions and the addition and
multiplication, Section 3 presents the division and remainder theory and Sec-
tion 4 gives the bitwise operations. Sections 2, 3 and 4 examine the normal
behavior, while Section 5 describes the introduction of exceptional behavior
into our arithmetic theory leading to operations which can deal with excep-
tions that may occur during calculations.

2 Formalizing the Normal Behavior Java Integers

The formalization of Java integers models the primitive Java type int as closely
as possible. The programming language Java comes with a quite extensive
language specification [12] which tries to be accurate and detailed. Nonethe-
less, there are several white spots in the Java integer specification which are
pointed out in this paper. The language Java itself is platform-independent.
The bit length of the data type int is fixed in a machine-independent way.
This simplifies the modelling task. The JLS states about the integral types:

I Java Language Specification [12], §4.2 I

“The integral types are byte, short, int, and long, whose values are 8-bit, 16-
bit, 32-bit and 64-bit signed two’s-complement integers, respectively, and char,
whose values are 16-bit unsigned integers representing Unicode characters. [...]
The values of the integral types are integers in the following ranges: [...] For int,
from —2147483648 to 2147483647, inclusive”

The Java int type and its range are formalized in Isabelle/HOL [21] this way:

constdefs
BitLength :: nat BitLength = 32

Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL 127

MinInt-int :: int MinInt-int = — (2 * (BitLength — 1))
MaxInt-int :: int MaxInt-int = 2" (BitLength — 1) — 1

Now we can introduce a new type for the desired integer range:
typedef Javalnt = {i. MinInt-int <1i A i < MaxInt-int}

This construct is the Isabelle/HOL shortcut for a type definition which de-
fines the new type Javalnt isomorphic to the set of integers between MinInt-int
and MaxInt-int. The isomorphism is established through the automatically
provided (total) functions Abs-Javalnt :: int=-Javalnt and Rep-Javalnt ::
Javalnt=-int and the two axioms y : {i. MinInt-int < i A i < MaxInt-int}
= Rep-Javalnt (Abs-Javalnt y) = y and Abs-Javalnt (Rep-Javalnt x) = x.
Abs-Javalnt yields an arbitrary value if the argument is outside of the defining
interval of Javalnt.

We define MinInt and MaxInt to be elements of the new type Javalnt:

constdefs
MinlInt :: Javalnt MinInt = Abs-Javalnt MinInt-int
MaxInt :: Javalnt MaxInt = Abs-Javalnt MaxInt-int

In Java, calculations are only performed on values of the types int and

long. Values of the three smaller integral types are widened first:

I Java Language Specification [12], §4.2.2 I

“If an integer operator other than a shift operator has at least one operand of
type long, then the operation is carried out using 64-bit precision, and the result
of the numerical operator is of type long. If the other operand is not long, it is
first widened (§5.1.4) to type long by numeric promotion (§5.6). Otherwise, the
operation is carried out using 32-bit precision, and the result of the numerical
operator is of type int. If either operand is not an int, it is first widened to
type int by numeric promotion. The built-in integer operators do not indicate
overflow or underflow in any way.”

This paper describes the formalization of the Java type int, therefore con-
versions between the different numerical types are not in the focus of this
work. The integer types byte and short can easily be added as all calculations
are performed on the type int anyways, so the only operations that need to
be implemented are the widening to int, and the cast operations from int to
byte and short, respectively. The Java type long can be added equally easily as
our theory uses the bit length as a parameter, so one only need to change the
definition of the bit length (see above) to gain a full theory for the Java type
long, and again only the widening operations need to be added. Therefore, we
only conentrate on the Java type int in the following.

Our model of Java int covers all side-effect-free operators. This excludes
the operators ++4 and ——, both in pre- and postfix notation. These operators
return the value of the variable they are applied to while modifying the value
stored in that variable independently from returning the value. We do not
treat assignment of any kind either as it represents a side-effect as well. This
also disallows combined operators like a += b etc. which are a shortcut for
a = a + b. This is in line with usual specification languages, e.g. JML [17],

128 Nicole Rauch and Burkhart Wolff

which also allows only side-effect-free operators in specifications. From a log-
ical point of view, this makes sense as the specification is usually regarded as
a set of predicates. In usual logics, predicates are side-effect-free. Thus, ex-
pressions with side-effects must be treated differently, either by special Hoare
rules or by program transformation.

In our model, all operators are defined in Isabelle/HOL, and their prop-
erties as described in the JLS are proven, which ensures the validity of the
definitions in our model. In the following, we quote the definitions from the
JLS and present the Isabelle/HOL definitions and lemmas.

Our standard approach of defining the arithmetic operators on Javalnt is to
convert the operands from Javalnt to Isabelle int, to apply the corresponding
Isabelle int operation, and to convert the result back to Javalnt. The first con-
version is performed by the representation function Rep-Javalnt (see above).
The inverse conversion is performed by the function Int-to-Javalnt:

Int-to-Javalnt :: int = Javalnt
Int-to-Javalnt (x::int) = Abs-Javalnt(
((x + (—Minlnt-int)) mod (2 * (—MinInt-int))) + MinInt-int)

This function first adds (—Minlnt) to the argument and then performs a
modulo calculation by 2 % (—Minlnt) which maps the value into the inter-
val [0 .. 2% (—MinInt) — 1] (which is equivalent to only regarding the lowest 32
bits), and finally subtracts the value that was initially added. This definition
is identical to the function Abs-Javalnt on arguments which are already in
Javalnt. Larger or smaller values are mapped to Javalnt values, extending the
domain to int.

This standard approach is not followed for operators that are explicitly
defined on the bit representation of the arguments. Our approach differs from
the approach used by Jacobs [16] who exclusively uses bit representations for
the integer representation as well as the operator definitions.

2.1 Unary Operators

This section gives the formalizations of the unary operators +, — and the
bitwise complement operator ~. The unary plus operator on int is equivalent
to the identity function. This is not very challenging, thus we do not elaborate
on this operator. In the JLS, the unary minus operator is defined in relation
to the binary minus operator described below.

I Java Language Specification [12], §15A15.4I

“At run time, the value of the unary minus expression is the arithmetic negation
of the promoted value of the operand. For integer values, negation is the same
as subtraction from zero.(!)

[...] negation of the maximum negative int or long results in that same maximum
negative number.(?)

[...] For all integer values x, —x equals (~x)+1.(3)”

The unary minus operator is formalized as
uminus-def : — (x::Javalnt) = Int-to-Javalnt (— Rep-Javalnt x)

Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL 129

We prove the three properties described in the JLS:
(1) lemma uminus-property: 0 — x = — (x::Javalnt)
(2) lemma uminus-MinInt: — MinInt = MinInt
(3) lemma uminus-bitcomplement: (~ x) + 1= —x

The bitwise complement operator is defined by unary and binary minus:

I Java Language Specification [12], §15.15.5 I

“At run time, the value of the unary bitwise complement expression is the bitwise
complement of the promoted value of the operand; note that, in all cases, ~x
equals (—x)—1.”
This is formalized in Isabelle/HOL as follows:
constdefs
Javalnt-bitcomplement :: Javalnt = Javalnt
Javalnt-bitcomplement (x::Javalnt) = (—x) — (1::Javalnt)
We use the notations ~ and Javalnt-bitcomplement interchangeably.

3 Additive and Multiplicative Operators

3.1 Additive Operators

This section formalizes the binary + operator and the binary — operator.

I Java Language Specification [12], §15.18.2 I

“The binary + operator performs addition when applied to two operands of nu-
meric type, producing the sum of the operands. The binary - operator performs
subtraction, producing the difference of two numeric operands.®) [.-]
Addition is a commutative operation if the operand expressions have no side
effects. Integer addition is associative when the operands are all of the same

type® [..]

If an integer addition overflows, then the result is the low-order bits of the mathe-
matical sum as represented in some sufficiently large two’s-complement format. ()
If overflow occurs, then the sign of the result is not the same as the sign of the
mathematical sum of the two operand values.
For both integer and floating-point subtraction, it is always the case that a—b
produces the same result as a+(—b).()”

(4)

(1) These two operators are defined in the standard way described above.
We only give the definition of the binary + operator:
defs (overloaded)
add-def : x + y = Int-to-Javalnt (Rep-Javalnt x + Rep-Javalnt y)
(2) This behavior is captured by the two lemmas
lemma Javalnt-add-commute: x + y =y + (x::Javalnt)
lemma Javalnt-add-assoc: x + y + z = x+(y-+z:Javalnt)
(3) This requirement is already fulfilled by the definition.
(4) This specification can be expressed as
lemma Javalnt-add-overflow-sign :
(c = a+ b A MaxInt-int < Rep-Javalnt a + Rep-Javalnt b) — (¢ < 0)

130 Nicole Rauch and Burkhart Wolff

This is a good example of how inexact several parts of the Java Language
Specification are. If indeed only overflow, i.e. regarding two operands
whose sum is larger than MaxInt, is meant here, then why pose such
a complicated question? “the sign of the mathematical sum of the two
operand values” will always be positive in this case, so why talk about
“the sign of the result is not the same”? It would be much clearer to state
“the sign of the result is always negative”. But what if the authors also
wanted to describe underflow, i.e. negative overflow, which is sometimes
also referred to as “overflow”? In §4.2.2 the JLS states “The built-in
integer operators do not indicate overflow or underflow in any way.” Thus,
the term “underflow” is known to the authors and is used in the JLS.
Why do they not use it in the context quoted above? This would also
explain the complicated phrasing of the above formulation.

To clarify these matters, we add the lemma

lemma Javalnt-add-underflow-sign :

(¢ = a+ b A Rep-Javalnt a + Rep-Javalnt b < MinlInt-int) — (0 < ¢)

(5) This has been formalized as
lemma diff-uminus: a — b = a + (—b::Javalnt)
3.2 Multiplication Operator

The multiplication operator is described and formalized as follows:

I Java Language Specification [12], §15.17.1 I

“The binary * operator performs multiplication, producing the product of its
operands. Multiplication is a commutative operation if the operand expressions
have no side effects. [...] integer multiplication is associative when the operands
are all of the same type”

defs (overloaded)

times-def : x x y = Int-to-Javalnt (Rep-Javalnt x * Rep-Javalnt y)
The commutativity and associativity are proven by the lemmas
lemma Javalnt-times-commute: (x::Javalnt) x y =y % x
lemma Javalnt-times-assoc: (x::Javalnt) * y % z = x * (y * 2)

I Java Language Specification [12], §15.17.1 I

“If an integer multiplication overflows, then the result is the low-order bits of the
mathematical product as represented in some sufficiently large two’s-complement
format. As a result, if overflow occurs, then the sign of the result may not be
the same as the sign of the mathematical product of the two operand values.”

This is again implicitly fulfilled by our standard modelling.

4 Division and Remainder Operators

4.1 Division Operator

In Java, the division operator produces the first surprise if compared to the
mathematical definition of division, which is also used in Isabelle/HOL:

Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL 131

i Java Language Specification [12], §15.17.2 i

“The binary / operator performs division, producing the quotient of its operands.
[...] Integer division rounds toward 0. That is, the quotient produced for
operands n and d that are integers after binary numeric promotion (§5.6.2)
is an integer value q whose magnitude is as large as possible while satisfying
|d X ¢q| < |n|; moreover, q is positive when |n| > |d| and n and d have the same
sign, but q is negative when |n| > |d| and n and d have opposite signs.(!)

There is one special case that does not satisfy this rule: if the dividend is the
negative integer of largest possible magnitude for its type, and the divisor is -1,
then integer overflow occurs and the result is equal to the dividend.(?)

Despite the overflow, no exception is thrown in this case. On the other hand, if
the value of the divisor in an integer division is 0, then an ArithmeticException
is thrown.3)”

This definition points out a major difference between the definition of
division in Isabelle/HOL and Java. If the signs of dividend and divisor are
different, the results differ by one because Java rounds towards 0 whereas
Isabelle/HOL floors the result. Thus, the naive approach of modelling Java
integers by partialization of the corresponding operations of a theorem prover
gives the wrong results in these cases.

We model the division by performing case distinctions:
defs (overloaded)
div-def : (x::Javalnt) divy =
F(0<xAy<0)V(x<O0AO0<y)) then
Int-to-Javalnt (Rep-Javalnt x div Rep-Javalnt y) + 1
else
Int-to-Javalnt(Rep-Javalnt x div Rep-Javalnt y)
The properties mentioned in the language report are formalized as follows:

(1) lemma quotient-sign-plus :

abs d < abs n A neg (Rep-Javalnt n) = neg (Rep-Javalnt d)

= 0 < (ndiv d)

lemma quotient-sign-minus :

abs d < abs n A neg (Rep-Javalnt n) # neg (Rep-Javalnt d)

= (ndivd) <0

The predicate “neg” holds iff the value of its argument is less than zero.
(2) lemma Javalnt-div-minusone : MinInt div —1 = MinInt

(3) is not modelled by the theory presented in this section because this theory
does not introduce a bottom element for integers in order to treat excep-
tional cases. Our model returns 0 in this case. Exceptions are handled
by the next theory layer (see Sect. 6) which adds a bottom element to
Javalnt and lifts all operations in order to treat exceptions appropriately.

Again, the division operation is underspecified. The language report does
not describe in (2) the sign of the resulting value if the magnitude of the
dividend is less than the magnitude of the divisor.

132 Nicole Rauch and Burkhart Wolff

4.2 Remainder Operator

The remainder operator is closely related to the division operator. Thus, it

does not conform to standard mathematical definitions either.
I Java Language Specification [12], §15.17.3 I

“The binary % operator is said to yield the remainder of its operands from
an implied division [...] The remainder operation for operands that are inte-
gers after binary numeric promotion (§5.6.2) produces a result value such that
(a/b)*b+(a%b) is equal to a.(V)

This identity holds even in the special case that the dividend is the negative inte-
ger of largest possible magnitude for its type and the divisor is -1 (the remainder
is 0).(2)

It follows from this rule that the result of the remainder operation can be negative
only if the dividend is negative,®

and can be positive only if the dividend is positive;(*)

moreover, the magnitude of the result is always less than the magnitude of the
divisor.®)

If the value of the divisor for an integer remainder operator is 0, then an Arith-
meticException is thrown.(®

Examples: 5%3 produces 2 note that 5/3 produces 1)

(-5)%3 produces -2
(-5)%(-3) produces -2

note that (-5)/3 produces -1)
note that (—5)/(—3) produces 1)(7)”

(

5%(-3) produces 2 (note that 5/(-3) produces -1)
(
(

When formalizing the remainder operator, we have to keep in mind the
formalization of the division operator and the required equality (1). Therefore,
the remainder operator mod is formalized as follows:

mod-def : (x::Javalnt) mod y =
if(0<xAy<0)V(x<0AO<y)then
Int-to-Javalnt(Rep-Javalnt x mod Rep-Javalnt y) — y
else
Int-to-Javalnt(Rep-Javalnt x mod Rep-Javalnt y)
The formulations in the JLS give rise to the following lemmas:

(1) lemma Javalnt-div-mod : ((a::Javalnt) div b) * b + (a mod b) = a

(2) lemma MinInt-mod-minusone: MinInt mod —1 = 0
lemma MinInt-minusone-div-mod-eq :
(MinInt div —1) % (—=1) + (MinInt mod —1) = MinInt

lemma neg-mod-sign-ineq : ((a::Javalnt) < 0) = ((a mod b) < 0)
lemma pos-mod-sign-ineq : (0 < (a::Javalnt)) = (0 < (a mod b))
lemma Javalnt-mod-less : abs ((a::Javalnt) mod b) < abs b

See the discussion for div above.

7) lemma div-mod-examplel : (5::Javalnt) mod 3 = 2 etc.

Again, it is not clear in the JLS what happens if the dividend equals 0.

Java is not the only language whose definitions of div and mod do not re-
semble the mathematical definitions. The languages Fortran, Pascal and Ada

Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL 133

define division in the same way as Java, and Fortran’s MOD and Ada’s REM
operators are modelled in the same way as Java’s % operator. Goldberg [10, p.
H-12] regrets this disagreement among programming languages and suggests
the mathematical definition, some of whose advantages he points out.

5 Formalization With Bitstring Representation

5.1 Shift Operators

The shift operators are not properly described in the JLS (§15.19) either. It
is especially unclear what happens if the right-hand-side operand of the shift
operators is negative. Due to the space limitations of this paper, we have to
refrain from presenting the full formalization of the shift operators here.

5.2 Relational Operators

As the relational operators (described in JLS §§15.20, 15.21) do not offer many
surprises, we abstain from presenting their formalization here.

5.3 Integer Bitwise Operators &, °, and |

This section formalizes the bitwise AND, OR, and exclusive OR operators.

} Java Language Specification [12], §15.22, 15.22.1 I

“The bitwise operators [...] include the AND operator &, exclusive OR operator
*, and inclusive OR operator |.() [.-]
Each operator is commutative if the operand expressions have no side effects.
Each operator is associative.(?) [..]
For &, the result value is the bitwise AND of the operand values. For . the
result value is the bitwise exclusive OR of the operand values. For |, the result
value is the bitwise inclusive OR of the operand values. For example, the result
of the expression 0xff00 & 0xf0f0 is 0xf000. The result of 0xff00 ~ 0xf0f0 is 0x0ff0.
The result of 0xff00 | 0xf0f0 is OxfFf0.(3)”

(1) These bitwise operators are formalized as follows:

constdefs

Javalnt-bitand :: [Javalnt,Javalnt | = Javalnt

x & y = number-of (zip-bin (op &::[bool,bool|=-bool)

(bin-of x) (bin-of y))

where bin-of transforms a Javalnt into its bitstring representation, zip-bin
merges two bitstrings into one by applying a function (which is passed
as the first argument) to each bit pair in turn, and number-of turns the
resulting bitstring back into a Javalnt. The other two bit operators are
defined accordingly.

(2) The commutativity and associativity of the three operators is proven by
six lemmas, of which we present two here:
lemma bitand-commute: a & b =b & a
lemma bitand-assoc: (a & b) & c=a & (b & ¢)

134 Nicole Rauch and Burkhart Wolff

(3) We verify the results of the examples by proving the three lemmas
lemma bitand-example : 65280 & 61680 = 61440
lemma bitxor-example : 65280 "~ 61680 = 4080
lemma bitor-example : 65280 | 61680 = 65520
In these lemmas we transformed the hexadecimal values into decimal
values because Isabelle is currently not able to read hex values.

5.4 Further Features of the Model

The model of Java integers presented above forms a ring. This could easily
be proved by using Isabelle/HOL’s Ring theory which only requires standard
algebraic properties like associativity, commutativity and distributivity to be
proven. The Ring theory makes dozens of ring theorems available for use in
proofs. Our model also forms a linear ordering. To achieve this property, re-
flexivity, transitivity, antisymmetry and the fact that the < operator imposes a
total ordering had to be proven. This allows us to make use of Isabelle/HOL’s
linorder theory. We get a two’s-complement representation by redefining (us-
ing our standard wrapper) the conversion function number-of-def which is
already provided for int. This representation is used for those operators that
are defined bitwise.

Altogether, the existing Isabelle theories make it relatively easy to achieve
standard number-theoretic properties for types that are defined as a subset of
the Isabelle/HOL integers.

5.5 Empirical Data: The Size of our Specification and Proofs

The formalization presented in the preceding sections consists of five theory
files, the size of which is as follows:

Filename Lines || Filename Lines

JavalntegersDef.thy 180 || JavalntegersAdd.thy | 225
JavalntegersTimes.thy 190 || JavalntegersDiv.thy | 1210
JavalntegersBit.thy 350

It took about one week to specify the definitions and lemmas presented here
and about six to eight weeks to prove them, but the proof work was mainly
performed by one of the authors (NR) who at the same time learned to use
Isabelle, so an expert would be able to achieve these results much faster.

6 Formalizing the Exceptional Behavior Java Integers

The Java Language Specification introduces the concept of exception in ex-
pressions and statements of the language:

Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL 135

i Java Language Specitication [12], §11.3, §11.3.1 i

“The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions (§15.6) and statements (§14.1) until a catch clause is
encountered that can handle the exception |...]

when the transfer of control takes place, all effects of the statements executed
and expressions evaluated before the point from which the exception is thrown
must appear to have taken place. No expressions, statements, or parts thereof
that occur after the point from which the exception is thrown may appear to
have been evaluated.”

Thus, exceptions have two aspects in Java:

 they change the control flow of a program,

¢ they are a particular kind of side-effect (i.e. an exception object is created),
and they prevent program parts from having side-effects.

While we deliberately neglect the latter aspect in our model (which can be
handled in a Hoare Calculus on full Java, for example, when integrating our
expression language into the statement language), we have to cope with the
former aspect since it turns out to have dramatic consequences for the rules
over Java expressions (these effects have not been made precise in the JLS).

So far, our normal behavior model is a completely denotational model; each
expression is assigned a value by our semantic definitions. We maintain this
denotational view, with the consequence that we have to introduce exceptional
values that are assigned to expressions that “may [not] appear to have been
evaluated”. In the language fragment we are considering, only one kind of
exception may occur:

I Java Language Specification [12], §4.2.2 I

“The only numeric operators that can throw an exception (§11) are the integer
divide operator / (§15.17.2) and the integer remainder operator % (§15.17.3),
which throw an ArithmeticException if the right-hand operand is zero.”

In order to achieve a clean separation of concerns, we apply the technique
developed in [7]. Conceptually, a theory morphism is used to convert a normal
behavior model into a model enriched by exceptional behavior. Technically,
the effect is achived by redefining all operators such as +,—,* etc. using “se-
mantical wrapper functions” and the normal behavior definitions given in the
previous chapters. Two types of theory morphisms can be distinguished: One
for a one-exception world, the other for a multiple-exception world. While the
former is fully adequate for the arithmetic language fragment we are discussing
throughout this paper, the latter is the basis for future extensions by e.g. array
access constructs which may raise out-of-bounds exceptions. In the following,
we therefore present the former in more detail and only outline the latter.

6.1 The One-Exception Theory Morphism

We begin with the introduction of a type constructor that disjointly adds
to a type « a failure element such as L (see e.g. [27], where the following
construction is also called “lifting”). We declare a type class bot for all types

136 Nicole Rauch and Burkhart Wolff

containing a failure element 1 and define as semantical combinator, i.e. as
“wrapper function” of this theory morphism, the combinator strictify that
turns a function into its strict extension wrt. the failure elements:

strictify ((abot) = (B:bot)) = a=

strictify f x = if x=_1 then L else f x

Moreover, we introduce the definedness predicate DEF :: a::bot = bool

by DEF x = (x # 1). Now we introduce a concrete type constructor that lifts
any type « into the type class bot:

datatype up(a)=|]a | L

In the sequel, we write ¢, instead of up(t). We define the inverse to the
constructor |_| as [_]. Based on this infrastructure, we can now define the
type JAVAINT that includes a failure element:

types JAVAINT= Javalnt

Furthermore, we can now define the operations on this enriched type; e.g. we
convert the Javalnt unary minus operator into the related JAVAINT operator:

constdefs
uminus o JAVAINT=JAVAINT
uminus = strictify(|-] o uminus o [_])

As a canonical example for binary functions, we define the binary addition
operator by (note that Isabelle supports overloading):

op +: [JAVAINT JAVAINT] =JAVAINT
op + =strictify(\ X. strictify(A Y. |[X] + [Y]]))

All binary arithmetic operators that are strict extensions like — or * are con-
structed analogously; the equality and the logical operators like the strict
logical AND & follow this scheme as well. For the division and modulo oper-
ators / and %, we add case distinctions whether the divisor is zero (yielding
1). Java’s non-strict logical AND && is defined in our framework by explicit
case distinctions for .

This adds new rules like X + 1= 1 and L + X = 1. But what happens
with the properties established for the normal behavior semantics? They can
also be lifted, and this process can even be automated (see [7] for details).
Thus, the commutativity and associativity laws for normal behavior, e.g.
(X:: Javalnt) + Y =Y + X, can be lifted to (X:: JAVAINT) + Y =Y + X
by generic proof procedure establishing the case distinctions for failures. How-
ever, this works smoothly only if all variables occur on both sides of the equa-
tion; variables only occurring on one side have to be restricted to be defined.
Consequently, the lifted version of the division theorem looks as follows:

[DEFY;Y#0] = ((X::JAVAINT) /)« Y+ (X% Y)=X

Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL 137

6.2 The Multiple- Exception Theory Morphism

The picture changes a little if the semantics of more general expressions are
to be modelled, including e.g. array access which can possibly lead to out-of-
bounds exceptions. Such a change of the model can be achieved by exchanging
the theory morphism, leaving the normal behavior model unchanged.

It suffices to present the differences to the previous theory morphism here.
Instead of the class bot we introduce the class exn requiring a family of unde-
fined values 1.. The according type constructor is defined as:

datatype up(a)=|_| a | L exception

and analogously to [_] we define exn-of(L.) = e as the inverse of the con-
structor L; exn-of is defined by an arbitrary but fixed HOL-value arbitrary
for exn-of(|_|) = arbitrary. Definedness is DEF (z) = (Ve.x # L.).

The definition of operators is analogous to the previous section for the
canonical cases; and the resulting lifting as well. Note, however, that the
lifting of the commutativity laws fails and has to be restricted to the following;:

[DEF X = DEF Y A exn-of X = exn-of Y |
— (X JAVAINT) + Y =Y + X

These restrictions caused by the lifting reflect the fact that commutativity
does not hold in a multi-exception world; if the left expression does not raise
the same exception as the right, the expression order cannot be changed.

Hence, our proposed technique to use a theory morphism not only leads
to a clear separation of concerns in the semantic description of Java, but also
leads to the systematic introduction of the side-conditions of arithmetic laws
in Java that are easily overlooked.

7 Conclusions and Future Work

In this paper we presented a formalization of Java’s two’s-complement in-
tegral types in Isabelle/HOL. Our formalization includes both normal and
exceptional behavior. Such a formalization is a necessary prerequisite for
the verification of efficient arithmetic Java programs such as encryption algo-
rithms, in particular in tools like Jive [20] that generate verification conditions
over arithmetic formulae from such programs.

Our formalization of the normal behavior is based on a direct analysis
of the Java Language Specification [12] and led to the discovery of several
underspecifications and ambiguities (see 3.1 (4), 4.1, 4.2, 5.1). These under-
specifications are highly undesirable since even compliant Java compilers may
interpret the same program differently, leading to unportable code. In the
future, we strongly suggest to supplement informal language definitions by
machine-checked specifications like the one we present in this paper as a part
of the normative basis of a programming language.

138 Nicole Rauch and Burkhart Wolff

We applied the technique of mechanized theory morphisms (developed in
[7]) to our Java arithmetic model in order to achieve a clear separation of
concerns between normal and exceptional behavior. Moreover, we showed
that the concrete exceptional model can be exchanged — while controlling
the exact side-conditions that are imposed by a concrete exceptional model.
For the future, this leaves the option to use a lifting to the exception state
monad [18] mapping the type JAVAINT to state =(Javalnt, state) in order
to give semantics to expressions with side-effects like i++ + i.

Of course, more rules can be added to our theory in order to allow effective
automatic computing of large (ground) expressions — this has not been in the
focus of our interest so far. With respect to proof automation in Javalnt, it is
an interesting question whether arithmetic decision procedures of most recent
Isabelle versions (based on Cooper’s algorithm for Presburger Arithmetic) can
be used to decide analogous formulas based on machine arithmetic. While an
adoption of these procedures to Java arithmetic seems impossible (this would
require cancellation rules such as (a < b) = (k x a < k x b) for nonnegative
k which do not hold in Java), it is possible to retranslate Javalnt formulas
to standard integer formulas; remainder sub-expressions can be replaced via
P(a mod b) = 3m. 0 < m < aA(a—m) | b A P(m), such that finally a
Presburger formula results. Since a translation leads to an exponential blow-
up in the number of quantifiers (a critical feature for Cooper’s algorithm), it
remains to be investigated to what extent this approach is feasible in practice.

References

[1] M. D. Aagaard and C.-J. H. Seger. The formal verification of a pipelined
double-precision IEEE floating-point multiplier. In Int. Conf. on Computer
Aided Design. IEEE Computer Society, 1995.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. CUP, 1996.

[3] M. Balser et al. Formal system development with KIV. In Fundamental
Approaches to Software Engineering, LNCS 1783, 2000.

[4] B. Beckert and S. Schlager. Integer arithmetic in the specification and
verification of Java programs. In FM-TOOLS, 2002.

[5] J. v. d. Berg and B. Jacobs. The LOOP compiler for Java and JML. In
TACASO01, LNCS 2031, 2001.

[6] Dider Bondyfalat. Long integer division in Coq (algorithm divide and conquer).
http://www-sop.inria.fr /lemme/Didier.Bondyfalat /DIV/.

[7] A. D. Brucker and B. Wolff. Using theory morphisms for implementing formal
methods tools. In Types for Proof and Programs, LNCS, 2003.

[8] V. A. Carrefio and P. S. Miner. Specification of the IEEE-854 floating-point
standard in HOL and PVS. In Higher Order Logic Theorem Proving and its
Applications, 1995.

Formalizing Java’s Two’s-Complement Integral Type in Isabelle/HOL 139

9] A. C. J. Fox. An algebraic framework for modelling and verifying
microprocessors using HOL. TR 512, University of Cambridge, 2001.

[10] D. Goldberg. Computer arithmetic. In Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2002.

[11] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theorem-Proving
Environment for Higher-Order Logic. Cambridge University Press, 1993.

12] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java™ Language
[12] g Y guag
Specification — Second Edition. Addison-Wesley, 2000.

[13] J. Harrison. A machine-checked theory of floating point arithmetic. In Theorem
Proving in Higher Order Logics (TPHOLs), LNCS 1690, 1999.

[14] Marc Herbstritt. e-mail communication, May 2003. Chair of Computer
Architecture, Uni Freiburg.

[15] S. Horeth and R. Drechsler. Formal verification of word-level specifications. In
IEEFE Design, Automation and Test in Europe (DATE), 1999.

[16] Bart Jacobs. Java’s integral types in PVS. Submitted, 2003.

[17] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.
In Behavioral Specifications of Businesses and Systems. Kluwer, 1999.

[18] Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In POPL’95: Principles of Programming Languages, 1995.

[19] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, Massachusetts, 1996.

[20] J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program
provers. In TACAS00, LNCS 276, 2000.

[21] L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828. Springer, 1994.

[22] C. Pusch. Formalizing the Java Virtual Machine in Isabelle/HOL. Technical
Report TUM-19816, TU Miinchen, 1998.

[23] D. Sannella and A. Tarlecki. Algebraic methods for specification and formal
development of programs. ACM Computing Surveys, 31(3es), 1999.

[24] C. Scholl, B. Becker, and T. Weis. On WLCDs and the complexity of word-
level decision diagrams — a lower bound for division. Formal Methods in System
Design, 20(3), 2002.

[25] Sun Microsystems, Inc. Java Card™™ 2.1.1 Specifications — Release Notes, 2000.

[26] The Coq Development Team. The Coq Proof Assistant Reference Manual —
Version V7.3, 2002.

[27] G. Winskel. The Formal Semantics of Programming Languages. MIT Press,
1993.

140 Nicole Rauch and Burkhart Wolff

Part 11

Selected Papers:
Special Deduction for
Method Support

Correct and User-Friendly Implementations of
Transformation Systemsg

KonangT, T. Santeni, B. Wolff'

Tuniversitat Bremen , FB3 +GMD FIRST Berlin
P.O. Box 330440 Rudower Chaussee 5
D-28334 Bremen D-12489 Berlin

{bu,kol}@informatik.uni-bremen.de santen@first.gmd.de

Abstract. We present an approach to integrate several existing tools and
methods to a technical framework for correctly developing and executing
program transformations. The resulting systems enable program deriva-
tions in a user-friendly way.

We illustrate the approach by proving and implementing the
transformation Global Search on the basis of the tactical theorem prover
Isabelle. A graphical user-interface based on the X-Window toolkit Tk
provides user friendly access to the underlying machinery.

1 Introduction

Development by transformation is a prominent approach in formal program dev

ment (CIP [Baii85], PROSPECTRA [HK 93], KIDS [Smi 90]). Many case studi
have proven its feasibility and demonstrated how much more abstract and user-o
developments could be achieved than using usual post-verification approaches |
mental for systems like PVS [OSR 93]). One recent case study is [KW 95]; ¢
prominent one is [SPW 95] where a strategic transportation scheduling algorit
developed which is 200 times faster than the ones in practical use today. Unfc
tely, implementations of transformation systems tend to be complicated and ins
The correctness issue of transformation rules is usually not treated at the implel
tion level of existing systems.

In contrast to this, there is a family of "tactical theorem provers" in the trad
of LCF available with systems likdOL [GM 93] andlsabelle[Pau 94a], that are
both well-designed and powerful. Coming with an open system-design going bz
Milner, they allow for user-programmed extensions in a logically sound way.
there is recent prominent criticism that these provers, because of their "aca
(ivory tower) origins", have "historically placed more emphasis on log
foundations and less on usability" [Gor 95]. This is clearly one of the reasons ft
small acceptance of these provers in industry up to now.

In this paper, we demonstrate a technique to combine these two approache:
sults in asimpleimplementation design, in proven correct transformations which
easy to extend and to modify, and in a graphical user-interface that allows deve
to profit from the abstraction of the transformational approach. We claim tha

1 This work has been supported by the BMBF projéttsForM [Kri*95] and
ESPRESS

144 Kolyang, Thomas Santen and Burkhart Wolff

technique is applicable in a fairly wide range of problems, simply by modifying
extending our prototype implementation.

Our work integrates three existing and well documented public domain too
the tactical theorem prover Isabelle basedStemdard ML[HMM 86] and the X-
Window toolkit Tk [Ous 94]. As object-language, we chose higher-order logic (Ht
which is one instantiation of the generic system Isabelle with an objectalodis
delivered with the standard package. A subset of HOL formulas can easi
translated into functional programs (e.g. ML).

The basic idea of our approach is to separatéotiieal coreof a transformation
from the pragmatics of its application. Asynthesis theoreiih can be proven cor-
rect independently in the logics of the object language, whilattieal sugarwhich
often highly system dependeist,concerned with the concrete application in a de
lopment context, i.e. the construction of suitable substitutions, "hard-wi
quantifier eliminations and standard simplifications, together with user interacti
control this process. The distinction between synthesis theorem and tactical
establishes an important separation of concerns.

We illustrate our approach by the transformat@®iobal SearchHSmi 87] that
converts a non-constructive specification into a constructive one. This complex
formation has the character of a "design tactic" [Smi 90] or "design method" [HK
Other transformations likBivide-and-Conqueor Split of Postconditiomnd elemen-
tary transformations likeecursion removabr fusionalso fit into our framework.

We proceed as follows: after introducing the idea of synthesis theorems and
presentation of Isabelle, we present Global Search as a synthesis theorem and
correct within Isabelle/HOL. We sketch several possibilities of tactical program
our synthesis theorem. The resulting system is embedded into a user interface.
a small application example demonstrates the use of the resulting prototype sys

2 Transformations as Synthesis Theorems

2.1 The Concept

The core of our presentation is a general scheme of synthesis theorem#gieabf
formulas. The automatic construction of substitutions and dx#uction-technical
machinery, for short — the tactical sugar — is discussed in section 3.5.

Our intuition of "performing a program transformation" motivates several key
tions (cf. [HK 93]). A transformation is composed of iaput pattern Iwhich is
matched against an application context of a specification. This pattern is desig
be as general as possible and at the same time to be best supportable by at
matching procedures (which belong to the tactical sugar). From the result of ma
| against the specification at a specific position, an instance otitpat patterrO is
constructed automatically. All side conditions that canbeotreated by automatic
procedures and require theorem provingcaltected in thexpplicability condition V.
Usually, the output pattern contains function symbols that are introduced b
application of the transformation. They represent the design decisions of the
transformation step, i.e. auxiliary functions whose definitions have to be provide
the user. These items are calledgheameters B...P, of the transformation.

On the logical side, these items can be organised as a conditional equation:

OP1.P.VO I ~ O

Correct and User-Friendly Implementation of Transformation Systems 145

where~ is a transitive binary operator that typically stands for
. logical equality or equivalence in case of symmetric transformations ot

. the implicationd in case of classical refinement (the input pattern ha
follow from the output; in algebraic jargon: the model class of the ou
specification is included in the model class of the input specification) c

. the Scott-definedness ordering in case of "robust implementations

using object-logics like LCF (see [Pau 94a]).

This scheme is strong enough to capture a large variety of transformatio
from "Filter Fusion" [BM 93] to "Split of Postcondition" [HK 93]. These have be
presented in [KW 95]. The synthesis theorem for Global Search is discussed late

The separation into synthesis theorem and tactical sugar has the following ¢
gquence for the soundness of a transformation: The logical core can be withian
the logic in which it is represented. This can be done by showing that the syn
theorem follows from the basic axioms of the logic — or, in other words, the sy
sis theorem follows from eonservative extension of the core lo@ee below).

2.2 Introduction to Isabelle

Isabelle is aeneric theorem prover that supports a family of logics, e.g. first-or
logic (FOL), Zermelo-Frankedet theory (ZF), constructive type theory (CTT), tl
Logic of Computable Functions (LCF), and others. We only use its set-up for hi
order logic (HOL). Isabelle supports natural deduction style. Its principal infer:
techniques are resolution (based on higher-order unification) and term-rewr
Isabelle provides syntax for hierarchical theories (containing signatures and axiol

As an example, let us create the theory ListO from the theory HOL that cor
the basic rules of the logic. All input in the form of UNIX files or user input will
denoted with thisONT — enriched by the usual mathematical notationfpr]...
instead of ASCII-transcriptionsWe define the unary type constructist, its con-
structors ([], #) and the concatenati@n

List0 = HOL +
types list 1
arities list ;o (term)term
consts "It 2"a list” "M
"H#" 2 [an o list] - a list® (infixr 70)
"@" 2 "[a list, O list]) — O list" (infixl 60)
rules
app_mt "I@m = m"
app_cons "(a#n)@m = a#(n@m)"
end

Here, list belongs to the type universgerm of HOL and accepts types fron
term. This construct is a tribute to the genericity of Isabelle!"'is the function
space constructor, and the brackets denote curried funcfors:list] —» o list is

equivalent toa - a list— a list. The equality =" stems from HOL, while £" is

2 We do not distinguish quantifications and implications at the different logical le
throughout this paper; see [Pau 94a].

146 Kolyang, Thomas Santen and Burkhart Wolff

used to denote the definitional equality. The commerfls) @nd (infixl 70) are
pragmas setting up the parsing and pretty-printing machinery of Isabelle.

2.3 The Logic HOL

In this section, we will give a short overview of the concepts and the syntax
object-language HOL goes back to [Chu 40]; a more recent presentation is [An
In the formal methods community, it has achieved some acceptance, especi
hardware-verification. HOL is a classical logic with equality. It is based on t
functions denoted b)-abstractions like Xx.x". Function application is denoted b
f a. Although its type discipline incorporates polymorphism with type-classes (G
Haskell), in this paper we only use Milner-Polymorphism (as in ML).

Logical rules of HOL like:

P Q POQ
I (conjl) I (conjunctl)
POQ P
will be represented in Isabelle by
[?2P;?2Q O 2P 0?2Q 2P U?Q O 2P

where variables prefixed by a question mark are catleth-variablesTheir exact
meaning in the deduction process is discussed later.

2.4 Proving in Isabelle

Isabelle as a system is a set of function definitions in the ML-environment (or: "
base"). They represent a collection of function- and data type definitions.
notable are the three mutually dependent data tygesic, thm and (internal)
proof_state.
Isabelle supports two styles of theorem proving: forward proof and backward pro
Backward proving in Isabelle. The general scheme of a backward proof ct
sists of three steps:
(1) The initialisation of the internal "proof-state" with the formula to be
proven (the "goal"). It is done by the operation:
goal: theory -> string -> thm list
where thestring contains the textual representation of the formula
to be type-checked and proved witltieory.
(2) A refinement of the proof-state. It is performed with the operati
by : tactic -> unit
This refinement can be seen as a transformation of the proof-state by me
tactics and already proven theorems. Two of these are the following pi
built-in tactics
atac: int -> tactic rtac: thm -> int -> tactic
The integer parameters specify the subgoal to which the tactic is applied.
encapsulate the Isabelle meta-infererassumptior(basically "A" implies "A"
modulo unification) andresolution (essentially "A00 B" and "BO C"
implies "A 0 C" modulo unification)

Correct and User-Friendly Implementation of Transformation Systems 147

(3) The extraction of a theorem produced out of a proof-state with no subg
result: unit -> thm;
returns a value that can be bound to an arbitrary ML-identifier.

By composition of these operations on the proof-state, large proof-scripts ¢
organised in the *.ML files that are executed automatically when loading a theon

Forward proving in Isabelle. Forward reasoning mimics the classical wi
of constructing proof trees. The combination of two rules,ceayl andconjunctl
given above, can be done by using the resolution combinator (involving unificati

RS : thm * thm -> thm
in the form:

conjl RS conjunctl
which is evaluated by Isabelle to the derived rule:

1?2P;?2Q 0 2P
As simple example for higher-order unification, we consider the specialisation rul

Ox.?2Px 0 2P ?x (spec)

With this HOL rule it is possible via forward proving in a theorem, ¢
Ovy.y=a, to eliminate the quantification and to replace the bound variable
the meta-variable?x. The resulting formula would b2 = a. We can interpret the
meta-variable?x as a "hole" in the formula that can be filled later by substituti
(usually produced as a consequence of unification inatde andrtac). This
possibility of "postponing substitutions” and of transforming theorems i
programmed, but logically sound way, is important for our approach.

Isabelle provides substantially more machinery, especially for people who wi
set-up their own logic or who yearn for a higher degree of automatisation. How

with the subset presented here, extended by some variants, it is already pos:
perform substantial proofs and to describe the relevant operations in this paper.

2.5 Conservative Extension in HOL

The introduction of new axioms ("rules" in caselddt0) while building a new
theory is an extremely dangerous method, since the resulting theory may easily
consistent. Hence it is necessary to recall that there is a number of syntactic sc
for specification-extension that maintain the consistency of the extended one.
more formal and very readable account on "conservative extensions scheme
reader is referred to [GM 93]). Some schemes are:
¢ theconstant definitiofc =t" or "c x =t x" of a fresh constant symbolby a
closed expressiomot containing,
¢ thetype definition(a set of axioms stating an isomorphism between a r
empty subset of a base-type and the new type to be defined),
« a set of equations formingmimitive recursive schemever a fresh constan
symbolf,
« aset of equations formingweell-founded recursive scheroeer a fresh symbd!
The basic idea of these extension schemes is to avoid general recursion. i
they introduce axioms only in a controlled way. The desired properties have to |
rived from these. Building up large theories by methodically using conservative €
sions used to be a quite tedious enterprise, but recent advances in the iregpibelle
mentation have substantially improved the support for this approach [Pau 94b].

148 Kolyang, Thomas Santen and Burkhart Wolff

3 Global Search Transformation

We use the approach sketched in section 2 to implement a transformation ba
the theory ofGlobal Searchalgorithms that has been developed at Kestrel Insti
and implemented in thKestrel Interactive Development SystéhiDS) [Smi 87,
Smi 90]. After presenting the basic idea of global search, we show how the t
can be formalised in Isabelle/HOL. We prove a synthesis theorem under the re:
theory, and finally provide a tactic program (the sugar) converting the synthesis
rem into an executable transformation.

3.1 The Algorithm Design Theory Global Search

The global search theory characterises a large class of algorithmic problems tl
solvable by search or optimisation algorithms. It covers problems typically so
e.g., by backtracking, branch-and-bound, or simplex algorithms.

For the purpose of this paper, we closely stick to the notation used in [Sm
There, algorithms are described by input / output predicatpsolflem specification
is a quadruplé® = [D,R,l,00whereD is the input domain an@ is the output range
of the functionf to synthesise. The predicdtedescribes the admissible inputs, al
O describes the input / output behaviouf.oHencef is a solution td” if

Ox:D. I(x) Oy =f(x) O O(x, f(x))

A design theorextends a problem specification by additional functions. It sti
sufficient properties of these functions to formulate a schematic algorithm that <
the problem correctlyThe basic idea of global search is to associate inpufith
search spacethat initially contain all solutiong with O(x,2). Search is then perfor:
med by splitting search spaces into "smaller" ones until solutions are directly e
table. This idea is captured in the design theory of Figure 3.1.1.

sortsD, R, R'

operations
|:D - Bool Satisfiess Rx R' - Bool
O:D xR - Bool Split: D x R'x R' - Bool
I':DxR'- Bool Extract: Rx R' — Bool
r's:D - R <:R'xR'- Bool

axioms

GSO 1(x) O 1'(x,(r' (X))
GS1 I(x) OI'(x,r") OSplit(x,r',s) O I'(x,s) Os'<r
GS2 1(X) 0O(x,2) O Satisfiegzr'o(X))
GS3 I(x) OI'(x,r') O Satisfiegz,r') = (ds". Split*(x,r',s") O Extract(z,s")
GS5 < is a well-founded ordering dr'
Figure 3.1.1: Global Search Theory.

The sortR' is the type of search space descriptbrdefines legal descriptors. Fc
an inputx, r'p andSplit describe the search tree for solutiangith O(x,2): its root is

3 In [Smi 87], axiomGs4 deals with necessary filters, which we do not consider in
paper. Still, we call our last axiomss to stay consistent with the literature.

Correct and User-Friendly Implementation of Transformation Systems 149

r'o(x), the initial search space; a descendant relation on nodes is giv@pliby
Split(x,r',s") is true ifs'is a (direct) subspace offor an inputx. Split* is defined by

Split' (x,r',s) = (OkN. Spli(x,r',s")
Splid(x,r',s) = (' =
Splittl(x,r',s) = (Ot". Split(x,r' ,t') O Split(x,t',s"))
The possible solutions that can be extracted from amaedeExtraci{zr').

Axioms GS0 andGS1 ensure that all considered search spaces are legal. A
GS1 additionally ensures that search spaces can be split only finitely often, i.e
the search tree has a finite def#$2 requires the initial search space to contain
feasible solutions.

By axiomGS3, Satisfiegz,r') describes the solutiozscontained in a search spac
r' that can be found with finite effort: there must exist a finite path in the searct
fromr' to a search spasifrom whichz can be extracted.

Under the global search theory, we can 8p#t andExtractto get an algorithm
schema satisfying the problem specificatifnR,|,0 Following [Smi 87], we ex-
press the algorithm by input / output predicates.

I(x) OI'(x,r") 0 Fgdx,r',2 = (Extraci(zr') 0O0(x,2)
O (ds" Split(x,r',s") O Fgyx,s',2)))
I(X) O F(x,2) =Fgax,I"o(X),2)

F computes a solution for some admissible inputby searching in the initial
search spaceq(x). Searching is performed by the auxiliary functkegs. if z is not
directly extractable from this search space is split and its subspaces are searche

The global search theory described above is relatively simple. More refined
incorporate filters to prune search spaces. The most elaborate one stated in [SI
uses a refinement relation on search spaces and cutting constraints to profoun
ploit the problem domain and synthesise highly efficient search algorithms.

3.2 Formalisation in Isabelle/HOL

How do we know that a particular application of Global Search is correct, i.e.
can we be sure that we get a correct implementation of our problem specific
when we instantiate the abstract global search algorithm on the basis of palttic
r'o, Satisfies Split, Extractand < defined in our problem domain? There are two
asons why correctness might be spoiled: we may make a mistake in the particu
plication, e.g. choosing components that do not fulfil the global search axiom
more fundamentally, the implementation of the transformation may be faulty, i.¢
actually implemented transformation may be unsound. It is not in question her
"something" like the theory presented in section 3.1 describes a mathematically
transformation. But it is a long way from a paper-and-pencil proven "idea" of a t
formation to its actual implementation and application. We must make sure th
transition from idea to implementation is traceable and based on well-understooc
ciples, and that it leads tossaundlyimplementedransformation.

In contrast to the KIDS system which is not based on a general logical frame
but implements transformations like Global Search directly, we have chosen hi
order logic as implemented in Isabelle. Implementing the transformation in
system first of all means formalising the description of global search give

150 Kolyang, Thomas Santen and Burkhart Wolff

section 3.1 in a Isabelle/HOL theory. The Isabelle theory is sketched ir
following. It is based on the HOL theories of natural numbers and sets.

GlobalSearch = Nat + Set +

consts
GSS : "[d - bool,[d, pT — bool,
[, p, P71 - bool,
[P, P1 — bool,[p, p] —» bool] - bool"
defs

REC_def "REC Fgs | I' Extract Out Split =
Oxrz.IxOrxr0d

Fgs x rz = (Extract z r [J Out x z [
(O s.Split x rs' [Fgs x s' z))"

GS3 _def "GS3 I I' Split Satisfies Extract =
Oxzr.ixOrxrd

Satisfies z r' = (L s". rep_s Split x r' s' [J Extract z s)"

GSA_def "GSTHEORY | Out I' rO Split Extract subspace Satisfies =

GSO1I'r0 O
GS1 | I' Split subspace 0
GS2 | Out Satisfies r0 O
GS3 | I' Split Satisfies Extract 0

GS5 subspace"
Figure 3.2.1: Isabelle theory of Global Search.

Using the definitional equalitg, we define higher-order predicat®s1 through
GS5 for the global search axioms. Their conjunct@®THEORY gives us a predicate
that represents the global search axiomatization. We chose to formalise the par
sortsD, R andR' of Figure 3.1.1 by makingS1 throughGS5 polymorphic and use
the type variables, p andp’, respectively. In this way, we need not explicitly inste
tiate parameter sorts when applying the Global Search transformation: Isabelle
inference system will find suitable sorts for us. The predicaiesn andrep_s are
defined as primitive recursors drat, which construcsplit andSplit* from a given
Split REC provides an abbreviation of the characteristic equatioRgar

Building the theory in this way ensures consistency since each axiom is for
sed as a conservative constant definition. We indicate this by the keghefercnd
the system checks for conservativity of these axioms as sketched in section 2.5

3.3 The Global Search Synthesis Theorem
The following synthesis theorem for global search is based on tGéargiSearch:

[0 I' r0 Split Extract subspace Satisfies.
GSTHEORY | Out I' rO Split Extract subspace Satisfies [
(IxO Fxz=0utx2)
(GS) =
(Ix O (OFgs. REC Fgs | I' Extract Out Split JF x z = Fgs x (r0 x) z))

Correct and User-Friendly Implementation of Transformation Systems 151

Assuming a global search theo(@S) relates the problem specification to the sct
matic search algorithm. The functidtys we get when composinig I', Extract,
Out, andSplit according taREC finds exactly the solutions that are specified by
Out if the search starts with the initial search sp@¢e) for some legal input.

Note that(GS) has the form of synthesis theorems introduced in section 2.1.
components of the problem specification are free variables, while the bound var
I' throughSatisfies serve as parameters to the transformation obtained(fs&n

What are axioms in the theory of Figure 3.1.1 appears as the pre
(GSTHEORY ...) in the implication ofGS). Therefore, an inconsistency in Figui
3.1.1 can not affect the "global" consistency of the Isabelle theory we are worki
If the theory of global search algorithms were inconsistent, this would only affec
applicability of the global search transformation: the synthesis theorem would
ally hold but the corresponding transformation could never be applied.

3.4 Mechanical Proof of the Synthesis Theorem

Figure 3.4.1 shows the structure of the proo{®@$) that we have carried out ir
Isabelle. To keep the picture readable, we omit most of the functions' parameter

r- - - - - - - - - - = = T
| (RECFgs..) (6)|Out|:Extract z s'Usplitkr' s' O Fgs | |
| ¢ I"'xr |
| — — |
| (4)|Fgs O SatisfiesTOut | (5) | SatisfiesTOut O Fgs | |
I I
I — I
| (3) | (Satisfies[Out) = ngl |
(D|REC Fgs ... LI x U Outx z = Fgs x (pX)z (2) | REC(SatisfiesTOut)...

N

GS Synthesis
Theorem

Figure 3.4.1: Proof Structure

The proof proceeds backwards in a goal-directed fashion. The first steps are
ply the introduction rules for universal quantification and implication and exhibit
equality

(IxO Fxz=0utx2)

(Ix O (OFgs. REC Fgs | I' Extract Out Split JF x z = Fgs x (r0 x) z))

We prove this equality by mutual implication. The "right-to-left" direction is 1
hard one, which after some simplification reduces to Lemma (1):

(1) I x 0 REC Fgs I I' Extract Out Split [1 Out x z = Fgs x (r0 x) z
The central proof-idea is to find a closed form for the recursively deffiged

152 Kolyang, Thomas Santen and Burkhart Wolff

(3) REC Fgs [(Satisfies zr JOutxz) =Fgs xr' z

This lemma says that any functiégs satisfying the recursive equati®EC be-
haves like the conjunction &atisfies andOut. By GS3, Satisfies z r' means that
we only need finitely many applications 8plit to find a subspace of where we
can extract from. On the other handgs x r' z is defined by recursively splittinc
r' and extracting solutions that additionally fulfilOut x z — the latter condition
being the only intuitive difference between the two predicates. Once we have p
(3), we can us&S2 to specialise it and show (1).

With Lemma (3) in mind, it is easy to prove the "left-to-right" directiofGs).
Here, we basically have to show that there exists a funegsfulfilling REC. From
(3) we know thatf a functionFgs satisfiesREC then it behaves like the conjunctio
of Satisfies andOut. So we use this conjunction — suitably abstracted — as a
ness for the existential quantification and show that it indeed sai&ies

The proof of (3) does the real work. Here, we generally assumEgbattisfies
REC, and that the input and search spaceare admissible, which is indicated by tt
dashed frame in Figure 3.4.1. Again, we prove the equality by mutual implicatior
reduce (3) to (4) and (5). Both can be interpreted computationally. Lemma (4)
with termination and correctness of solutions produceegsy

(4) Fgs x r' z [J (Satisfies z r' [Out x z)

We not only have to show that all outpuproduced byFgs is a feasible solu-
tion, i.e.Out x z holds, but also that it can be extracted from the input search <
r' by finitely many Split's, i.e.Satisfies z r' holds Here it is crucial thaBplit
produces a decreasing chain of search spaces with respect to a well-founded ¢
(cf. GS1 andGS5). Only this requirement allows us to interpREC as a definition
of a recursive function. Otherwise predicates that are true on cycgmittd where
Extract is false would satisflREC. GS5 allows us to use a theory of well-founde
sets that comes with Isabelle/HOL: we prove (4) by well-founded inductign on

Lemma (5) deals with completeness of the set of solutions produdegksbwgll
feasible solutions are indeed foundHys.

(5) (Satisfies z r JOutxz) [Fgsxr' z

The proof idea for (5) is induction on the length of search paths, i.e. the nkinr
of Split's leading to the search space from which the solatiman directly be extrac-
ted. Lemma (6) formally captures this idea. It is gained from (5) by unfolding the
nitions of Satisfies andrep_s, i.e. Split".

Global search is an example of a non-trivial transformation. The entire |
script for(GS) consists of about 140 tactics' applications. Isabelle under Standar
of New Jersey takes about 60 CPU seconds to execute it on a Sun Sparc 5 w
tion. We needed several attempts to develop the global search theory and the
the synthesis theorem in Isabelle. The first version of the theory was
conservative and explicitly introduced parameter 9oy andR'. We then abolished
these sorts and used polymorphism. The next stage in the theory development
come to the conservative theory sketched in Figure 3.2.1.

The proofs had to be adapted to each rephrasal of the theory. The structure
proofs also changed several times due to new proof ideas — the latest being tc

Correct and User-Friendly Implementation of Transformation Systems 153

duce Lemma (3) — and due to changes in the formulation of the synthesis theore
first version only was an implication from the algorithm schema to the problem
cification. In this version, we also left out the preconditicr] I' x r in the defini-
tion of REC. This formulation of the theorem was still correct but its premises w«
have been too strong to be practically useful. Only after we introduced Lemma (:
tried to prove equality instead of implication, we became aware of the missing pr
dition.

Despite of all these changes to the theory, it was relatively easy to adapt the
scripts. Simple "replay until failure" was usually sufficient to find the points w
changes had to be made, and these were mostly local ones like inserting a tacti
establish some syntactic structure, thatnext tactic depended on.

3.5 Tactical Sugar for Global Search

Global Search is used in algorithm construction by providing a mappingGiom
balSearch to an extension of the concrete problem theory such that the global s
axioms are theorems under the extended problem theory. We can apply the san
ping to the schematic algorithm and get a solution for our problem, i.e. we
transformed the non-constructive problem specification into a constructive form.
algorithm is usually inefficient and has to be optimised by further transformation

In [Smi 90, SPW 95], elaborate techniques to find a global search algorithm
given problem specification are described. They are basadilmary of global search
theories that basically describe the structures of search trees for various data stri

While it is certainly possible to implement these techniques in our frameworl
focus on the description of the basics of our approach and restrain ourselves tc
simpler tactical sugar: the proven synthesis theorem is used to define an ML fur

fun GLOBAL_SEARCH : nat * string list - tactic

that takes the subgoal number and the list of parameters to produce a tacti
function successively removes the universal quantification via forward proof anc
spec (see section 2.4). Similarly, the implication and the equality are converte
application of the modus ponens and substitutivity rule. These operations convi
synthesis theorem into the following version:

[| GSTHEORY ?I ?0ut ?I' ?r0 ?Split ?Extract ?subspace ?Satisfies ;
?1?x O (OFgs. REC Fgs ?I ?I' ?Extract ?0ut ?Split [
?F ?x ?z = Fgs ?x (?r0 ?x) ?2) []
O (21 2x O ?2F ?2x ?z = ?20ut ?2x ?z)

FurthermoreGLOBAL_SEARCH successively substitutes the parameters (after |
sing and typechecking the string list) into the meta-variables. Finally, the res
applied viartac to a particular subgoal — this will set the remaining variaf#€s
?x and?z) and complete the mapping to the problem theory.

There are different versions of tactical sugar conceivable — one could leave
parameters uninstantiated or massage the conclusion into a different syntactice
using more forward resolution steps. More complex tactics based on the syn
theorem could employ the substitution rule for equality of higher-order logic.
would not break up the equality {6S) but apply it to a subterm of a possibly cor
plex goal. The choice how to come to the parameters of the global search 1
would remain the same as before.

154 Kolyang, Thomas Santen and Burkhart Wolff

Note that the process of transforming the synthesis theorem into a logica
which is applied by some ML function is "safe". The transformations used ther
all based on proven correct rules and the primitive theorem manipulating functic
Isabelle, so nothing incorrect can happen — assuming the core of Isabelle is so

Proving the correctness of tactical sugar is not necessary in the sense that
ply controls the application of basic axioms and lemmas. This control may leat
dead end anthil, or it might prove something that we did not want to prove, bt
can never produce a proof for something that would not be provable in the the
prover without this tactical program. Of course, thglementatiorfor "apply an
axiom" which represents the atoms of our tactical control programs migt
incorrect or the basic rules of the logic might be unsound. But proving the correc
of "apply an axiom" in the absolute sense would require a formalisation
verification of the core theorem prover. As a consequence, this "meta-encoding
not fully solve the problem since it raises the same problems of correctness
meta-level.

4 YATS — the System

YATS can be regarded as a step towards an IFDi@&grated Formal Developmer

Support Environment) following the philosophy of [BH 95] or [K®5]. Such
systems support many stages of the formal development, from initial funct
specifications, through design specifications and refinement. More elaborated sy
will also provide a support for specification animation, version-management etc.

We believe that a high-quality graphical user interface (GUI) plays a key rol
both the acceptance and productivity of an IFDSE. To date, there is no cor
agreement on what could be a good design of a GUI for a theorem prover or an |
(we admit that we have not found the definite answer either), although there are
remarkable efforts in this direction.

Our GUI should be completely independent from Isabelle and as independ
possible from our system environment and our hardware-platform. In the past, tl
velopment of many systems (PROSPECTRA, for example) has been trapped b
complex and monolithic design. An answer to this dilemma of monolithic des
can be @eterogeneousne with few complementary components that are systen
their own right. This way it is possible to integrate work of independent rese
groups. The main task of an heterogeneous design is to provide suitably abstr:
flexible interfaces in order to enable an easy and stable integration of new versi
its components.

For our GUI, we chose the toolkik [Ous 94] to achieve this goal. Although w
wish to profit from Tk as a highly portable interface to X-Windows, we do not
lieve that the command-language Tcl on top of Tk should be used for larger sof
developments. The major reason is that Tcl supports only one data-structure -
— in a way similar to LISP and its lists. Tcl is an untyped language without
structures and lacks higher modularisation concepts.

For this reason, we implemented an SML interface for Tk, caleld tk It is a
component in its own right and provides a toolkit for standard windows, e.g. a s
tution window, that can be reused by research groups working on, e.g., anothe
rem prover interface. Based on sml_tk, the GUI itself is implemented as an
functor, calledsawin, which is parametrised by a list of tactical-sugar functions. -
system YATS is an instantiation of this functor with a list containing the func

Correct and User-Friendly Implementation of Transformation Systems 155

GLOBAL_SEARCH (see section 3.5). According to the instantiation, isawin autorn
cally produces new interface components and new dialogues with the user — tl
plementor of a transformation has only to provide its proof and its tactical sugar.

The following diagram gives a short overview over the stack of main compor
(the size of the blocks roughly corresponds to their implementation size):

GIobaISearch-rE —
isawin

3 ™
T

e e T T T T e e T T T T T
L o E A

R T T Y R T T Y {
E [U

T T T T T T T T T T
A e S

e T T T N W e e T T T T T W

Isabelle/HOL

Figure 4.0.1: The System architecture

Note that the formal proof of Global Search and its integration into the sy
contributes only to a very small part to the whole system. This justifies our ¢
that the design allows the implementors to concentrate on the real intellectue
blem of designing and verifying new transformations. Moreover, the instantiatic
isawin with a new transformation is a question of a few seconds. Even if a very
rent state of technology (hardware and software) has to be taken into considera
comparison to PROSPECTRA, for example, where a complete recompilation wi
cessary that took 2 hours [GL 93], this is quite remarkable.

4.1 The interface sml_tk

Our interface evolved from an imperative version of a purely functional, monad-
encapsulation of Tk in Gofer [VTS 95]. It has a more functional flavour than
interface available for caml/light [PR 95]. It is characterised by the following featt

o abstract data-types for options, configurations, packing information

° abstract data-type for graphical objects, ca@tbets

° events on the interface (mouse clicks, key strokes, etc) are mapp
SML functions associated to widgets wiadings

b a toolkit for defining a problem specific set of window types.

To give a flavour of programming in sml_tk, let us have a brief look at a fragme
the essential tree-like data type for widgets used to describe the content of windc

datatype Widget =
Frame of Widld * Widget list * Pack list * Configure list * Binding list
| Label of Widld * Pack list * Configure list * Binding list
| Entry of Widld * Pack list * Configure list * Binding list

type Window = (Winld * Title * (Widget)list * Action);
The following fragment is taken from the description of a small standard-windo
the toolkit:

fun input enteraction =
let fun mrs () = let val nm = selectTextAll "el"
in enteraction nm ();closeWindow "enter" end
in Entry("el",[],[Width 20], [Bind("<Return>",mrs)]) end,

156 Kolyang, Thomas Santen and Burkhart Wolff

The functioninput yields an Entry-Widget [Ous 94], that represents a graphical f
allowing to enter a string. It has the naeleand a width of 20 characters. Associat
to el, there is a functiomrs that is evaluated whenever the eveReturn> hap-
pens.mrs selects the inserted text, passes it to the parameter fuectieraction
and closes the surrounding window cakeder.

4.2 The GUI of YATS

The main window of YATS (as well as any other instance of isawin) consists of
major components: An edit-window (where the editing facilities like Cut-Copy-P
are already provided by Tk without writing any additional line of code in the interf
and a prover-window to which the transformation facilities (a result of the insta
tion of isawin) and the operations controlling Isabelle are associated. It is possi
browse theories and ML files in suitable subwindows with their associated ax
and theorems (see Figure 4.2.1 below). The user-interface for the prover part is
the focus of this paper.

Rl R
= VATE - Tat JeaHine Traaatarratam St PR A 24) '? ,
=il Hez. e

b G
(T 1w =
S Do Theamr [| thws dnery
4v 102 BSEUZ.Uhyev 1.2 1396707706 16157246 sunton Ene # 3 R 3
Bu' w Wermiunt Study fue Tostical dungacing of ylulul scard BEEEl L x
“ = Wk g
Artih A W it
BSEUZ = MaL + S+ Clhure Bk H I
wuinls ame - T
Fun b A mil
- 20 *[0'0 'Ahiiuids RLD =3 Lluedy sty "0 "By RN SR Lol
::Ip‘::l 3 T, 'm:,--,:'m, 'ur:l = hanl, :?:, “Kh, 'w:l - Ihm-l' ?:m :" ": 1L
% wA Hym
HOL bk e 1 g W
[TRTRNTRL TR MRS ST [LS R [— e (o
FEL 110 00 “Hhiitwede "RY =3 luul, A\ L wax il
. GE ™ [N Wit woml Sz 0
ul b
. Hhl =) hrall = hanl tat il
|| on il 1z 0]
[t18 . “Bhzzardl =) heal,“ll =3 ‘BRI =) hanl™ .
Bl ;CAlitiund] 2 buwls fred Sl v
, ‘BRI =) hral,<"Hh 4 "Bhil rakl =) banl™ 2| Prelur [CINETRE ST TEY
Pure wl nahect
Eel | wl i
Trie Prover Eckct Help Ecep ez Kt ¥
Eum -
Nellmilofnn Y Trarc!
unk / [0 l
' ™ Potwe iy
mak_dnirt &
Havaame 112007 11k, A6 =) 2051k] 1] =) 200 _I
7

Figure 4.2.1: Screenshot of YATS (Overview)

Usually, by double-click on an arbitrary widget of the interface, the user cal
more information, and by triple-clicks suitable operations on the activated uni
executed. For example, when pointing to a subgoal in the prover-state-widget,
ble-click will inform the user on what transformation or Isabelle-command will
executed (due to settings and other information inferred by the system), while a
click performs this command.

Correct and User-Friendly Implementation of Transformation Systems 157

4.3 An Application Example

In this section we use our system to develop a global search algorithrr
enumerates all maps from a finite &kto a finite sel. We take the global searc
theory for this algorithmgs_finite_mappingsrom [Smi 87]. In KIDS, abstract anc
simple theories likgs_finite_mappingare used to describe search patterns on pi
cular data structures. To develop a search algorithm for a particular problerr
KIDS means tespecialisesuch a "pattern theory" to the given problem specificat
(see [Smi 90]). Since the specialisation procedure as well as the pattern theor
hard-wired into KIDS, their correctness can not be guaranteed within the systen
development of "pattern theories" can not rely on specialisation but must use dif
tactical sugar like we have implemented in YATS.

The problem specification fags_finite_mappings based on a library theory ¢
finite maps:

F — fin_maps

0 — O set X [set p — (a,B) Fmap

I — A(U,V). Finu OFinVv Out — A (U,V) N. N O Map(U,V)

We wish to synthesise a function calli@d maps that transforms pairs of set
over typesa andf3 to finite maps whose domains are sets avand whose ranges
are sets ovep, i.e. members ofa, B) Fmap. For finite input setdJ andV the
function must return a mayp with domainU and a range iN. The predicatap is
defined by

Map(U,V)={ M|domM=uO0ObOdomM. MAb OV}
Note that we need an explicit operatidto apply maps because their tyje)
Fmap is different form the HOL function type.

To develop an algorithm for the problem, we chose the theory of finite ma|
the logical context (just by activating it via a mouse-click) and enter the (sli
massaged) specification as a goal into YATS as shown in Figure 4.3.1.

7| Enter window

% <U,¥), UsFin{U} & V:Fin{V¥})(A,B}

->
Enter Goal: (fin_naps (A,B) N =
% (U,¥) N, N : Hap<U,¥)) (A,B) M)

Figure 4.3.1: Entering the transformation goal

We now apply the transformatidblobalsearch of section 3.5. First of all, this
makes Isabelle match the goal with the transformation rule and set up the subst
of meta-variables and type variables for the problem specification. The next s
the creative part of the transformation: we have to provide the parameter:
establish a global search theory. To date, as Figure 4.3.2 shows, this is dc
explicitly entering a substitution for the parameters.

158 Kolyang, Thomas Santen and Burkhart Wolff

] Enter Substitution N
[ix > [% (UMW) (STM). SUnT=U&SIntT ={} & M:Map(S.\)
Jro > % UM). (@ UMD
[split > [@6UV) (S TM) (8T M).EXab. (T & (b:v:'b set) & (8", T M) = (S = a s
|Extract > [NETM.T=}aN=M
[subspace 1> |space((STM) (S'TM).S <=§' &S ~=8)
|satisfies > % N(S,TM). (ALL x. % : S—— Nex = Wax)
| |
Ok |
|

Figure 4.3.2: Entering parameter substitution
In mathematical notation, the substitution looks as follows:
I —AUV)(S,TM).sOT=u0sSn T=0 OM O Map(S,V)

r'o — A (UV). (0, U, {])
Split — AUV (S TM) (ST M).(3 ab.alTObOV

O(s T.m)=(s O{a}, T -{a}, MO {a— b))
Extract —AN(S,TM).T=00ON=M

subspace > space(A (S,T,M) (S, T.M).sOS)

Satisfies — AN(S,T,M). (O xOS.NAx=M~"x)

The crucial part here is to find a representation of search spaces and a s
Split based on that representation. Our search idea is to successively extend a
map until its domain encompasses alUofTherefore, we model search spaces by 1
ples(S,T,M) whereS andT partitionU andM is a map to/ with domainS. Split—
ting a search space means to exteroly a new pair mapping a not yet used mem|
a of U to some arbitrary valule of V. The operatiori] overwrites the first map or
the domain of the second, af@d— b} mapsa exactly tob. The subspace relation ol
search spaces is induced by the strict subset relatiShwhich we for-malise using
the library functiorspace that converts an ordering function into its graph. Given
transformation above, Isabelle computes the type of search spaces auto—matica

p'— O set X 3 set x (a, B) Fmap

After type checking the parameter substitution, YATS responds with the follc
proof state, containing the proof obligations and the synthesised "program":

Trafos Prover Sekect Help
PROOF-0OBLIGATIONS: __\V
1., GSO (%U,¥>, U : Fin U & VY : Fin V)

ULV (S,T,H), SUnT=U8SInt T=¢€38&H: Hap (S, V))
AU,VY, (€3, U, £13))
2. GS1 (ZU,V). U :FinU& Y : Fin V)
G,V (ST, SUnT-U&SIntT-U&N Hap ¢S, ¥))
U, Y)Y (S,T,H) (57,17,
?ab.,a:T8&b: V&(S T, W) =
<S5 Un {a} T-ia} H <+ f£la := bl3))
(space(%(STﬂ)(STn) S5 <= S5’ llS""'S))
3. 6S2 (%(U) U:FinU&8V: Fin V) {%CU,¥> H. N : N
M. L x x2S ->H~x=HA)(%(UV) (U U €13
4. GS3 (%(U V) U FmI.I&V Fin ¥)
(%(UV)(STH) SUnT-U&SIntT-E}ﬂN Hap ¢S, ¥}
(U, Y)Y (S,T,H) (57,T7,H%),
?ab, a: Tab V&(S'.T’,H
(S Un fa3, T- fa3, M <+ fla := bl3))
(%N (S,T,M). ! x. x 2 N”n=ﬂ‘x)(%H(STH) T=838HN=m ||
5. GS5 (space (%{S,T,H> (S~ T H) §<=5"88 "=

PROGRAH:

ZU,¥), U : Fin U8 V : Fin V) (A, B) -=>

{? Fgs. REC Fgs (%{U,¥), U : Fin U & V¥ : Fin V)
U,V (S,T,H), SUnT=U8SIntT=¢38H: Hap (S, V)) ¥

Figure 4.3.3: The resulting proof state

Correct and User-Friendly Implementation of Transformation Systems 159

Now, we may use Isabelle to verify the proof obligations. At an arbitrary poir
the development, we may decide to "freeze" the complete proof state i.e. con
into an Isabelle theory containing the proof state as the implication: "if
(remaining) proof obligations hold, then the program is equivalent to the spec
tion". Later, we can reload the frozen proof state and resume the development.

Although a small exampléin_maps demonstrates the virtues of top-down dev
opment via stepwise refinement in a transformational setting. Simply by indici
to the system which transformation shall be applied to a specification, YATS
check if the transformation is applicable, and systematically leads the user -
necessary design decisions and proof obligations.

5 Discussion

We have shown how to implement transformation systems in a systematic wa
clearly separates tteoundnessssues of transformations, theagmaticsof their ap-
plication, and theipresentatiorto developers at the user interface.

For several reasons, representing the logical content of transformations by s
sis theorems highly increases the users' confidence in single transformation ste
thereby in the correctness of software they develop with the implemented systen

« Several attempts to construct a new transformation are usually needed 1
is indeed expressed in a correct and useful form. Qirazgtically usefutrans-
formations must capture large and complex design steps, they are diffic
conceive and implement by human developers. Here, a mechanical proof
synthesis theorem may be useful to increase confidence in the soundnes:
transformation. Moreover, a proof can be usefulind the final shape of a
transformation.

» Separating transformations into logical core and tactical sugar clearly ider
the parts of the implementation that guarantee correctness of the resultin
ware. Program errors in the tactical sugar parts of the system or the user
face can in no way lead to logically incorrect results of transformations.

* Itis often possible to formalise transformation concepts like "Divide-and-C
quer" in different synthesis theorems. With our approach, it is easy to rela
specialise and to combine synthesis theorems to form new transformation

e Itis conceivable to extend our system dynamically by proving the synth
theorems which are sugared in a standardised way automatically.

« Different specification formalisms like CSP and Z have been represent
HOL. The representation of transformation rules as synthesis theorems |
des a means to study rules in combined multi-formalism environments.

The tactical theorem prover is the core of our system. It is not only used to |
synthesis theorems but also, based on its meta-variables and deduction facili
implement transformation applications. We have shown that this can be done
little effort. Moreover, in [HSZ 95], we have demonstrated a systematic approa
build tactical sugar.

The user-interface description and command language Tcl/Tk has seen a tt
dous success in the recent years. From our experience, the X-Window tooll
seems to offer "the right abstraction" for building user interfaces. However, the d
of our parameterized interface and our productivity to code it profited substan
from the embedding of Tk into SML with its typing and modularisation concepts.

160 Kolyang, Thomas Santen and Burkhart Wolff

5.1 Related Work

The transformational approach to program development has a long tradition. St
from the Munich CIP project [Bdi85], many studies have stressed the importanc
the approach. During the PROSPECTRA project [HK 93], a system has been d
ped that enabled the formalisation of transformation rules and their use durir
software development process.

In KIDS [Smi 91], programs are developed by transforngraplem specificati-
onsto programs. First, high-level transformations such as global search are u
come from the problem specification to a (inefficient) program. This program is
optimised by low-level program transformations like finite differencing or c
distinction.

While the research in the context of KIDS has contributed much in the area c
thematically describing complex transformations and tactical sugar for their succ
application, a shortcoming of the implemented system is that there is no easy \
convince oneself of the soundness of the implemented transformations. Our
focuses on this aspect and may thus be regarded complementary to the KIDS w

Kreitz [Kre 93] gives mechanical proofs of global search theories in a constru
type theory, namely Nuprl [Con 86]. He aims at capturing even the pragmati
transformation applications in a logical framework and attempts to extract syni
tactics from the computational content of constructive proofs. In our approach, f
logic is used only to treat the soundness of transformations. This admits varyir
grees of sophistication of tactical sugar: we can easily have different tactics fi
same synthesis theorem. To achieve the same effect, Kreitz would have to provi
ferentproofsof the theorem, each encoding a different approach to its application

Basin's work [Bas 94] represents an approach to logic program synthesis al
plemented in Isabelle. It is based on the Whelk logic that has been proposed a
dation. The rules of Whelk are derived in Isabelle. This work focuses on founda
issues rather than on a practical system implementation.

The recent formation of new workshops show a growing interest in the desig
implementation of graphical user interfaces for both theorem provers and IFDS
notable implementation is the TkKHOLWorkbench currently developed in Cambi
[Sym 95], another one is [CO 95] for Isabelle. Although these interfaces current
clearly superior to ours it is predominantly implemented in Tcl and not in ML.
this reason, we believe that our approach offers a higher potential of growtl
reusability for similar systems.

5.2 Future Work

Our implementation to date is a prototype to illustrate the approach. To make it
tically usable, two improvements have to be made: we need to extend the libr
transformations and we netlincorporate a standard specification language whic
used in practice.

Incorporating more standard transformations from the literature is easy. The
dardised form of synthesis theorems even allows us to develop a set of "meta
formations" — as ML functions — yielding transformations from synthesis theor
automatically. Meta-transformations might implement different ways to deal
application conditions and parameters. As we have mentioned in section 3.5, ve
tional approaches supplying the parameters directly and leaving application conc
as subgoals to verify are as well as possible as constructive approaches that -

Correct and User-Friendly Implementation of Transformation Systems 161

matically or interactively — synthesise parameters while proving application cc
tions. Different techniques to match an input pattern against a goal are possible

As for the use of a standard specification language, research is going on to
ment support for, e.g., Z in Isabelle. Proving suitable synthesis theorems in the
cal representation of such a specification language makes our approach imme
applicable to that language. This work is partly an objective of the project UniF

[Kri T95].

Acknowledgement.We would like to thank Maritta Heisel for many discussic
on synthesis theorems, and two anonymous referees for very extensive and cc
tive comments.

References

[And 86] Andrews, P.B.,An Introduction to Mathematical Logic and Ty
Theory: To Truth Through ProoAcademic Press, 1986.

[Bas 94] Basin, D., Isawhelk: Whelk interpreted in Isabelle. Abstract accepte
the 11th International Conference on Logic Programm{iti@LP 94).
Full version available via http://www.mpi-sb.mpg.de/guide/staff/bas
pubs/iclpll.ps.Z.

[Baut85] Bauer et al. (The CIP Language Groupjie Munich Project CIP.
Volume I: The wide spectrum language CIFA-NCS 183. 1985.

[BH 95] Bowen, J. P., Hinchey, M. J., Seven more Myths of Formal Meth¢
Dispelling Industrial Prejudices, ifME'94: Industrial Benefit of
Formal Methods proc. 2nd Int. Symposium of Formal Methoc
Europe, LNCS 873, Springer Verlag 1994, pp. 105-117.

[BM 93] Bird, R., de Moor, O.: Solving Optimisation Problems with Catam
phisms, in ProcSecond Conference on the Mathematics of Progr
Construction LNCS 669, Springer Verlag 1993, pp. 49-56.

[Chu 40] Church, A., A formulation of the simple theory of typdsurnal of
Symbolic Logig5, 1940, pp. 56-68.

[CO95] Cant, A, Ozohls, M.A. Xlsabelle: A graphical User Interface to -
Isabelle Theorem Prover. ftp://ftp.cl.cam.ac.uk/ml/Xlsabelle-2.0.tar.c

[Con 86] Constable, R. S. et dmplementing Mathematics with the Nuprl Pro
Development Systemrentice Hall, 1986.

[GL 93] Gersdorf, B., Liu, J. personnal communication.

[GM 93] Gordon, M.J.C., Melham, T.MIntroduction to HOL: a theorem pro-
ving environment for higher order logic€ambridge University Press
1993.

[Gor95] Gordon. M: Notes on PVS from a HOL perspective. Available -
Internet http://www.cl.cam.ac.uk/users/mjcg/PVS.ps.gz, 1995.

[HK 93] Hoffmann, B., Krieg-Briuickner, B. (eds.PROgram Development b
Specification and Transformation, The PROSPECTRA Methodol
Language Family, and SystebNCS 680, Springer-Verla§j993.

[HMM 86] Harper, R., MacQueen, R., Milner, R: Standard ML. Technical Re|
ECS-LFCS-86-2. 1986.

162

[HSZ 95]

[Kre 93]
[Kri t95]
[KW 95]
[OSR 93]
[Ous 94]
[Pau 944a]
[Pau 94b]

[PR 95]

[Smi 87]

[Smi 90]

[SPW 95]

[Sym 95]

[VTS 95]

Kolyang, Thomas Santen and Burkhart Wolff

Heisel, M., Santen, T., Zimmermann, D.: Tool Support for Forr
Software Development: A Generic ArchitectureSioftware Engineering
— ESEC '95LNCS 989, Springer Verlag, 1995, pp. 272-293.
Kreitz, C.: Meta-Synthesis. Deriving Programs that Develop Progre
Technische Hochschule Darmstadt, 1993.

Krieg-Briickner, B., Peleska, J., Olderog, E.-R., Balzer, D., Baer,
Uniform Workbench — Universelle Entwicklungsumgebung fir form:
Methoden. Technischer Bericht 8/95, Universitat Bremen, 1995.
Kolyang, Wolff, B.: Development by Refinement Revisited: Lessc
learnt from a case study. Pr&oftwaretechnik 'a5Software-Technik
Trends, Gesellschaft fur Informatik, 1995, pp. 55-66 .

Owre, S., Shankar, N., Rushby, J.M.: The PVS Specification Langi
(Beta Release). Comp. Sci. Lab., SRI International, Menlo Park, 1¢
Ousterhout, J.K.Tcl and the Tk ToolkitAddison Wesley, 1994.
Paulson, L. C.isabelle - A Generic Theorem ProverlNCS 828,
Springer Verlag, 1994.

Paulson, L. C.: A fixedpoint approach to implementing (co)induct
definitions, in Alan Bundy (ed)12th International Conference ot
Automated Deductio,NAI 814, 1994, Springer Verlag, pp. 148-161
Pessaux, F., Rouaix, F.: The Caml/Tk interface, Projet Cristal, INI
Rocquencourt, July 1995 ftp://ftp.inria.fr/lang/../INRIA/Projects/crist
caml-light/camltk.dvi.tar.gz

Smith, D. R.: Structure and Design of Global Search Algorithi
Technical Report Kes.U.87.12, Kestrel Institute, Palo Alto, 1987.
Smith, D. R.: KIDS — a semi-automatic program development sysi
IEEE Transactions on Software Engineeriggecial Issue on Forma
Methods in Software Engineering, 16(9), 1990, pp. 1024-1043.
Smith, D. R., Parra, E. A., Westfold, S. J.: Synthesis of High-Per
mance Transportation Schedulers, Technical Report, Kestrel Insti
Palo Alto, 1995.

Syme, D.: A New Interface for HOL — Ideas, Issues and Implemente
in Higher Order Logic: Theorem Proving and its ApplicatiphCS
971, Springer Verlag 1995. pp 325-339.

Vullinghs,T., Tuijnman, D., Schulte, W., Lightweight GUI's for fun
tional programming. PLILP 95, Utrecht, The Netherlands, 1995.

TAS — A Generic Window Inference System

Christoph Liith! and Burkhart Wolff?

! FB 3 — Mathematik und Informatik, Universitit Bremen
cxl@informatik.uni-bremen.de
2 Institut fiir Informatik, Albert-Ludwigs-Universitét Freiburg
wolff@informatik.uni-freiburg.de

Abstract. This paper presents work on technology for transformational
proof and program development, as used by window inference calculi
and transformation systems. The calculi are characterised by a certain
class of theorems in the underlying logic. Our transformation system
TAS compiles these rules to concrete deduction support, complete with
a graphical user interface with command-language-free user interaction
by gestures like drag&drop and proof-by-pointing, and a development
management for transformational proofs. It is generic in the sense that
it is completely independent of the particular window inference or trans-
formational calculus, and can be instantiated to many different ones;
three such instantiations are presented in the paper.

1 Introduction

Tools supporting formal program development should present proofs and pro-
gram developments in the form in which they are most easily understood by
the user, and should not require the user to adapt to the particular form of
presentation as implemented by the system. Here, a serious clash of cultures
prevails which hampers the wider usage of formal methods: theorem provers em-
ploy presentations stemming from their roots in symbolic logic (e.g. Isabelle uses
natural deduction), whereas engineers are more likely to be used to proofs by
transformation as in calculus. As a way out of this dilemma, a number of systems
have been developed to support transformational development. However, many
of these systems such as CIP [3], KIDS [21] or PROSPECTRA [12] suffered from
a lack of proof support and proven correctness. On the other hand, a variety of
calculi have been developed which allow formal proof in a transformational way
and are proven correct [8-10,28,11, 2], some even with a graphical user interface
[14, 6]. However, what has been lacking is a systematic, generic and reusable way
to obtain a user-friendly tool implementing transformational reasoning, with an
open system architecture capable of coping with the fast changes in technology in
user interfaces, theorem provers and formal methods. Reusability of components
is crucial, since we hope that the considerable task of developing appropriate
GUIs for formal method tools can be shared with other research groups.

In [15], we have proposed an open architecture to build graphical user in-
terfaces for theorem provers in a functional language; here, we instantiate this

164 Christoph Liith and Burkhart Wolff

architecture with a generic transformation system which implements transforma-
tional calculi (geared towards refinement proofs) on top of an LCF-like prover.
By generic, we mean that the system takes a high-level characterisation of a
refinement calculus and returns a user-friendly, formally correct transformation
or window inference system. The system can be used for various object logics
and formal methods (a property for which Isabelle is particularly well suited as
a basis). The instantiation of the system is very straightforward once the formal
method (including the refinement relation) has been encoded. Various aspects
of this overall task have been addressed before, such as logical engines, window-
inference packages and prototypical GUIs. In contrast, TAS is an integrated
solution, bringing existing approaches into one technical framework, and filling
missing links like a generic pretty-printer producing markups in mathematical
text.

This paper is structured as follows: in Sect. 2 we give an introduction to win-
dow inference, surveying previous work and presenting the basic concepts. We
explain how the formulation of the basic concepts in terms of ML theorems leads
to the implementation of TAS. We demonstrate the versatility of our approach
in Sects. 3, 4 and 5 by showing examples of classical transformational program
development, for process-oriented refinement proofs and for data-oriented refine-
ment proofs. Sect. 6 finishes with conclusions and an outlook.

2 A Generic Scheme of Window Inference

Window inference [18], structured calculational proof [8,1,2] and transforma-
tional hierarchical reasoning [11] are closely related formalisations of proof by
transformation. In this paper, we will use the format of [1], although we will
refer to it as window inference.

2.1 An Introduction to Window Inference

As motivating example, consider the proof for - (AAB = C) = (BN A= C).
In natural deduction, a proof would look like (in the notation of [27]; we assume
that the reader is roughly familiar with derivations like this):

[B A A N [B A A

A B
ANB

A AAB = CP

C =F

BANA=C
(ANB=C)=(BANA=C)

=1

= I,

(1)

The following equivalent calculational proof is far more compact. We start
with B A A = C. In the first step, we open a subwindow on the sub-expression
B A A, denoted by the markers. We then transform the sub-window and obtain

TAS - A Generic Window Inference System. 165

the desired result for the whole expression:

tBANAL=C (2)
< {focus on B A A}
e BANA
= {A is commutative}
AANB
- TAANB = C

The proof profits from the fact that we can replace equivalent subexpressions.
This is formalised by window rules [11]. In this case the rule has the form

I'tA=B
T'F E[A] = E[B] (3)

where the second-order variable E stands for the unchanged context, while the
subterm A (the focus of the transformation) is replaced by the transformation.

Comparing this proof with the natural deduction proof, we see that in the lat-
ter we have to decompose the context by applying one rule per operator, whereas
the calculational proof employs second-order matching to achieve the same effect
directly. Although in this format, which goes back to Dijkstra and Scholten [8],
proofs tend to be shorter and more abstract, there are known counterexamples
such as proof by contradiction.

In Grundy’s work [11], window inference proofs are presented in terms of
natural deduction proofs. By showing every natural deduction proof can be con-
structed using window inference rules, completeness of window inference for first-
order logic is shown. This allows the implementation of window inference in a
theorem prover. A similar technique underlies our implementation: the system
constructs Isabelle proofs from window inference proofs.

As was shown in [11,1], window inference proofs are not restricted to first-
order logic or standard proof refinement, i.e. calculational proofs based on the
implication and equality. It is natural to admit a family {R;};cr of reflexive and
transitive binary relations that enjoy a generalised form of monotonicity (in the
form of (3) above).

Extending the framework of window inference in these directions allows to
profit from its intuitive conciseness not only in high-school mathematics and
traditional calculus, which deals with manipulating equations, but also in formal
systems development, where the refinement of specifications is often the central
notion. However, adequate user interface support is needed if we want to exploit
this intuitive conciseness; the user interaction to set a focus on a subterm should
be little more than marking the subterm with the mouse (point&click), otherwise
the whole beneficial effect would be lost again.

2.2 The Concepts

Just as equality is at the heart of algebra, at the heart of window inference there
is a family of binary preorders (reflexive and transitive relations) {C;}icr. These

166 Christoph Liith and Burkhart Wolff

preorders are called the refinement relations. Practically relevant examples of
refinement relations in formal system development are impliedness S <= P (used
for algebraic model inclusion, see Sect. 3), process refinement S Cpp P (the
process P is more defined and more deterministic than the process S, see Sect. 4),
set inclusion (see Sect. 5), or arithmetic orderings for numerical approximations
[29]. An example for an infinite family of refinement relations in HOL is the
Scott-definedness ordering for higher-order function spaces (where the indexing
set I is given by the types):

I E(a=p)x(a—B)—Boot § = VT. [T Egxp—Bool 9T (4)

The refinement relations have to satisfy a number of properties, given as a
number of theorems. Firstly, we require reflexivity and transitivity for all ¢ € I:

aCia [Refl;]
aC;bAbC;c=>alCc [Trans;]

The refinement relations can be ordered. We say C; is weaker than C; if C; is
a subset of Cj, i.e. if a C; b implies a C; b:

aCib=a Ej b [Weaki,j]

The ordering is optional; in a given instantiation, the refinement relations may
not be related at all. However, because of reflexivity, equality is weaker than any
other relation, i.e. for all 5 € I, the following is a derived theorem:!

a=b=al;b (5)

The main device of window inferencing are the window rules shown in the
previous section:

(A#agib)iFan Fb [Monofj]

Here, F' can either be a meta-variable?, or a constant-head expression, i.e. a term
of the form Ay ...ym.cz1 ...2, with ¢ a constant. Note how there are different
refinement relations in the premise and conclusion of the rule. Using a family of
rules instead of one monotonicity rule has two advantages: firstly, it allows us
to handle, on a case by case basis, instantiations where the refinement relations
are not congruences, and secondly, by allowing an additional assumption A in
the monotonicity rules, we get more assumptions when refining inside a context.
These contextual assumptions are crucial, many proofs depend on them.3

! In order to keep our transformation system independent of the object logic being
used, we do not include any equality per default, as different object logics may have
different equalities.

2 In Isabelle, meta-variables are variables in the meta-logic, which are subject to uni-
fication. Users of other theorem provers can think of them just as variables.

3 They already featured in the pioneering CIP-S system [3] in 1984.

TAS - A Generic Window Inference System. 167

Dependencies between refinement relations can be more complicated than
the restricted form of weakening rules [Weak; ;] above may be able to express;
for example, (4) cannot be expressed by a weakening rule in either direction
because of the outermost quantor on the right side. For this reason, there is a
further need for refinement conversions, i.e. tactical procedures that attempt to
rewrite one refinement proof goal into another.

To finish off the picture, we consider transformation rules. A transformation
rule is given by a logical core theorem of the form

A= (IC;0) (6)

where A is the application condition, I the input pattern and O the output
pattern. In other words, transformation rules are theorems the conclusion of
which is a refinement relation.

2.3 Parameters

The parameters for a transformation rule given by core theorem schema (6) are
meta-variables occuring in the output pattern O but not in the input pattern I.
After applying the transformation, a parameter occurs as a free meta-variable in
the proof state. This is not always useful, hence parameters enjoy special support.
In particular, in transformational program development (see Sect. 3) we have
rather complex transformations with a lot of parameters and their instantiation
is an important design decision. As a simple example, consider the theorem

t< if bthent elset

which as a transformation rule from the left to the right introduces a case distinc-
tion on b. This is not very helpful unless we supply a concrete value for b which
helps us to further develop t in the two different branches of the conditional
expression under the respective assumption that b holds, or does not.

TAS supports parameters by when applying a transformation checking whether
it contains parameters, and if so querying for their instantiation. It further allows
parameter instantiations to be stored, edited and reused. This avoids having to
retype instantiations, which can get quite lengthy, and makes TAS suitable for
transformational program development as well as calculational proof.

2.4 The Trafos package

The Trafos package implements the basic window inferencing operations as
Isabelle tactics, such as:

— opening and closing subwindows,

applying transformations,

— searching for applicable transformations,
— and starting and concluding developments.

168 Christoph Liith and Burkhart Wolff

In general, our implementation follows Staples’ approach [23], for example in the
use of the transitivity rules to translate the forward chaining of transformation
steps into backwards proofs on top of Isabelle’s goal package, or the reflexivity
rules to close subwindows or conclude developments.The distinctive features of
our implementation are the subterm and search functionalities, so we concentrate
on these in the following.

In order to open a subwindow or apply a transformation at a particular sub-
term, Trafos implements an abstract datatype path and operations apply_trafo,
open_sub taking such a path (and a transformation) as arguments. To allow
direct manipulation by point&click, we extend Isabelle’s powerful syntax and
pretty-printing machinery by annotations [15]. Annotations are markup sequences
containing a textual representation of the path, which are attached to the terms.
They do not print in the user interface, but instead generate a binding which
invokes the respective operations with the corresponding path as argument. In
general, users do not need to modify their theories to use the subterm selection
facilities, they can be used as they are, including user-defined pretty-printing.*

The operations apply_trafo and open_sub analyse the context, and for each
operation making up the context, the most specific [Monof] rule is selected, and
a proof step is generated. In order to speed up this selection, the monotonicity
rules are indexed by their head symbol, so we can discard rules which cannot
possibly unify; still, the application of the selected rules may fail, so a tactic
is constructed which tries to apply any combination of possibly fitting rules,
starting with the most specific.

Further, for each refinement relation C;, we try to find a rule [Mono;;] where
F' is just a meta-variable and the condition A is void — this rule would state
that C; is a congruence. If we can find such a rule, we can use it to handle, in
one step, large parts of the context consisting of operations for which no more
specific rule can be found. If no such congruence rule can be found, we do not
construct a step-by-step proof but instead use Isabelle’s efficient rewriter, the
simplifier, with the appropriate rules to break down larger contexts in one step.

As an example why the more specific rules are applied first, consider the
expression E = z + (if z =0 then u + = else v + z). If we want to simplify
u + z, then we can do so under the assumption that z = 0, and we have z+0 =
u + & = u because of the theorem

(B=z=y)= (if Bthenz else z = if B theny elsez) [Mono™]

But if we had just used the congruence rule for equality z =y = faz = fy
we would have lost the contextual assumption £ = 0 in the refinement of the
if-branch of the conditional.

When looking for applicable transformations, performance becomes an issue,
and there is an inherent trade-off between the speed and accuracy of the search.
In principle, we have to go through all theorems in Isabelle’s database and check

* Except if Isabelle’s freely programmable so-called print translations are used (which
is rarely the case). In this case, there are facilities to aid in programming markup-
generation analogously to these print-translations.

TAS - A Generic Window Inference System. 169

whether they can be considered as transformation rule, and if so if the input
pattern of the rule matches. Many theorems can be excluded straight away since
their conclusion is not a refinement. For the rest, we can either superficially check
whether they might fit, which is much faster but bears the risk of returning rules
which actually do not fit, or we can construct and apply the relevant tactic. We
let users decide (by setting a search option) whether they want fast or accurate
search. Another speed-up heuristic is to be able to specify that rules are only
collected from certain theories (called active theories). Finally, users can exclude
expanding rules (where the left-hand side is only a variable), because most (but
not all) of the time these are not really helpful. In this way, users can guide the
search for applicable transformations by selecting appropriate heuristics.

When instantiating the functor Trafos, the preprocessing of the monotonic-
ity rules as described above takes place (calculation of the simplifier sets, head
constants etc.) Further, some consistency checks are carried out (e.g. that there
are transitivity and reflexivity rules for all refinement relations).

2.5 Genericity by Functors

In Standard ML (SML), modules are called structures. Signatures are module
types, describing the interface, and functors are parameterised modules, map-
ping structures to structures. Since in LCF provers theorems are elements of an
abstract SML datatype, we can describe the properties of a window inference
calculus as described in Sect. 2.2 above using SML’s module language, and im-
plement TAS a functor, taking a structure containing the necessary theorems,
and returning a transformation or window inferencing system complete with
graphical user interface built on top of this:

functor TAS(TrfThy: TRAFOTHY) = ...

The signature TRAFOTHY specifies a structure which contains all the theorems of
Sect. 2.2. Abstracted a little (by omitting some parameters for special tactical
support), it reads as follows:

signature TRAFOTHY =

sig val topthy : string
val refl : thm list
val trans : thm list
val weak : thm list
val mono : thm list

val ref_conv : (string* (int-> tactic)) list

end

To instantiate TAS, we need to provide a theory (named topthy) which en-
codes the formal method of our choice and where our refinement lives, theorems
describing the transitivity, reflexivity and monotonicity of the refinement rela-
tion(s), and a list of refinement conversions, which consist of a name, and a tactic

170 Christoph Liith and Burkhart Wolff

when when applied to a particular subgoal converts the subgoal into another re-
finement relation.

When applying this functor by supplying appropriate arguments, we obtain a
structure which implements a window inferencing system, complete with a graph-
ical user interface. The graphical user interface abstracts from the command line
interface of most LCF provers (where functions and values are referred to by
names) by implementing a notepad, on which objects (theorems, theories, etc.)
can be manipulated by drag&drop. It provides a construction area where the
current on-going proof is displayed, and which has a focus to open subwindows,
apply transformations to subterms or search the theorem database for applicable
transformations. We can navigate the history (going backwards and forwards),
and display the history concisely, or in detail through an active display, which
allows us to show and hide subdevelopments. Further, the user interface provides
an active object management (keeping track of changes to external objects like
theories), and a session management which allows to save the system state and
return to it later. All of these features are available for any instance of TAS, and
require no additional implementation; and this is what we mean by calling TAS
generic.

The implementation of TAS consists of two components: a kernel transfor-
mation system, which is the package Trafos as described in Sect. 2.4, and a
graphical user interface on top of this. We can write this simplified as

functor TAS(TrfThy : TRAFOTHY) = GenGUI(Trafos(TrfThy : TRAFOTHY))

The graphical user interface is implemented by the functor GenGUI, and is
independent of Trafos and Isabelle. For a detailed description, we refer to [15],
but in a nutshell, the graphical user interface is implemented entirely in SML,
using a typed functional encapsulation of Tcl/Tk called sml_tk. Most of the
GUI features mentioned above (such as the notepad, and the history, object and
session management) are implemented at this more general level.

The division of the implementation into a kernel system and a generic graph-
ical user interface has two major advantages: firstly, the GUI is reusable for
similar applications (for example, we have used it to implement a GUI IsaWin
to Isabelle itself); and secondly, it allows us to run the transformation system
without the graphical user interface, e.g. as a scripting engine to check proofs.

3 Design Transformations in Classical Program
Transformation

In the design of algorithms, certain schemata can be identified [7]. When such
a schema is formalised as a theorem in the form of (6), we call the result-
ing transformation rule a design transformation. Examples include divide and
conquer [20], global search [22] or branch and bound. Recall from Sect. 2.2
that transformation rules are represented by a logical core theorem with an
input pattern and an output pattern. Characteristically, design transforma-
tions have as input pattern a specification, and as output pattern a program.

TAS - A Generic Window Inference System. 171

Here, a specification is given by a pre- and a postcondition, i.e. a function
f + X — Y is specified by an implication Pre(z) — Post(z, f(z)), where
Pre : X — Bool,Post : X xY — Bool. A program is given by a recursive
scheme, such as well-founded recursion; the proof of the logical core theorem
must accordingly be based on the corresponding induction principles, i.e. here
well-founded induction. Thus, a function f : X — Y can be given as

let fun f(z) = E in f end measure < (7)

where F is an expression of type Y, possibly containing f, and < C X x X is a
well-founded relation, the measure, which must decrease with every recursive call
of f. The notational proximity of (7) to SML is intended: (7) can be considered
as a functional program.

As refinement relation, we will use model-inclusion — when refining a spec-
ification of some function f, the set of possible interpretations for f is reduced.
The logical equivalent of this kind of refinement is the implication, which leads
to the following definition:

C : Bool x Bool — Bool PCQ¥EQ—P

Based on this definition, we easily prove the theorems ref trans and ref refl
(transitivity and reflexivity of C). We can also prove that C is monotone for all
boolean operators, e.g.

sCt=sANultAu ref _conjl
Most importantly, we can show that

(B=sLCt)= if BthenselseuC if B thentelseu ref if
(-B = uC v) = if B thenselseu C if B thenselsev ref_then

which provides the contextual assumptions mentioned above. When instantiating
the functor, we also have to specify equality as a refinement relation. Since we can
reuse the relevant definitions for all theories based on HOL, they have been put
in a separate functor functor HolEqTrfThy(TrfThy : TRAFOTHY) : TRAFOTHY
In particular, this functor proves the weakening theorems (5) for all refinement
relations, and appends them to the list weak. Thus, the full functor instantiation
reads

structure HolRefThy =

struct val name = "HolRef"
val trans = [ref_trans]
val refl = [ref_refl]
val weak = []
val mono = [ref_if, ref_else, ref_conjl, ref_conj2,
ref_disjl, ref_disj2, ...]

val ref_conv = []

end
structure TAS = TAS(HolEqTrfThy(HolRefThy))

172 Christoph Liith and Burkhart Wolff

The divide and conquer design transformation [20] implements a program
f + X = Y by splitting X into two parts: the termination part of f, which
can be directly embedded into the codomain Y of f, and the rest, where the
values are divided into smaller parts, processed recursively, and reassembled.
The core theorem for divide and conquer based on model-inclusion refinement
and well-founded recursion reads:®

A — (Pre(z) — Post(z, f(z))
C
I_Jre(;z;) — f = let fun F(z) = if isPrim(z) then Dir(z) (8)
else Com({(G, F)(Decom(z)))

in F end measure <)

As explained above, the parameters of the transformation are the meta-variables
appearing in the output pattern but not in the input pattern of the logical core
theorem (8). Here, these are

— the termination criterion isPrim : X — Bool;

— the embedding of terminal values Dir: X — Y;

the decomposition function of input values Decom: X — Z x X

a function G : Z — U for those values which are not calculated by recursive

calls of F

— the composition function Com : U XY — Y that joins the subsolutions given
by G and recursive calls of F;

— and the measure < assuring termination.

We will now apply this transformation to synthesise a sorting algorithm in
the theory of lists. We start with the usual specification of sort, as shown on
the left of Fig. 1. We can see the notepad, on which the transformation object
Divide & Conquer is represented by an icon. The workspace shows the current
state of the already started development. The highlighting indicates the focus
set by the user. Now we drag the transformation onto the focus; TAS interprets
this gesture as application of the transformation at the focus. In this case, TAS
infers that there are parameters to be provided by the user, who is thus guided
to the necessary design decisions. The parameter instantiations are fairly simple:
the termination condition is the empty list, which is sorted (hence Dir is the
identity). The decomposition function splits off the head and the tail; the tail is
sorted recursively, and the head is inserted into the sorted list (hence, G is the
identity). Finally, the measure relates non-empty lists to their tails (since the
recursive call always passes the tail of the argument; a relation easily proven to
be well-founded).

This transformation step readily produces the desired program (right of
Fig. 1). However, this step is only valid if the application conditions of the
transformation hold. When applying a transformation, these conditions turn
into proof obligations underlying a special bookkeeping. The proof obligations

def

% (f,g) is the pairing of functions defined as (f, g)(z,y) = (f(z), f(y)).

TAS - A Generic Window Inference System. 173
= TAS Window System [HOL] [
e Development Settings Help |
(=B} <1
SoriC Q
o Divide & sort_spec
Conguer
[/a]
Mew subst
True — is perm x (sort x) A
7 zorted (sort x) = TAS Substitution Editor |
J} - isPrim |- [%xs. xs = [1
J Divide & sort_spec | Dir 1= [Rx. x
o Conquer Conm I-> [%(a.X). ins a X
" Smw[”"] G I
5 e dore [Decom = b
trafo(Divide & Rename [Less I-> [sort
e Conquer, New Delete
TG subst) = . Add Parameter ‘
Edit subst
Cancel oK

Fig. 1. TAS and its graphical user interface. To the left, the initial stage of the develop-
ment, and the parameters supplied for the transformation; to the right, the development
after applying the divide and conquer transformation. On the top of the window, we
can see the notepad with the theory SortDC, the transformation Divide&Conquer, the
specification sort_spec, the ongoing development (shaded) and the parameter instan-
tiation divconq_inst.

can be proven with a number of proof procedures. Typically, these include au-
tomatic proof via Isabelle’s simplifier or classical reasoner and interactive proof
via IsaWin. Depending on the particular logic, further proof procedures may
be at our disposal, such as specialised tactics or model-checkers integrated into
Isabelle.

Another well-known scheme in algorithm design is global search which has
been investigated formally in [22]. It represents another powerful design trans-
formation which has already been formalised in an earlier version of TAS [13].

4 Process Modelling with CSP

This section shows how to instantiate TAS for refinement with CSP [19], and
will briefly present an example how the resulting system can be used. CSP is a
language designed to describe systems of interacting components. It is supported
by an underlying theory for reasoning about their equivalences, and in particular
their refinements. In this section, we use the embedding HOL-CSP [26] of CSP
into Isabelle/HOL. Even though shortage of space precludes us the set out the
basics of CSP here, a detailed understanding of CSP is not required in the
following; suffice it to say that CSP is a language to model distributed programs
as communicating processes.

CSP is interesting in this context because it has three refinement relations,
namely trace refinement, failures refinement and failures-divergence refinement.

174 Christoph Liith and Burkhart Wolff

— Theories&Theorems [
select a theorem,
Transformations (possibly more than one) will be derived from the theorem.
Pattern Pattern:
Divides 2] LAWS9E . mprefix_seq
Dom LAWS98.mprefix_singl
Doml L2W398 . ndetElim
Dom2 LAWS98.ndetEliml
— TAS Window Egnsyntax L&WS98 . ndet_refl
File Development Settings FI%98 LAWS98.ndet_ref2
Finite LAWS98.non_det_assoc
Fix LAWS98. non_det _bot
(E.E)] Fun LAWS98 .nior_det comm
RingBuf REF_EGLR & Gf i i
ingBu e P LAWS98. non_det_distrib
det distrib ~ REF HOL LAWS98.non_det_id
7 Lideeadet HolTrafos LAWS98 . par_Int_bot
RingBuf %J}- Inductive LAWS98 . par_Int_botl
REF LaWS98 . par_Int_comm
RingBuf.state_i LAWS98.par_Int_skip
ntro
TG |
i letrec
< NEBE = (&1 (<moE ||
(In? (m,x) | (m=i)-> (NODEl i i %))
i I]
- (Ring? (m,q,%) |(m=1) —>(if =i then NODE(1i)
else (Out(i,j,x)->(NODELl i § x)))
1)) ;
I NoTEI = G
M {Bing ((i+limod N,3,x)—>(NODE 1))
|1
£ (Ring?(m,k,y) | (m=1) ==
o o) (if k=i then (NODEL i j x)
else (Out(i,k,v)—>(Ring((i+l)mod WI,j,x]
—>(NODEL i k y])))))
in (((NODE O [| fc. ? § % . c = Ring(l,3,%x) } []
wore A)Siie - B 9w . @ = Bl 5 =) 1)
[| {c . ?214% . c-Ring(1,5,x) & (1=07i=2)] |]
womm 2ZiNNIe © 7 L 9 |, @ = Bmgle, g2 & (0[] 1=2) 1

Fig. 2. TAS in the CSP instance. On the right, the construction history is shown. The
development proceeded by subdevelopments on COPY1 and COPY2, which can be shown
and hidden by clicking on [Subdevelopment]. Similarly, proof obligations can be shown
and hidden. In the lower part of the main window, the focus is set on a subterm, and all
applicable transformations are shown. By clicking on the name of the transformations,
their structure can be displayed (not shown).

Here, we only use the third, since it is the one most commonly used when devel-
oping systems from specifications, but e.g. trace refinement can be relevant to
show security properties.

Recall from Sect. 2.5 that to instantiate TAS we need a theory encoding our
formal method, and theorems describing the refinement relation. The relevant
theory is called CspTrafos, which contains the core theorems of some (simple)
transformations built on top of Csp, the encoding of CSP into Isabelle/HOL.

For brevity, we only describe instantiation with failure-divergence refinement;
the other two refinements would be similar. The theorems stating transitivity
and reflexivity of failure-divergence refinement are called ref_ord_trans and
ref_ord_refl, respectively. For monotonicity, we have a family of theorems
describing monotonicity of the operators of CSP over this relation, but since the
relation is monotone only with respect to the CSP relations it is not a proper
congruence. This gives us the following functor instantiation:

TAS - A Generic Window Inference System. 175

structure CspRefThy = struct
val name = "CspTrafos"
val trans [ref_ord_trans]
[ref_ord_refl]
[mono_mprefix_ref ,mono_prefix_ref ,mono_ndet_ref,
mono_det_ref ,mono_Ren_ref ,mono_hide_set_ref,
mono_PaI_ref ,mono_Inter_ref]
val weak = []
val ref_conv = []

val refl
val mono

end
structure TAS = TAS(HolEqTrfThy(CspRefThy))

Fig. 2 shows the resulting, instantiated system in use. We can see an ongoing
development on the left, and the opened construction history showing the devel-
opment up to this point on the left. As we see, the development started with two
processes in parallel; we focussed on both of these in turn to develop them sep-
arately, and afterwards rearranged the resulting process, using algebraic laws of
CSP such as sync_interl_dist which states the distributivity of synchronisation
over interleaving under some conditions. The development does not use powerful
design transformations as in Sect. 3, but just employs a couple of the algebraic
laws of CSP, showing how we can effectively use previously proven theorems for
transformational development. Finding design transformations like divide and
conquer for CSP is still an open research problem.

If we restrict ourselves to finite state processes (by requiring that the channels
only carry finite messages), then we can even check the development above with
the CSP model checker FDR [19], connected to Isabelle as a so-called oracle (a
trusted external prover). This speeds up development at the cost of generality
and can e.g. be used for rapid prototyping.

5 Data Refinement in the Refinement Calculus

In this section, we will emphasise a particular aspect of the genericity of TAS and
demonstrate its potential for reuse of given logical embeddings. As we mentioned,
TAS is generic with respect to the underlying refinement calculus, which in par-
ticular means that it is generic with respect to the underlying object logic. In the
previous examples, we used higher-order logic (as encoded in Isabelle/HOL); in
this example, we will use Zermelo-Frinkel set theory (as encoded in Isabelle/ZF).
On top of Isabelle/ZF, Mark Staples has built a substantial theory for impera-
tive program refinement and data refinement [24, 25] following the lines of Back’s
Refinement Calculus RC [2].

RC is based on a weakest precondition semantics, where predicates and pred-
icate transformers are represented as sets of states and functions taking sets of
states to sets of states respectively. The distinctive feature of Staples’ work over
previous implementations of refinement calculi is the use of sets in the sense of
ZF based on an open type universe. This allows derivations where the types of

176 Christoph Liith and Burkhart Wolff

program variables are unknown at the beginning, and become more and more
concrete after a sequence of development steps.

In order to give an idea of Staples’ formalisation, we very briefly review some
of the definitions of Back’s core language in his presentation:5

Skipy = \g: P(A).q
a; b Ng:dom(b).a‘bq

if g then a else b fi = \q : dom(a) U dom(b).
(9Na q)U((U(dom(a) Udom(b)) —g)Nb “ q)
while g do cod = Aq: P(A).lfpa N.(gNec N)U((A—g)Ngq)

This theory could be used for an instantiation of TAS, called TAS/RC. The
instantiation follows essentially the lines discussed in the previous sections; with
respect to the syntactic presentation, the configuration for the pretty-printing
engine had to provide special support for 5 print-translations comprising 100
lines of code, and a particular set-up for the tactics providing reasoning over
well-typedness, regularity and monotonicity. (We omit the details here for space
reasons). As a result, a larger case study in [24] for the development of an BDD-
related algorithm as a data-refinement from truth tables to decision trees can be
represented inside TAS.

6 Conclusions and Outlook

This paper has presented the transformation system TAS. TAS is generic in
the sense that it takes a set of theorems, describing a refinement relation, and
turns them into a window inference or transformation system, complete with an
easy-to-use, graphical user interface. This genericity means that the system can
be instantiated both to a transformation system for transformational program
development in the vein of traditional transformation systems such as CIP, KIDS
or PROSPECTRA, or as system for window inference. We have demonstrated
this versatility by showing instantiations from the provenance of each the two
areas just mentioned, complemented with an instantiation from a different area,
namely reasoning about processes using CSP.

The effort required for the actual instantiation of TAS is very small indeed,
since merely the values for the parameters of the functor need to be provided.
(Only rarely will tactical programming be needed, such as mentioned in Sect. 5,
and even then it only amounts to a few lines of code.) It takes far more effort
to set up the logical encoding of the formal method, in particular if one does so
conservatively.

TAS’ graphical user interface complements the intuitiveness of transforma-
tional calculi with a command-language-free user interface based on gestures

(4

8 Note that the backquote operator ¢ is infix function application in Isabelle/ZF.

TAS - A Generic Window Inference System. 177

such as drag&drop and proof-by-pointing. It further provides technical infras-
tructure such as development management (replay, reuse, history navigation),
object management and session management.

TAS is implemented on top of the prover Isabelle, such that the consistency of
the underlying logics and its rules can be ensured by the LCF-style architecture
of Isabelle and well-known embedding techniques. It benefits further from the
LCF architecture, because we can use SML’s structuring mechanisms (such as
functors) to implement reusable, generic proof components across a wide variety
of logics.

Internally, we spent much effort to organise TAS componentwise, easing the
reuse of as much code as possible for completely different logical environments.
The GUI and large parts of TAS (except the package Trafos) are designed to
work with a different SML-based prover, and are readily available for other re-
search groups to provide GUI support for similar applications. On the other
hand, the logical embeddings (such as HOL-CSP) which form the basis of the
transformation calculi do not depend on TAS either. This allowed the easy in-
tegration of Staples’ encoding of the refinement calculus into our system, as
presented in Sect. 5.

6.1 Discussion and Related Work

This work attempts to synthesise previous work on transformational program
development [3, 21, 12] which developed a huge body of formalised developments
and design schemes, but suffered from ad-hoc, inflexible calculi, correctness prob-
lems and lack of proof support, with the work on window inferencing [18,11] and
structured calculational proof [2,1], which provides proven correctness by LCF
design and proof support from HOL or Isabelle.

PRT [6] is a program refinement tool (using window inference) which is built
on top of the Ergo theorem prover. It offers an interface based on Emacs, which
allows development management and search functionalities. However, the Tk-
WinHOL system [14] comes closest to our own system conception: it is based
on Tcl/Tk (making it platform independent), and offers focusing with a mouse,
drag&drop in transformational goals, and a formally proven sound calculus im-
plemented by derived rules in HOL. On the technical side it uses Tcl directly
instead of an encapsulation (which in our estimate will make it much harder
to maintain). On the logical side, it is also generic in the sense that it can be
used with different refinement relations, but requires more work to be adapted
to a new refinement relation; for example, users need to provide a pretty-printer
which generates the correct mark-up code to be able to click on subterms. In
contrast, TAS extends Isabelle’s infrastructure (like the pretty-printer) into the
graphical user interface, leaving the user with less work when instantiating the
system.

The essential difference between window inferencing and structured calcula-
tional proof [1] is that the latter can live with more than one transformational
goal. This difference is not that crucial for TAS since it can represent more

178 Christoph Liith and Burkhart Wolff

than one transformational development on the notepad and is customisable for
appropriate interaction between them via drag&drop operations.

Another possible generalisation would be to drop the requirement that all
refinement relations be reflexive. However, this would complicate the tactical
programming considerably without offering us perceivable benefit at the mo-
ment, so we have decided against it.

6.2 Future Work

Future work can be found in several directions. Firstly, the user interaction can
still be improved in a variety of ways. Although in the present system, the user
can ask for transformations which are applicable, this can considerably be im-
proved by a best-fit strategy and, for example, stronger matching algorithms
like AC-matching. The problem here is to help the user to find the few interest-
ing transformations in the multitude of uninteresting (trivial, misleading) ones.
Supporting design decisions at the highest possible user-oriented level must still
count as an open problem, in particular in a generic setting.

Secondly, the interface to the outside world can be improved. Ideally, the
system should interface to a variety of externally available proof formats, and
export web-browsable proof scripts.

A rather more ambitious research goal is the reuse and abstraction of trans-
formational developments. A first step in this direction would be to allow to
cut&paste manipulation of the history of a proof.

Thirdly, going beyond classical hierarchical transformational proofs the con-
cept of indezed window inferencing [29] appears highly interesting. The overall
idea is to add an additional parameter to the refinement relation that allows
to calculate the concrete refinement relation on the fly during transformational
deduction. Besides the obvious advantage of relaxing the requirements to refine-
ment relations to irreflexive ones (already pointed out in [23]), indexed window
inferencing can also be used for a very natural representation of operational se-
mantics rules. Thus, the system could immediately be used as an animator for,
say, CSP, given the operational semantics rules for this language.

Finally, we would like to see more instances for TAS. Transformational de-
velopment and proof in the specification languages Z and CASL should not be
too hard, since for both embeddings into Isabelle are available [13,16]. The main
step here is to formalise appropriate notions of refinement. A rather simple dif-
ferent instantiation is obtained by turning the refinement relation around. This
amounts to abstracting a concrete program to a specification describing aspects
of its behaviour, which can then be validated by a model-checker. For example,
deadlock checks using CSP and FDR have been carried out in this manner, where
the abstraction has been done manually[4,5,17]. Thus we believe that TAS rep-
resents an important step towards our ultimate goal of a transformation system
which is similarly flexible with respect to underlying specification languages and
refinement calculi as Isabelle is for conventional logical calculi.

TAS - A Generic Window Inference System. 179

Acknowledgements We would like to thank Mark Staples and Jim Grundy
for providing us with the sources for their implementations of window inference
and the refinement calculus respectively, and the anonymous referees for threir
constructive criticism. Ralph Back pointed out several weaknesses of a previous
version of TAS and made suggestions for improvements.

References

11.

12.

13.

14.

15.

16.

17.

R. Back, J. Grundy, and J. von Wright. Structured calculational proof. Formal
Aspects of Computing, 9:467-483, 1997.
R.-J. Back and J. von Wright. Refinement Calculus. Springer Verlag, 1998.

. F. L. Bauer. The Munich Project CIP. The Wide Spectrum Language CIP-L.

Number 183 in LNCS. Springer Verlag, 1985.

. B. Buth, J. Peleska, and H. Shi. Combining methods for the deadlock analy-

sis of a fault-tolerant system. In Algebraic Methodology and Software Technology
AMAST’97, number 1349 in LNCS, pages 60-75. Springer Verlag, 1997.

. B. Buth, J. Peleska, and H. Shi. Combining methods for the livelock analysis

of a fault-tolerant system. In Algebraic Methodology and Software Technology
AMAST’98, number 1548 in LNCS, pages 124-139. Springer Verlag, 1999.

. D. Carrington, I. Hayes, R. Nickson, G. Watson, and J. Welsh. A Program Refine-

ment Tool. Formal Aspects of Computing, 10(2):97-124, 1998.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press and New York: McGraw-Hill, 1989.

. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.

Texts and Monographs in Computer Science. Springer Verlag, 1990.

. D. Gries. A Science of Programming. Springer Verlag, 1981.
. D. Gries. Teaching calculation and discrimination: A more effecticulum. Commu-

nications of the ACM, 34:45-54, 1991.

J. Grundy. Transformational hierarchical reasoning. Computer Journal, 39:291—
302, 1996.

B. Hoffmann and B. Krieg-Briickner. PROSPECTRA: Program Development by
Specification and Transformation. Number 690 in LNCS. Springer Verlag, 1993.
Kolyang, T. Santen, and B. Wolff. Correct and user-friendly implementations
of transformation systems. In M. C. Gaudel and J. Woodcock, editors, Formal
Methods Europe FME’96, number 1051 in LNCS, pages 629— 648. Springer Verlag,
1996.

T. Léngbacka, R. Ruk8éna, and J. von Wright. TkWinHOL: A tool for doing
window inferencing in HOL. In Proc. 8" International Workshop on Higher Order
Logic Theorem Proving and Its Applications, number 971 in LNCS, pages 245-260.
Springer Verlag, 1995.

C. Liith and B. Wolff. Functional design and implementation of graphical user
interfaces for theorem provers. Journal of Functional Programming, 9(2):167— 189,
March 1999.

T. Mossakowski, Kolyang, and B. Krieg-Briickner. Static semantic analysis and
theorem proving for CASL. In Recent trends in algebraic development techniques.
Proc 13*" International Workshop, number 1376 in LNCS, pages 333— 348. Springer
Verlag, 1998.

R. S. Lazié. A Semantic Study of Data Independence with Applications to Model
Checking. PhD thesis, Oxford University, 1999.

18

19.
20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

180 Christoph Liith and Burkhart Wolff

. P. J. Robinson and J. Staples. Formalizing a hierarchical structure of practical

mathematical reasoning. Journal for Logic and Computation, 14(1):43-52, 1993.
A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.

D. Smith. The design of divide and conquer algorithms. Science of Computer
Programming, 5:37-58, 1985.

D. R. Smith. KIDS — a semi-automatic program development system. IEEFE
Transactions on Software Engineering, 16(9):1024— 1043, 1991.

D. R. Smith and M. R. Lowry. Algorithm theories and design tactics. Science of
Computer Programming, 14:305— 321, 1990.

M. Staples. Window inference in Isabelle. In Proc. Isabelle Users Workshop.
University of Cambridge Computer Laboratory, 1995.

M. Staples. A Mechanised Theory of Refinement. PhD thesis, Computer Labora-
tory, University of Cambridge, 1998.

M. Staples. Representing wp semantics in isabelle/zf. In G. Dowek, C. Paulin,
and Y. Bertot, editors, TPHOLs: The 12th International Conference on Theorem
Proving in Higher-Order Logics, number 1690 in Incs. springer, 1999.

H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Isabelle/HOL.
In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, Formal Methods Europe FME
’97, number 1313 in LNCS, pages 318-337. Springer Verlag, 1997.

D. van Dalen. Logic and Structure. Springer Verlag, 1994.

A. J. M. van Gasteren. On the shape of mathematical arguments. In Advances
in Software Engineering and Knowledge Engineering, number 445 in LNCS, pages
1-39. Springer Verlag, 1990.

J. von Wright. Extending window inference. In Proc. TPHOLs ’98, number 1497
in LNCS, pages 17-32. Springer Verlag, 1998.

Using Theory Morphisms for Implementing
Formal Methods Tools

Achim D. Brucker und Burkhart Wolff

Institut fiir Informatik, Albert-Ludwigs-Universitéit Freiburg
Georges-Kohler-Allee 52, D-79110 Freiburg, Germany
{brucker,wolff}@informatik.uni-freiburg.de
http://www.informatik.uni-freiburg.de/~{brucker,wolff}

Abstract Tools for a specification language can be implemented directly
(by building a special purpose theorem prover) or by a conservative em-
bedding into a typed meta-logic, which allows their safe and logically
consistent implementation and the reuse of existing theorem prover en-
gines. For being useful, the conservative extension approach must provide
derivations for several thousand “folklore” theorems.

In this paper, we present an approach for deriving the mass of these
theorems mechanically from an existing library of the meta-logic. The
approach presupposes a structured theory morphism mapping library
datatypes and library functions to new functions of the specification lan-
guage while uniformly modifying some semantic properties; for example,
new functions may have a different treatment of undefinedness compared
to old ones.

Keywords: Formal Methods, Formal Semantics, Shallow Embeddings,
Theorem Proving, OCL

1 Introduction

In contrast to a programming language, which defines computations, a spec-
ification language defines properties of computations, usually by extending a
programming language with additional constructs such as quantifiers or univer-
sally quantified variables. Among the plethora of specification languages that has
been developed, we will refer here only to examples such as Hoare-Logics [1, 2],
Z [3, 4] or its semantic sister Higher-order Logics (HOL) [5], which has been
advertised as “functional language with quantifiers” recently [6].

For the formal analysis of specification languages, their representation, i.e.
their embedding, within a logical framework based on typed A-calculi such as
NuPRL [7], Coq [8] or Isabelle [9, 10] is a widely accepted technique that has
been applied in many studies in recent years. With respect to tools implementing
specification languages, the situation is not so clear-cut: while direct implemen-
tations in a programming environment are predominant [11, 12, 13], which result
in special logic, special purpose theorem provers sometimes based on ad-hoc de-
duction technology, only a few tools are based on embeddings [14, 15, 16].

182 Achim D. Brucker and Burkhart Wolff

There are two main advantages of the embedding approach: Beside the reuse
of existing theorem prover engines, building such tools based on a conserva-
tive embedding into a logical framework also guarantees the safety and relative
logical consistency of the tool. Unfortunately, in order to be practically use-
ful and consistency-aware, the conservative embedding approach must provide
derivations for several thousand “folklore theorems” (such as the associativity
of the concatenation on lists or the commutativity of the union on sets) of the
underlying logics or the basic datatypes of a specification language.

Based on the observation that in many language embeddings the bulk of func-
tion definitions follows a common scheme, our contribution in this paper consists
of a method to structure these definitions into a modular theory morphism and
a technique that exploits this structure and attempts to automatically derive
“folklore theorems” from their counterparts in the meta-logic. Thus, upgraded
libraries of the meta-logic can lead automatically to new theorems in the object
logic since generic tactical support can “transform” theorems over functions of
the meta-level into theorems at the object level. To say it loud and clear: we do
not expect that all functions of a language semantics will be amenable to our
approach; for the 10 percent that are core language constructs, we expect more
or less standard verification work for properties of the language. But for the 90
percent that are library functions, our approach may significantly facilitate the
embedding approach and lead to more portability.

This work was partly motivated by the development of HOL-OCL [17, 18] a
conservative embedding of the Object Constraint Language (OCL) [19, 20, 21]
into HOL. OCL is a textual extension of the object-oriented Unified Modeling
Language (UML) [22] which is widely used within the object oriented software
development process. In principle, OCL is a subtyped, three-valued Kleene-Logic
with equality that allows for specifying constraints on graphs of object instances
whose structure is described by UML class diagrams.

This paper proceeds as follows: after a presentation of the foundation of this
work, we propose a structuring of the theory morphism into layers and present
for each layer some typical combinators that capture the essence of semantic
transformation from a meta-logical function to an object-logical one. We discuss
the theory of these combinators and conceptually describe the tactics that per-
form the generation of generic theorems and the transformation of meta-level
“folklore theorems” to their object-logical counterparts by means of a conserva-
tive theory morphism.

2 Foundations

In the following section, we will introduce a formal framework in order to de-
fine the core notion of “conservative theory morphism” which leads to the key
observations and their practical consequences for the construction of language
embeddings. The purpose of these abstract definitions is to demonstrate that our
approach is in fact fairly general and applies to a wide range of proof systems
based on higher-order typed calculi. In the subsequent sections, we present a

Using Theory Morphisms for Implementing Formal Methods Tools 183

comparison of embedding techniques and introduce the underlying terminology
of our approach. Finally, we outline the context of our running example.

2.1 Formal Preliminaries: The Generic Framework

In this section, we will introduce a formal framework in order to define the core
notion of “conservative theory morphism” which leads to the key observations
and their practical observations for the construction of shallow embeddings. The
terminology used here follows the framework of institutions [23]. Throughout
this paper, however, it is sufficient to base our notions on simple set-theoretic
concepts instead of full-blown category theory. The concept of signature is in-
spired by [24], but can be expressed in other typed A-calculi too.

First we introduce the notion of sorts, types and terms; we assume a set p
of sorts and a set x of type constructors, e.g. bool, - — _, list,_ set. We assume
a type arity ar, i.e. a finite mapping from type constructors to non-empty lists
of sorts ar : X —gn list>1(p). We define a set of types 7 := a | x(7,...,7)
based on the set of polymorphic types a. Further, we assume with T'(c,z) the
set of inductively defined terms over constants ¢ and variables x. For instance,
for Isabelle-like systems, this set is defined as:

T(c,x) ==c|z|T(c,z)T(c,x) | \e.T(c,z),

while
x ={- — -, bool} (type constructors)
p = {term} (set of sorts)
ar = {(bool — [term]), (. — _+> [term, term, term])}. (type arity)

A signature is a quadruple X' = (p, x, ar, ¢ —an 7) and analogously the quadruple
I' = (p,x, ar,x —gn 7) is called an environment.

The following assumption incorporates a type inference and a notion of well-
typed term: we assume a subset of terms called typed terms (written T's; p(c, z))
and a subset typed formulae (written Fx p(c,x)); we require that in these no-
tions, ar, p and y agree in X and I'. For example, a type inference system for
order-sorted polymorphic terms, can be found in [24]. Formulae, for example,
can be typed terms of type bool.

We call § = (X, A) with the axioms A C Fx; r(c,z) a specification. The
following assumption incorporates an inference system: with a theory Th(S) C
Fs p(c,z) we denote the set of formulae derivable from A; in particular, we
require A € Th(S) and Th to be monotonous in the axioms, i.e. S C S =
Th(S) C Th(S’) (we also use S C S’ for the extension of subsets on tuples for
component-wise set inclusion).

A signature morphism is a mapping Y — X which can be naturally extended
to a specification morphism and a theory morphism.

The following specification extensions S C S, called conservative specifica-
tion extensions (see [5]), are of particular interest for this paper:

184 Achim D. Brucker and Burkhart Wolff

1. type synonyms,
2. constant definitions, and
3. type definitions.
A type synonym introduces a type abbreviation and is denoted as:
S" = Sy [types t(ay,...,an) = T(ag,...,an,t)].

It is purely syntactical (i.e. it we will be used for abbreviations in type annota-
tions only) such that the extension is defined by S’ = S.
A constant definition is denoted as:

S’ = S [constdefs “c = E"].

A constant definition is conservative, if the following syntactic conditions hold:
¢ ¢ dom(X), E is closed and does not contain ¢, and no sub-term of E has a
type containing a type variable, that is not contained in the type of ¢. Then S’ is
defined by ((p, x, ar,C"), A"), where S = ((p, x, ar,C), A) and A’ = AU{c = E}
and C' = CU{(c+ 7)} where 7 is the type of E.

A type definition will be denoted as follows:

S" = S W typedef “T(ay,...,a,) ={z| P(z)}"].

In this case, S" = ((p,x',ar’,C"), A’) is defined as follows: We assume S =
((p,x,ar,C),A), and P(x) of type P :: R — bool for a base type R in x. C’
is constructed from C by adding Absr : R — T and Repy : T — R. X' is
constructed from x by adding the new type T (i.e. which is supposed to be not
in x). The axioms A’ is constructed by adding the two isomorphism axioms

A" = AU {Va.Abst(Repr(z)) = x,Vo.P(x) = Repp(Absr(z)) =} .

The type definition is conservative if the proof obligation 3x.P(z), holds.
Instead of S W Fy W --- W F, we write S' & E. Technically, conservative lan-
guage embeddings are represented as specification increments E, that contain
the type definitions and constant definitions for the language elements and give
a semantics in terms of a specification S.
The overall situation is summarized in the following commutative diagram:

o, Th(S
WE B TMy
R op— Th(S & E)

The three morphisms on the right of the diagram require some explanation: The
injection (—) from Th(S) to Th(S W E) is a consequence of the fact that ¥

Using Theory Morphisms for Implementing Formal Methods Tools 185

constructs extensions and Th is required to be monotonous. The theory mor-
phism E~! exists, since our extensions are conservative: all new theorems can
be retranslated into old ones, which implies that the new theory is consistent
whenever the old was (see [5] for the proof). The theory morphism T'Mp (de-
noted by =) connects the Th(S) to Th(S W E) and serves as specification for
the overall goal of this paper, namely the construction of a partial function
LIFTg : Th(S) — TMg(TH(S')) that approximates the functor TMg.

Our Framework and Isabelle/HOL. Our chosen meta-logic and implemen-
tation platform Isabelle/HOL is the instance of the generic theorem prover Is-
abelle [10] with higher-order logic (HOL) [25, 26]. Isabelle directly implements
order sorted types ([24]; Note, however, that we do not make use of the ordering
on sorts throughout this paper), and supports the conservative extension schemes
abstractly presented above. Isabelle/HOL is the instance of Isabelle that is most
sophisticated with respect to proof-support and has a library of conservative
theories. Among others, the HOL-core provides type bool, the number theories
provide nat and int, the typed set theory provides set(T) and the list specification
provides list(T). Moreover, there are products, maps, and even a specification
on real numbers and non-standard analysis. The HOL-library provides several
thousand theorems — yielding the potential for reuse in a specialized tool for a
particular formal method.

Our Framework in the Light of other Type Systems. It is straightfor-
ward to represent our framework in type systems that allow types depending on
types [27], i.e. the four A-calculi on the backside of Barendregt’s cube. In the
weakest of these systems, Aw, the same notion of sorts is introduced as in our
framework. For example, the sort * in Aw corresponds to term. The arities cor-
respond to kinds, which are limited to * in Aw, however, since kinds are defined
recursively by K = %|K — K, there are higher-order type constructors in A\w that
have no correspondence in our framework. The arities of type constructors can
be encoded by kinds: the arity for = — _ namely [term, term, term| corresponds
to the kind x — % — x. Declarations of type synonyms types t(ay,...,a,) =T
correspond to Aoy : *,...,q,: *x.T, etc.

2.2 Embedding Techniques — An Overview

For our approach, it is necessary to study the technique of embeddings realized in
a theory morphism in more detail. While these underlying techniques are known
since the invention of typed A-calculi (see for the special case of the quantifiers
in [25]), it was not before the late seventies that the overall importance of higher-
order abstract syntax (a term coined by [28]) for the representation of binding in
logical rules and program transformations [29] and for implementations [28] was
recognized. The term “shallow embedding” (invented in [30]) extends higher-
order abstract syntax (HOAS) to a semantic definition and is contrasted to
“deep embeddings”. Moreover, throughout this paper, we will distinguish typed

186 Achim D. Brucker and Burkhart Wolff

and untyped shallow embeddings. Conceptually, these three techniques can be
summarized as follows:

Deep embeddings represent the abstract syntax as a datatype; variables and
constants are thus represented as constants in the meta-logic. A semantics
is defined “over” the datatype using a transition relation —,. or an interpre-
tation function Sem from syntax to semantics.

Untyped shallow embeddings use HOAS to represent the syntax of a lan-
guage by declaring uninterpreted constant symbols for all constructs except
variables which are directly represented by variables of the meta-logic; thus,
binding and substitution are “internalized” on the meta-level, but not the
typing. A semantics is defined similarly to a deep embedding.

Typed shallow embeddings use HOAS but include also the type system of
the language in the sense that ill-typed expressions can not be encoded well-
typed into the meta-logic. This paves the way for defining the semantics of
the language constructs and its functions by a direct definition in terms of
the meta-logic, i.e. its theories for e.g. orders, sets, pairs, and lists.

The difference between these techniques and their decreasing “representational
distance” is best explained by the simplest example of a typed language: the
simple typed A-calculus itself. The syntax can be declared as follows:

HDeep ‘Untyped Shallow ‘Typed Shallow
VAR: ||a —L(a ,3)
CON:||8 —L(« ,5) 8 —L(B)
LAM:[loe xL(a ,8) —L(a ,8) |(L(8)—L(B))—L(53)|L(v,6)—~L(v,)
APP: [L(a ,8)xL(a ,8)—L(a ,)|L(AXL(B)—=L(B) [L(1.0)x7—3

where the underlying types can be defined by the equations:

Deep ‘ Untyped Shallow ‘ Typed Shallow
Lo, p) = | 8 L(B)=p
|a x L(a, B) |L(B) — XL(B) |L(y,6) =~y — 4
|L(a, 3) x L(a, 5) [L(8) x L(B)

The first type equation can be directly interpreted as a datatype and is thus
inductive, the second can interpreted as datatype only with difficulties (requiring
reflexive Scott Domains), while the third has clearly no inductive structure at all.
Since the typed shallow embedding “implements” binding and typing efficiently
by the meta-level, it is more suited for tool implementations. However, induction
schemes over the syntax usually yield the crucial weapon for completeness proofs
in various logics, for instance, and motivate therefore the use of deep embeddings
in meta-theoretic reasoning.

To complete, we compare now the definition of semantics in all three settings:

Deep ‘ Untyped Shallow ‘ Typed Shallow
APP(LAM(x,F),A) —5 |APP(LAM(F),A) —4F A[APP(F,A) = F A
subst(alfa(F,free(A)),x,A) LAM(F) =F

-+ congruence rules + congruence rules

Using Theory Morphisms for Implementing Formal Methods Tools 187

where — g is just the usual inductively defined (-reduction relation, subst and
free the usual term functions for substitution and computation of free vari-
ables and alfa is assumed to compute an a-equivalent term whose bound vari-
ables are disjoint from free(A). In an untyped shallow setting, these functions
are not needed since variables and substitution are internalized into the meta-
language. In the typed shallow embedding, APP is semantically represented by
the application of the meta-language and LAM by the identity; the G-reduction
APP(LAM(F),A) = F A is just a derived equality in the meta-logic. In a meta-
logic assuming Leipnitz’ Law for equality (such as HOL), congruence rules are
not needed since equality is a universal congruence.

Note that the mapping in our typed shallow embedding between language
and meta-language must not be so trivial as it is in this example; it can involve
exception handling, special evaluation strategies such as call by value, backtrack-
ing, etc. Moreover, the relation between the type systems of the two languages
may also be highly non-trivial. This is what our running example OCL will do
in the next chapters.

Further, note the technical overhead between deep and shallow embeddings
will even be worse if we introduce function symbols such as + and numbers
0,1,2, ... into our language. In the deep embedding, the whole syntax and
semantics must be encoded into new datatypes and reduction relations over
them, while in the typed shallow embedding, the operators of the meta-logic
(possibly adapted semantically) can be reused more or less directly.

Summing up, a deep embedding on the one end of the spectrum requires a lot
of machinery for binding, substitution and typing, while a the other end, bind-
ing and typing are internalized into the meta-logic, paving the way for efficient
implementations using directly the built-in machinery of the theorem prover.
Therefore, whenever we speak of an embedding in the sequel, we will assume a
typed shallow embedding.

2.3 OCL in a Nutshell

The Unified Modeling Language (UML) is a diagrammatic specification lan-
guage for modeling object oriented software systems. UML is defined in an open
standardization process lead by the Object Management Group (OMG) and
highly accepted in industry. Being specialized for the object-oriented software
development process, UML allows to specify object-oriented data models (via
class diagrams), using data encapsulation, subtyping (inheritance), recursion (in
datatypes and function definitions) and polymorphism (overwriting).

While UML as a whole can only claim to be a semi-formal language, UML
class-diagrams can be completed by the Object Constraint Language (OCL) to
a (fully) formal specification language. A prominent use of OCL in [19] is the
specification of class invariants and pre and post conditions of methods, e.g.:

context Account
inv: Account.alllnstances—>forAll(al,a2 |
al <> a2 implies al.id <> a2.id)

188 Achim D. Brucker and Burkhart Wolff

context Account:: makeWithdrawal(amount: Real)
pre: (amount > 0) and (balance — mount) >=0
post: balance = balance@pre — amount
and currency = currency@pre

The first example requires, that the attribute id of the class Account is unique
for all instances in a given system state. The second example shows a simple
pre/post condition pair, describing a method for withdrawal on an Account
object. Note, that within post conditions one can access the previous state by
using the @pre-keyword.

Being a typed logic that supports reasoning over object-graphs defined by
object-oriented class diagrams, OCL reasons over path expressions of the un-
derlying class diagram. Any path can be undefined in a given state; thus, the
undefinedness is inherent in OCL.

3 Organizing Theory Morphisms into Layers

In practice, language definitions follow a general principle or a common scheme.
In OCL, for example, there is the following requirement for functions except the
explicitly mentioned logical connectors (- and _, - or _, not _) and the logical
equality (- = _):

Object Constraint Language Specification [19] (version 1.4), page 6-58

Whenever an OCL-expression is being evaluated, there is the possibility that

one or more queries in the expression are undefined. If this is the case, then
the complete expression will be undefined.

In more standard terminology, one could rephrase this semantic principle as “all
operations are strict”, which is a special principle describing the handling of
exceptions!. Further semantic principles are, for example, “all collection types
are smashed” (see below), or, principles related to the embedding technique.
Instead of leaving these principles implicit inside a large collection of defi-
nitions, the idea is to capture their essence in combinators and to make these
principles in these definitions explicit. Such combinators occur both on the level
of types in form of type constructors and on terms in form of constant symbols.
As such, this approach is by no means new; for example, for some semantic
aspects like exception handling or state propagation, monads have been proposed
as a flexible means for describing the semantics of a language “facet by facet” in
a modular way [31, 32]. While we will not use monads in this work (which is a
result of our chosen standard example, OCL, and thus accidental), and while we
do not even suggest a similar fixed semantic framework here, merely a discipline
to capture these principles uniformly in combinators (may they have monad
structure or not), we will focus on the potential of such a discipline, namely to
express their theory once and for all and to exploit it in tactical programs.

! In this view, the logical equality can be used to “catch exceptions”.

Using Theory Morphisms for Implementing Formal Methods Tools 189

We turn now to the layering of our theory morphism. We say that a theory
morphism is layered, iff in each form of conservative extension the following
decomposition is possible:

types “T'ay ... ay) = Cp(-- (CL(T"))"
typedef “T(ai,...,am) ={z: Ch(---(CL(T")) | P(z)}”
constdefs “c=(Bpo---0E)()

where each C; or, respectively, F; are (type constructor) expressions build from
semantic combinators of layer S; and T" respectively. Note, that ¢’ is a construct
from the meta logic. A layer S; is represented by a specification defining the
semantic combinators, i.e. constructs that perform the semantic transformation
from meta-level definitions to object-level definitions. In Fig. 1, we present a
classification for such layers.

HOL Int Set

bool int set

Ay Vg = oo +7/7H7"' 5 [=5 e
XAY=YAX z+0=0+z AUB=AUB

‘ Data Type Adaption ‘

‘ Functional Adaption ‘

‘ Embedding Adaption ‘

logic o dnteger v aSSet ?
| BOOL ' | INTEGER ' VSET X
1 and, or, 1 1+, /, abs, ... 1 1 union, includes, ... 1
! ! ! ! ' A-junion(B) !
IXandY=YandX | IX+0=0+X ' 1 = B-iunion(A) .

Figure 1. Derivation of the OCL-library

In the following sections, we will present a typical collection of layers and
their combinators. We will introduce the semantic combinators one by one and
collect them in a distinguished variable SEMCOM. Finally, we will put them
together for our example OCL and describe generic theorem proving techniques
that exploit the layering of the theory morphism for OCL.

190 Achim D. Brucker and Burkhart Wolff

3.1 Datatype Adaption

Datatype adaption establishes the link between meta-level types and object-level
types and meta-level constants to object-level constants. While meta-level defini-
tions in libraries of existing theorem prover systems are geared toward good tool
support, object-level definitions tend to be geared to a particular computational
model, such that the gap between these two has to be bridged. For example,
in Isabelle/HOL, the head-function applied to an empty list is defined to yield
an arbitrary but fixed element; in a typical executable object-language such as
SML, Haskell or OCL, however, this function should be defined to yield an ex-
ception element that is treated particularly. Thus, datatype adaption copes with
such failure elements, the introduction of boundaries (as maximal and minimal
numbers in machine arithmetics), congruences on raw data (such as smashing;
see below) and the introduction of additional semantic structure on a type such
as complete partial orders (cpo).

We chose the latter as first example for a datatype adaption. We begin with
the introduction of a “simple cpo” structure via the specification extension by
sort ¢po0 and the definition of our first semantic (type) combinator; simple cpo
means that we just disjointly add a failure-element such as L (see, e.g. [1],
where the following construction is also called “lifting”). Note, that an extension
to full-blown cpo’s would require the additional definition of the usual partial
definedness-ordering with 1 as least element and completeness requirements;
such an extension is straight-forward and useful to give some recursive constructs
in OCL a semantics but out of the scope of this paper.

We state:

datatype up(a) ="[(1)|” a | L

which is a syntactic notation for a type definition and two constant definitions
for the injections into the sum-type. In the sequel, we write ¢, instead of up(t).
For example, we can define the object-level type synonym Bool based on this
combinator:

types Bool = bool | types Integer = integer |

These type abbreviations reflect the effect of the datatype adaption.

We turn now to the semantical combinators of this layer. We define the
inverse to |-] as [_]. We have defined a small specification extension providing
the semantic combinators: (_), L, |-],[-] € SEMCOM.

As an example for a congruence construction, we chose smashing on sets,
which occurs in the semantics of SML or OCL, for example. In a language with
semantic domains providing | -elements, the question arises how they are treated
in type constructors like product, sum, list or sets. Two extremes are known in
the literature; for products, for example, we can have:

(L,X)# L {a, L,b} # L

Using Theory Morphisms for Implementing Formal Methods Tools 191

or:
(L, X)=1 {a, L,b} =1
The latter variant is called smashed product and smashed set. In our framework,

we define a semantic combinator for smashing as follows:

constdefs smash :: [[(:: cpo0, « :: cpo0] —bool, a] —«
"smash f X = if f 1L X then Lelse X”

and define, for example, Set’s as follows:
typedef o Set = "{X:: (a :: cpo0) set up.(smash (A\x X. x : [X]) X) = X}”
An embedding of smashed sets into “simple cpo’s” can be done as follows:

instance Set :: ord(term)
arities Set :: cpoO(term)
constdefs UU_Set_def 71 =Absge; L”

We have defined the semantic combinators smash, L :: Set(«), Absget, Repger €
SEMCOM.

3.2 Functional Adaption

Functional adaption is concerned with the semantic transformation of a meta-
level function into an object-level function. For example, this may involve the

— strictification of functions, i.e. the result of the function is undefined if one
of its arguments is undefined,

— late-binding-conversion of a function. This semantic conversion process is
necessary for converting a function into an function in an object-oriented
language.

Technically, strictification can be achieved by the definition of the semantic com-
binators. We will introduce two versions: a general one on the type class ¢po0,
another one for the important variant:

constdefs
strictify : "(ayg = cpol) —a —pF7
"strictify f x = if x=1 then Lelse f x”
strictify’ = (g —fB: epol) —ay — 37

"strictify’ f x = case x of |[v] —=(fv)| L—L"

(strictify’, strictify € SEMCOM).

A definition like OCL’s union (that is the strictified version of HOL’s union
over the smashed and transformed HOL datatype set) is therefore represented
as:

constdefs
union :: Set(a) —Set(a) —Set(ar)
"union =strictify(A X. strictify(A Y. Absget | [Repg; X] U[Repg,.Y1]))”

192 Achim D. Brucker and Burkhart Wolff

Many object-oriented languages provide a particular call-scheme for func-
tions, called method invocation which is believed to increase the reusabilty of
code. Method invocation is implemented by a well-known construction in pro-
gramming language theory called late-binding. In order to demonstrate the flex-
ibility of our framework, we show in the following example how this important
construction can be integrated and expressed as a semantic combinator. The
late-binding-conversion requires a particular pre-compilation step that is not
semantically treated by combinators: For each method declaration

Method m: tq,..., t, —t
in a class-declaration A, a look-up table lookup,, has to be declared with type:
lookup,, :: set(A) —A —t; x...xt, —t

In an “invocation” A.m(aq,...,a,) of a “method of object A”, the dynamic type
of A is detected, which is used to lookup the concrete function in the table,
that is executed with A as first argument (together with the other arguments).
The dynamic type of a “class of objects A” can be represented by set?. Thus,
the semantics of method invocations can be given by the following semantic
combinators:

match lookup obj =the (lookup (LEAST X: a . X : dom lookup Aobj: X)))
methodify lookup obj arg =(match lookup obj)(arg)

where we use predefined Isabelle/HOL functions for “the”, “dom” and “LEAST”
with the 'obvious’ meaning. Since OCL possesses subtyping but not late-binding
at the moment, we will not apply these combinators throughout this paper. The
discussion above serves only for the demonstration that late-binding can in fact
be modeled in our framework. A detailed account on the handling of subtyping
can be found in [17].

3.3 Embedding Adaption for Shallow Embedding

This type of semantic combinators is related to the embedding technique itself.
Recalling section 2.2, any function op : Ty — T5 of the object-language has to
be transformed to a function:

Semg[op] : Vo(Th) — V,(T2) where types V,(0) =0 — ¢ .

The transformation is motivated by the usual form of a semantic definition for
an operator op and an expression e in a deep embedding;:

Semg[ope] = Xo.(Sem,[op]o)(Sem[e]o)

for some environment or state o. Consequently, the semantics of an expression
e of type T is given by a function o — T (written as V,(T")). In a typed shallow

2 This requires a construction of a “universe of objects” closed under subtypes gener-
ated by inheritance; in [17], such a construction can be found.

Using Theory Morphisms for Implementing Formal Methods Tools 193

embedding, the language is constructed directly without the detour of the con-
crete syntax and Sem. Hence, all expressions are converted to functions from
their environment to their value in 7', which implies that whenever a language
operators is applied to some arguments, the environment must be passed to
them accordingly. This “plumbing” with the environment parameter o is done
by the semantic combinators K, lift; or lift, € SEMCOM that do the trick for
constants, unary or binary functions. They are defined as follows:

K t o a—V,(a)

"K a = (Ast. a)”

lift (¢ —=p) =V, (o) =V,(0)

"lifty £ X = (Ast. f (X st))”

lifto ([a 0] =7) =[Vo(a), Vo (B)] =Vo(7)

"lift, £ XY = (Ast. £ (X st)(Y st))”

Our “layered approach” becomes particularly visible for the example of the log-
ical absurdity or the the logical negation operator (standing for similar unary
operators):

constdefs Ly :: V,(Bool)
"Ly =K(| 1))°
true :: V,(Bool)
"true = K(| true |)”
false:: V,(Bool)
"false =K(| false |)”

not : V,(Bool) —=V,(Bool)
"not = (liftyo|_|ostrictify’) (—)”

From this definition, the usual logical laws for a strict negation can be derived:
not(Ly) = Lg not(true) = false not(false) = true

As an example for a binary function like Union (based on union defined in the
previous section), we present its definition:

constdefs Union :: V,(Set(a)) =V, (Set(a)) =V, (Set(a))

Union = lifty union

We will write BOOL for V,(Bool), INTEGER for V, (Integer) and SET(«) in
the sequel. These type abbreviations reflect the effect of the embedding adaption
on types.

4 Automatic Generation of Library Theorems

We distinguished two ways to generate theorems for newly embedded operators
of an object language: instantiations from generic theorems over the semantic
combinators or the application of LIFT g, a tactic procedure that attempts to
reconstruct meta-level theorems on the object-level.

194 Achim D. Brucker and Burkhart Wolff

4.1 Generic Theorems

In our example application OCL, definedness is a crucial issue that has been
coped with by semantic combinators. Definedness is handled by the predicate
is.def : V,(aw) —BOOL that lifts the predicate DEF t =(t #.L1) to the level of
the OCL logic. Since the latter “implanted” undefinedness on top of the meta-
level semantics, it is not surprising that there are a number of properties that
are valid for all functions that are defined accordingly to the previous sections.

is_def (lift; (strictify’(Ax. [f x])) X) = is_def X
is_def (lift; (strictify’(Ax. |f x])) X) = is_def X
is_def (lifts (strictify’(Ax.
strictify’(Ay. [f x y]))) X Y) = (is_def X and is_def Y)

lift (strictify’) Lo= Lo
lifto (strictify’(Ax. strictify’(f x))) LeX = Ly
lifto (strictify’(Ax. strictify’(f x))) X L= Ly

For any binary function defined in the prescribed scheme, these theorems already
result in four theorems simply by instantiating f appropriately!

Surprisingly, the embedding adaption combinators K, lift; and lifts turn out
to have a quite rich theory of their own. First, it is possible to characterize
the “shallowness” of a context C in the sense that the environment/store is
just “passed through” this context. This characterization can be formulated
semantically and looks as follows:

constdefs pass = ([Ve(y), 0] —3) —bool
pass(C) = (3f. VX st. CX st =1 (Xst) st)

This predicate enjoys a number of useful properties that allow for the decom-
position of a larger context C' to smaller ones; for instance, trivial contexts pass
and passing is compositional:

pass(AX. ¢) pass(AX. X)

[pass P; pass P’]| =pass(PoP’)
Moreover, any function following the prescribed scheme is shallow (since this
was the very reason for introducing the pass-predicate):

[pass P] =pass(AX. lift; f (P X))

[pass P; pass P’] =pass(A\X. lifts f (P X) (P’ X))”
This leads to a side-calculus enabling powerful logical rules like trichotomy (for
the language composed by the operators):

[pass P; pass P’; P Ly= P’ Ly; P true= P’ true; P false= P’ false]

=PX=P"X

Moreover, there are also fundamental rules that allow for a split of defined and

undefined cases and that form the bases for the generic lifter to be discussed in
the next section:

[pass P;pass P P Ly=P ly; X #1ey =P X =P X] =P (X) =P X

Using Theory Morphisms for Implementing Formal Methods Tools 195

4.2 Approximating the TMg by LIFTE

Now we are ready to describe conceptually the tactic procedure. The main parts
of the implementation in Isabelle/HOL are presented in the appendix, see sec-
tion A. It is based on the set of semantic combinators SEMCOM and their
theory, which has been defined elementwise in the previous sections. In order to
allow a certain flexibility in the syntactic form of theorems to be lifted, we extend
SEMCOM to the set CO with the set of logical connectives of our meta-language
(=, A, VorV).
The core(E) of a conservative theory extension E is is defined as the map

{(c — ')|constdefs “c = e(c)” € axioms_of (E) A constants_of(e) C CO},

i.e. we filter all constant definitions that are constructed by our semantical com-
binators and simple logical compositions thereof.

A theorem thm € Th(S) is liftable iff it only contains constant symbols that
are elements of ran(core(FE)) or a logical connective.

Liftable theorems can now be converted by substituting the constants in
the term of thm along core(E), i.e. we apply an inverse signature morphism
constructed from core(F) (note that the inverse signature morphism may not be
unique; in such cases, all possibilities must be enumerated). A converted theorem
may be convertable iff the converted term is typable in X w E. All convertable
terms thm’ are fed as proof goals into a a generic tactical proof procedure that
executes the following steps (exemplified with the commutativity):

1. the proof-state is initialized with thm’, e.g. ((X:: @ INTEGER)+ Y)=Y+X,
2. we apply extensionality and unfold the definitions for lift; and lifty yielding

1. Ast. strictify’(Ax. strictify” (Ay. |x + y])) (X st) (Y st)
= strictify’(Ax. strictify” (Ay. |x + y])) (Y st) (X st)

3. for each of the free variables (e.g. X and Y') we introduce a case split over de-
finedness DEFz, i.e. difference of x from | (e.g. DEF (X st) and DEF(Y st)),

1. Ast. [DEF (X st); DEF (Y st) |
= strictify’(Ax. strictify’ (Ay. [x +y])) (X st) (Y st)
= strictify’(Ax. strictify’ (Ay. [x + y])) (Y st) (X st)
2. Ast. [DEF (X st); -DEF (Y st) |
= strictify’(Ax. strictify” (A\y. |x + y])) (X st) (Y st)
= strictify’(Ax. strictify” (Ay. [x + y])) (Y st) (X st)
3. Ast. = DEF (X st)
= strictify’(Ax. strictify’ (Ay. [x + y])) (X st) (Y st)
= strictify’(Ax. strictify” (Ay. [x + y])) (Y st) (X st)

4. we exploit the additional facts in the subgoals by simplifying with the rules
for strictify’. This yields:

1. Astxxa. [...] =x+xa=xa+x

5. and by applying thm (the commutativity on int) we are done.

196 Achim D. Brucker and Burkhart Wolff

These steps correspond to the treatment of the different layers discussed in
the previous chapter: step one erases the embedding adaption layer, step two es-
tablishes case distinctions for all occurring variables and applies generic lemmas
for the elimination of the semantic combinators of functional layer. In an exam-
ple involving a datatype adaption layer (for example quotients like smashing in
OCL), similar techniques will have to be applied.

Of course, this quite simple — since conceptual — lifting routine can be
extended to a more sophisticated one that can cover a larger part of the set
of convertables. For example, the combinators of the datatype adaption layer
may involve reasoning over invariants that must be maintained by the underly-
ing library functions. In our OCL theory, for example, such situations result in
subproofs for

[[Lg RepSetA; LgI{epSet]B]] :>J*¢ (RepSet A URepSetB)

Depending from the complexity of the combinators for the datatype adaption,
such invariant proof can be arbitrarily complex and will require hand-proven
invariance lemmas.

A particular advantage of our approach is that the lifting of theorems can
be naturally extended to the lifting of the configurations of the automatic proof
engine as well. With configuration, we mean here a number of rule sets for intro-
duction and elimination rules for the classical reasoner fast_tac or blast_tac
and sets for standard rewriting or ACI rewriting. By LIFT g, these sets can be
partially lifted and extended by corresponding rules on the object level. Since
it is usually an expert task to provide a suitable configuration for a logic, this
approach attempts to systematically extend this kind of expert knowledge from
the meta-level to object level.

5 Experience gained from our OCL example

We give a short overview of the application of our approach in the typed shallow
embedding of OCL into Isabelle/HOL (see [17, 18] for details). In our example
scenario, we can profit a lot from the fact, that most of the functions for the
datatypes Integer, Real (e.g. =,—,/,<,<, ...), Sequences (e.g. union, append,
size, etc.), and String (e.g. concat, size, ...) can be derived in the same way as
described for + in the last section.

The current application of our module thy_morpher.ML to our OCL embed-
ding with 85 operators produces the following statistics (based on Isabelle/HOL
version 98):

Relevant HOL theorems : 1593

Liftable theorems ;423
Convertable theorems : 212
Lifted theorems . 102

Generic theorems . 264

Using Theory Morphisms for Implementing Formal Methods Tools 197

From the 85 operators of OCL, 77 are amenable to our approach in principle.
With “relevant theorems” we mean those contained in specifications imported by
the specifications containing our embedding. From our experience, improvements
in the generic theorems section will lead to better results easily. In contrast, the
design of new schemata of lifting proof routines is a more complex, but still
rewarding task. Summing up, based on a still quite simple LIFT g technology,
we successfully generated over 350 theorems which are automatically derived
from the base libraries and generic theorems over semantic combinators.

6 Conclusion

We have presented a method for organizing the mass of library function defi-
nitions for typed shallow embeddings in a layered theory morphism. Moreover,
we developed a technique that allows for the exploitation of this structure in a
tactic-based (partial) program that lifts meta-level theorems to their object-level
counterparts and meta-level prover configurations to object-level ones. Our ap-
proach can be seen as an attempt to liberate the shallow embedding technique
from the “point-wise-definition-style” in favor of more global semantic transfor-
mations from one language level to another. We abstracted the underlying con-
ceptual notions into a generic framework that shows that the overall technique
is applicable in a wide range of embeddings in type systems; embedding-specific
dependencies arise only from the specifications of semantic combinators (the
layers), and technology specific dependencies from the used tactic language.

At present, the technique is limited essentially to the class of first-order Horn-
clause equations; for this class, the (partial) program succeeds in our application
in all cases in our non-trivial application language. Although a more precise char-
acterization of success is impossible here due to the generality of the framework,
we believe that the approach will be applicable for language embeddings for SML,
Haskell or Z [16] with similar success since the underlying semantic combinators
are the same. Additionally, our implementation of LIFT i will also be reusable.
The same holds for many basic generic theorems over semantical combinators
from the embedding adaption layer, the functional adaption layer and — to a
lesser extent — the data adaption layer. In principle, the overall construction
is also applicable for other higher-order typed theorem proving systems such as
Coq [8] or ALF [33]; however, the theories over the semantic combinators and
the core of the tactic procedure will have to be adapted to these frameworks.

Besides the obvious need for more generic theorems and more powerful lifting
proof procedures, in particular for formulae like —=Va : A.Px = Jz : A.—~Px, the
potential of our approach for untyped shallow or even deep embeddings should
be explored. This means, that similarly to invariance proofs of data adaption
operators, automatic proofs for the maintenance of well-typing have to be con-
structed, whereas in a deep embedding, the invariance of binding correctness
(“no name-clashes”) has also be handled in these proof routines. Beyond the ob-
vious increase of complexity, it seems unclear what kind of limitations for such
a setting will arise.

198 Achim D. Brucker and Burkhart Wolff

References

1]
2]

3]

Winskel, G.: The Formal Semantics of Programming Languages. MIT Press
(1993)

Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing 10 (1998) 171-186

Spivey, J.M.: The Z Notation: A Reference Manual. 2nd edn. Prentice Hall
International Series in Computer Science (1992)

Kolyang, Santen, T., Wolff, B.: A structure preserving encoding of Z in Is-
abelle/HOL. In von Wright, J., Grundy, J., Harrison, J., eds.: TPHOLs. LNCS
1125, Springer (1996)

Gordon, M.J.C., Melham, T.F.: Introduction to HOL. Cambridge Press (1993)
Nipkow, T., von Oheimb, D., Pusch, C.: pJava: Embedding a programming lan-
guage in a theorem prover. In Bauer, F.L., Steinbriiggen, R., eds.: Foundations
of Secure Computation. Volume 175 of NATO Science Series F: Computer and
Systems Sciences., I0S Press (2000) 117-144

http://www.nuprl.org.

http://pauillac.inria.fr/coq/.

http://isabelle.in.tum.de.

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)
http://www.ora.on.ca/z-eves/welcome.html.
http://svre.it.uq.edu.au/pages/Ergo.html.

http://illwww.ira.uka.de/ kiv/.

Reetz, R.: Deep Embedding VHDL. In E.T. Schubert, P.J. Windley, J. Alves-
Foss, eds.: 8th International Workshop on Higher Order Logic Theorem Proving
and its Applications. Volume 971 of Lecture Notes in Computer Science., Springer
(1995) 277292

Ozols, M.A., Eastaughffe, K.A., Cant, A., Collignon, S.: DOVE: A tool for design
modelling and verification in safety critical systems. In: 16th International System
Safety Conference. (1998)

Brucker, A.D., Rittinger, F., Wolff, B.: HOL-Z 2.0: A proof environment for
Z-specifications. Journal of Universal Computer Science 9 (2003)

Brucker, A.D., Wolff, B.: A proposal for a formal OCL semantics in Isabelle/HOL.
In Mufioz, C., Tahar, S., Carrefio, V., eds.: Theorem Proving in Higher Order
Logics. Number 2410 in LNCS. Springer (2002) 99-114

Brucker, A.D., Wolff, B.: HOL-OCL: Experiences, consequences and design
choices. In Jezequel, J.M., Hussmann, H., Cook, S., eds.: UML 2002: Model
Engineering, Concepts and Tools. Number 2460 in LNCS. Springer (2002)
OMG: Object Constraint Language Specification. [22] chapter 6

Warmer, J., Kleppe, A.: The Object Contraint Language: Precise Modelling with
UML. Addison-Wesley (1999)

Warmer, J., Kleppe, A., Clark, T., Ivner, A., Hogstrom, J., Gogolla, M., Richters,
M., Hussmann, H., Zschaler, S., Johnston, S., Frankel, D.S., Bock, C.: Response
to the UML 2.0 OCL RfP. Technical report (2001)

OMG: Unified Modeling Language Specification (Version 1.4). (2001)

Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. Journal of the ACM (JACM) 39 (1992) 95-146

Nipkow, T.: Order-sorted polymorphism in Isabelle. In Huet, G., Plotkin, G.,
eds.: Logical Environments. (1993) 164-188

[25]
[26]
[27]
[28]
[29]

[30]

31]
[32]

[33]

Using Theory Morphisms for Implementing Formal Methods Tools 199

Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic 5 (1940) 56—68

Andrews, P.B.: An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Academic Press (1986)

Barendregt, H.: Lambda Calculi with Types. In: Handbook of Logic in Computer
Science. Clarendon Press (1992) 117-309

Frank Pfenning, C.E.: Higher-order abstract syntax. In: PLDI 1988. (1988) 199—
208

G. Huet, B.L.: Proving and applying program transformations expressed with
second order patterns. (Acta Informatica)

Boulton, R., Gordon, A., Gordon, M., Harrison, J., Herbert, J., Tassel, J.V.:
Experience with embedding hardware description languages in HOL. In Stavridou,
V., Melham, T.F., Boute, R.T., eds.: Proceedings of the IFIP TC10/WG 10.2
International Conference on Theorem Provers in Circuit Design: Theory, Practice
and Experience. Volume A-10 of IFIP Transactions., Nijmegen, The Netherlands,
North-Holland /Elsevier (1992) 129-156

Wadler, P.: Comprehending monads. In: Proc. 1990 ACM Conference on Lisp
and Functional Programming. (1990)

King, D.J., Wadler, P.: Combining monads. In: Glasgow functional programming
workshop. (1992)

Altenkirch, T., Gaspes, V., Nordstréom, B., von Sydow, B.: A User’s Guide to
ALF. Chalmers University of Technology, Sweden. (1994)

200 Achim D. Brucker and Burkhart Wolff

A Implementation of the Theory Morpher

(e s s sk s sk s sk sk sk sk s s s s o ok ok o ok o o o o o o o o o kK kK K ok sk ok ok sk ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok)

(* Generic Theorem—Morpher Lifting Meta—Level Theorems *)
(* *)
(* *)
(* (c) 2002 Achim D. Brucker <brucker@informatik.uni—freiburg.de> x)
(* Burkhart Wolff <wolff@informatik.uni—freiburg.de> x)

(e sk s s sk s sk sk sk sk sk sk sk sk ok sk ok ok ok ok ok ok ok s o o s o o o kK Rk kR sk R sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok sk ok ok)

(**}
(+ *)
(x Basic Operations *)
(* *)

(**)

fun store_.thm2 p (name,thm) =
let val clean_dot = Lib.String.map
(fn x => if x = #".” then #"_" else x)
in bind_-thm(clean_dot ((p()) name),thm) end;

fun constants_of (Const(s,_)) = [s]
| constants_of (Abs(-,-,t)) constants_of t
| constants_of (s $ t) (constants_of s)@(constants_of t)
| constants_of _ [];

fun free_of (Free(s,-)) = [s]
| free_of (Abs(-,-,t)) free_of t
| free_of (s $ t) (free_of s)@(free_of t)

| free_of _ [];
val SEM_COM = ["op 0", "Let”,
"Lifting. liftl"”,” Lifting.lift2",
"Lifting.lift”, " Lifting.drop”, " Lifting . UU",
"OCL_Set. Abs_SSet”, "OCL_Set. Rep_SSet”]
val strict_symbols = [" Lifting.strictify '”,” Lifting.strictify”]

fun subtract xs xt = filter (fn x => forall(fn y => not(x = y)) xt)(xs)

fun find_thym_pair (name,thm) = (x (cterm,6 cterm ,thm) option x)
case concl_of thm of
(Const("==",_) $ lhs $§
(Const (" Lifting.lift2”, _) §
(Const(strictl_op,_-) $§ Abs (-, _,
Const(strict2_op ,-) $ Abs(-,-,rhs)))))
=>(if exists (fn x => x=strictl_op) strict_.symbols andalso
exists (fn x => x=strict2_op) strict_symbols
then (case subtract (constants_of rhs) SEM.-COM of
[t] => Some ((lhs, Const(t,dummyT)), (name,thm))

| - => None)
else None)
| (Const("==",_) $ Ilhs $
(Const (" Lifting.lift1"”, _) $ rhs))

=> (case subtract (constants_of rhs) SEM.COM of
[t] => Some ((lhs, Const(t,dummyT)),(name,thm))
| - => None)
| - => None;

fun core thy =
mapfilter (find_thym_pair) (axioms_of thy);

Using Theory Morphisms for Implementing Formal Methods Tools 201

(**)
(* *)
(* Generic Theorem Generator *)
(* *)

(**}
(x basic lemmas proof code x)

goalw thy []

"lg. f==1lift2 (strictify '(%x. strictify '(g x))) ==> f X undef = undef”;
auto ();

ged” lift2_undef2_fw";

goalw thy []

"Ilg. f==1lift2 (strictify '(%x. strictify '(g x))) ==> f undef X = undef”;
auto ();

ged” lift2_undefl_fw";

(x [...] (analogous lemma proof code cut away in presentation))

(* basic lemmas x)

fun mRS S (name,thm) = mapfilter (fn a => Some(name,thm RS a)
handle THM _ => None) (S);

fun derive_sieve thms =
(x generates from a list of definitions several classes of rules
and provides setup for automatic procedures ... x*)
let val trans = flat (map (mRS [st_trans_liftl_fw,
st_trans_lift2_fw]) thms)
val undefs = flat (map (mRS [lift2_undef2_fw ,lift2_undefl_fw,
lift2_undefla_fw , lift2_undef2a_fw,
liftlb_undef_fw,
liftl_undef_fw]) thms)
val is_defs= flat (map (mRS [liftl_strict_is_isdef_fw ,
liftl_strictify_is_isdef_fw ,
lift2_strict_is_isdef_fw ,
lift2_strictify_is_isdef_fw]) thms);
val toggle = ref(71);
fun toggle_name name() = (toggle:= ((!toggle+1) mod 2);
name”Int.toString (! toggle))

in
writeln("\n derive_sieve: \n");
writeln ("\ n==—=—=—=——=\n");
writeln (" st_trans — rules: ""Int.toString(length trans));
writeln (" undef — rules: ""Int.toString (length undefs));
writeln (" is_def — rules: ""Int.toString (length is_defs));
AddSls (map (fn (-,t)=>t) trans);
map (store_.thm2 (K"OCL_st_trans”)) trans;
Addsimps (map (fn (_,t)=>t) undefs);
map (store_thm2 (toggle_name” OCL_undef”)) undefs;
Addsimps (map (fn (-,t)=>t) is_defs); (x really 7277 x)
map (store_.thm2 (toggle_.name” OCL_is_def”)) is_defs;
() (* type =)

end ;

(**}
(* *)
(x The Lifter (LIFT_E in documentation) *)
(* *)

(***************************************>k******>k***************************)

202 Achim D. Brucker and Burkhart Wolff

fun convert default_thy subst (name,thm) =

let fun conv (Free(s,_.)) = Free(s,dummyT)
| conv (Var((s,-),-)) = Free(s,dummyT)
| conv (Const(s,t)) = (case Symtab.lookup (subst, s) of
None => Const(s,dummyT)
| Some(p,a) => p)
| conv (Abs(s,-,t)) = Abs(s,dummyT, conv t)
|conv (s $ t) = (conv s) $ (conv t)
| conv x = x (* Bound variable x)
val cc = conv(term_of(cprop_of thm))
fun fst (x,y) =x
fun type_inference ct = fst(Sign.infer_types (sign-of default_thy)

(K None) (K None) [] true ([ct],propT))
in Some(name, cterm_of(sign_of default_thy)(type_inference cc))
handle _ => None
end ;

(*+ Some example proof code for a theorem—Ilifting

goalw thy [plus_def,lift2_def]

"((X::'a INTEGER)+ Y)=Y4+X"

br ext 1;

by(case_-tac "DEF(X st)” 1);

by(case_-tac "DEF(Y st)” 1);

by (ALLGOALS(asm_full_simp_tac (HOL_ss addsimps [not.DEF_X_up])));
by (ALLGOALS(asm_full_simp_tac (HOL_ss addsimps [DEF_X_up]))):
auto ();

br zadd_.commute 1;

ged” plus_.commute”;

*)

fun eq-_lifter_prover thms (name, goal) =
let val thyname = hd(Lib.String.tokens(fn x => x = #".”)(name))
val core_.thm = get_thm(theory_of thyname)(name)

handle _ => refl (* just to prevent a crash herex)
val v = distinct (free_of (term_of goal))
val fam =map (fn X=> "DEF(""X"" st)”) v

val case_tacs= map (fn X=> case_tac X 1) fnm
in Some(name, prove_goalw_cterm thms goal
(fn prems => [cut_facts_tac prems 1,
rtac ext 1]
@ case_tacs @
[ALLGOALS(asm_full_simp_tac
(HOL_ss addsimps [not.DEF_X_up])),
ALLGOALS(asm_full_simp_tac
(HOL_ss addsimps [DEF_X_up])),
auto_tac (claset(),simpset()),
rtac core_.thm 1]))
handle _ => None
end ;

fun lift root_thy core_E thms =

let fun ran core.E =map (fn ((-,y).-)=>y) core_E;
val the_logical_connectives = [" Trueprop”,”op =", "All", "==>"]

val the_ran_core_E = (map (fn (Const(s,_.))=> s)(ran core_E))
fun is_liftable (name,thm) =
let val cc = (x map (fn (Const(s,.))=> s) *)
(constants_of (term_of(cprop_of thm)))
val ccl= subtract cc the_logical_connectives
val cc2= subtract ccl the_ran_core_E
in not(null(ccl)) andalso null(cc2) end
val liftables = filter is_liftable thms;

Using Theory Morphisms for Implementing Formal Methods Tools

val subst =

Symtab.m;ke(map(fn ((x,Const(s,_)),a)=>(s,(x,a)))core_E)

val convertables = mapfilter (convert root_thy
val defs = liftl_def::lift2_def::
(map (fn (-, (-.t) => t)
val proven_lifts = mapfilter (eq_lifter_prover
in
writeln("\n Lifting from HOL to OCL: \n");
writeln(” \n");
writeln (" HOL Theorems : " " lInt.toString(length
writeln (" Liftables :""Int.toString(length
writeln (” Convertables : " Int.toString(length
writeln (” Proven Lifts : " " Int.toString(length
map (store_thm2 (K"OCL-")) proven_lifts;
()
end;

subst) liftables

core_E)
defs) convertables

thms));
liftables));
convertables));
proven_lifts));

203

(e sk s s s s sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok sk ok sk o o s o s o K K kS sk R sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok ok ok ok ok sk ok ok)

(*
(x* Control

(*

(s s s s s sk s sk sk sk ok o o o o o o o o o o o o o o o o o kK KKk ok sk ok K ok R sk ok sk sk sk sk sk sk sk stk sk ok sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok)

fun main root_thy =
let val (E, holthys)

= partition(fn x => subthy(Lifting.thy,kx))
(root_thy ::(ancestors_of root_thy));

val core.E = flat (map core E);
val _ = derive_sieve (map (fn(_,x)=>x) core_E);
val thms = flat (map thms_of holthys);

val _ = lift root_thy core_E thms;

in ()

end ;

204 Achim D. Brucker and Burkhart Wolff

Symbolic Test Case Generation for Primitive
Recursive Functions

Achim D. Brucker and Burkhart Wolff

Information Security, ETH Ziirich, ETH Zentrum, CH-8092 Ziirich, Switzerland.
{brucker, bwolff}@inf.ethz.ch

Abstract We present a method for the automatic generation of test
cases for HOL formulae containing primitive recursive predicates. These
test cases can be used for the animation of specifications as well as for
black-box testing of external programs.

Our method is two-staged: first, the original formula is partitioned into
test cases by transformation into a Horn-clause normal form (HCNF).
Second, the test cases are analyzed for ground instances satisfying the
premises of the clauses. Particular emphasis is put on the control of test
hypotheses and test hierarchies to avoid intractability.

We applied our method to several examples, including AVL-trees and the
red-black tree implementation in the standard library from SML/NJ.
Keywords: symbolic test case generations, black box testing, theorem
proving, Isabelle/HOL

1 Introduction

Today, essentially two software validation techniques are used: software verifi-
cation and software testing. Whereas verification is rarely used in “large-scale”
software development, testing is widely used, but normally in an ad-hoc manner.
Therefore, the attitude towards testing has been predominantly negative in the
formal methods community, following what we call Dijkstra’s verdict [10, p.6]:

“Program testing can be used to show the presence of bugs, but never
to show their absence!”

More recently, three research areas, albeit driven by different motivations, con-
verge and result in a renewed interest in testing techniques:

— Abstraction Techniques: model-checking raised interest in techniques to ab-
stract infinite models to finite ones. Provided that the abstraction has been
proven sound, testing may be sufficient for establishing correctness [5, 9].

— Systematic Testing: the discussion over test adequacy criteria [20], i.e., cri-
teria answering the question “when did we test enough to meet a given test
hypothesis”, led to more systematic approaches for partitioning the space of
possible test data and the choice of representatives. New systematic testing
methods and abstraction techniques can be found in [11, 12].

206 Achim D. Brucker and Burkhart Wolff

— Specification Animation: constructing counter-examples has raised interest
also in the theorem proving community, when combined with animations of
evaluations, they may help to find modeling errors early and to increase the
overall productivity [14].

The first two areas are motivated by the question “are we building the pro-
gram right?”, the latter is focused on the question “are we specifying the right
program?”. While the first area shows that Dijkstra’s Verdict is no longer true
under all circumstances, the latter area shows that it simply does not apply to
important situations in practice. In particular, if a formal model of the environ-
ment of a software system (e.g., based on, amongst other things, the operating
system, middleware or external libraries) must be reverse-engineered, testing —
in the sense of “experimenting” — is without alternative (see [7]).

Following standard terminology [20], our approach is a specification-based
unit test. A test procedure for such an approach can be divided into:

— Test Case Generation: for each operation, the pre/post-condition relation is
divided into sub-relations. It assumes that all members of a sub-relation lead
to a similar behavior of the implementation.

— Test Data Selection: for each test case (at least) one representative is chosen
so that coverage of all test cases is achieved. From the resulting test data,
test input data processable by the implementation is extracted.

— Test Execution: the implementation is run with the selected test input data
in order to determine the test output data.

— Test Result Verification: the pair of input/output data is checked against
the specification of the test case.

As an example for a specification-based unit-test approach, QuickCheck [8] has
attracted interest in various research communities. QuickCheck performs ran-
dom tests, potentially improved by hand-programmed test data generators, and
provides a simple test execution and test result verification environment for pro-
grams written in Haskell.

However, it is well-known that random test can be ineffective in many cases
in particular, if complex preconditions of programs like “the input tree must be
balanced” or “the input must be a well-formed abstract syntax tree” rule out
most of randomly generated data. In our approach, we will exploit the speci-
fication of pre- and postconditions of a program — the test specification — in
a preprocessing step, the test case generation. Our implementation TestGen of
a test case generator is built on top of the theorem prover Isabelle/HOL [17].
Isabelle is programmed to execute the underlying symbolic computations in an
automatic, but logically safe way. Based on the resulting test cases, a random
test based data selection procedure can be controlled in a problem-oriented way
and achieve a significantly better test coverage. As a particular feature, the au-
tomated deduction-based process can log the test hypothesis underlying the test.

1.
)

! Consider abs(x-2) >= 0 where abs computes the absolute value over the Haskell
data type Int. Here it is very unlikely that QuickCheck finds the problem.

Symbolic Test Case Generation For Primitive Recursive Functions 207

Provided that the test hypotheses are valid for the program and provided the
program passes the test successfully, the program must guarantee correctness
with respect to the test specification and the test hypotheses.

We proceed as follows: we will introduce our implementation built on top
of the theorem prover Isabelle by a tiny, but classical example (Sec. 2). This
demonstration serves as a means to motivate concepts like test specification,
testing normal form, test cases, test statements. In Sec. 3, we will discuss the
test case generation in more detail. In Sec. 4, we will discuss a technique for
controlling the state explosion by generating abstract test cases. Finally, we apply
our technique to a number of non-trivial examples (Sec. 5) involving recursive
data types and recursive predicates and functions over them.

2 Symbolic Test Case Generation: A Guided Tour

Our test case generator TestGen is integrated into the specification and theo-
rem proving environment Isabelle/HOL. As a specification language, HOL offers
data types, recursive function definitions and fairly rich libraries with theories
of, e.g., arithmetics; it is often viewed as a “functional programming language
with logical quantifiers”. As a theorem proving environment, Isabelle is based
on a relatively small proof engine (based on higher-order resolution) providing a
proof state that can be transformed via elementary tactics into logically equiv-
alent ones, until a final proof state is reached where a derived formula has the
appropriate form.

Our running example for automatic test case generation is described as fol-
lows: given three integers representing the lengths of the sides of a triangle, a
small algorithm has to check, whether these integers describe an equilateral,
isosceles, scalene triangle, or no triangle at all. First we define an abstract data
type describing the possible results in Isabelle/HOL:

datatype Triangles := equilateral | scalene | isosceles | error

For clarity (and as an example for specification modularization) we define an
auxiliary predicate deciding if the three lengths are describing a triangle:

constdefs triangle :: [nat, nat, nat] — bool
triangle v y z = (0<2) AN(O<y) AN(0<2)A(z<zx+y)
N <y+2)ANly<z+z)

Now we define the behavior of the triangle program by initializing the internal
Isabelle proof state with the test specification TS

prog(z,y, z) = if triangle © y z then
if r = ythen
if y = z then equilateral else isosceles
elseif y = z then isosceles
elseif r = z thenisosceles else scalene
else error

208 Achim D. Brucker and Burkhart Wolff

Note that the variable prog is used to label an arbitrary implementation as the
current program under test that should fulfill the test specification.

In the following we show how our test package TestGen can be applied to the
automatic test data generation problem for the triangle problem. Our method
proceeds in the following steps:

1. By applying gen_test_case_tac we bring the proof state into testing normal
form (TNF). In this example, we decided to generate test cases up to depth 0
(discussed later) and to unfold the triangle predicate by its definition before
the process. This leads to a formula with 26 clauses, among them:

[0 < z;2 < z+ z] = prog(z, z, z) = equilateral

|[m7éz;0<m;0<z;

— prog(x, z, z) = isosceles
z<x+z;x<z+z]‘ prog(s, z,)

ly # 232 # y; -2 < 2 + y] = prog(z,y, z) = error

We call each Horn-clause of the proof state a symbolic test case. As a result of
gen_test_case_tac, we can extract the current proof state and get the test
theorem which has the form [A;;...; Aog] = T'S where the A; abbreviate
the above test cases.

2. We compute the concrete test statements by grounding the symbolic test
cases for “prog” via a random test procedure (genadd_test_data). The
latter operation selects the test cases from the test theorem and produces
the test statements (excerpt):

prog(3,3,3) = equilateral prog(4,6,0) = error

A test statement can be compiled into a test program by simply mapping all
operators to external code (where prog is the code for calling the program under
test). This can be automated with Isabelle’s code-generator. If such a compilation
is possible for a formula A, i.e., if A only consists of constant symbols for which
this map is defined, we call A executable. This definition essentially rules out
unbounded logical quantifiers and more arcane HOL constructs like the Hilbert-
operator.

In our triangle example, standard simplification was able to eliminate the as-
sumptions of the (grounded) test cases automatically. In general, assumptions in
test statements (also called constraints) may remain. Provided that all test state-
ments are executable, clauses with constraints can nevertheless be interpreted
as an abstract test program. For its result, three cases may be distinguished: (i)
if one of the clauses evaluates to false, the test is invalid, otherwise valid. A valid
test may be (ii) a successful test if and only if the evaluation of all conclusions
(including the call of prog) also evaluates to true; (iii) otherwise the test con-
tains at least one test failure. Rephrased in this terminology, the ultimate goal of
the test data selection is to construct successful tests, which means that ground
substitutions must be found that make the remaining constraints valid.

Symbolic Test Case Generation For Primitive Recursive Functions 209

Coming back to our example, there is a viable alternative for the process
above: instead of unfolding triangle and trying to generate ground substitutions
satisfying the constraints, one may keep triangle in the test theorem, treating
it as a building block for new constraints. It turns out that a special test theo-
rem and test data (like “triangle(3,4,5) = True”) can be generated “once and
for all” and inserted before the test data selection phase producing a “partial”
grounding. It will turn out that the main state explosion is shifted from the
test case generation to the test data selection phase, possibly at the cost of test
adequacy. This technique to modularize test data generation will be discussed
in Sec. 4 in more detail.

3 Concepts of Test Case Generation

As input of the test case generation phase, the test specification, one might expect
a special format like pre(z) — post x (prog(z)). However, this would rule out
trivial instances such as 3 < prog(z) or just prog(z) (meaning that prog must
evaluate to True for). Therefore, we do not impose any other restriction on
a specification other than the final test statements being executable, i.e., the
result of the process can be compiled into a test program.

Processing this test specification, our method gen_test_case_tac can be
separated into the following conceptual phases (in reality, these phases were
performed in an interleaved way):

— Tableaux Normal Form Computation: via a tableaux calculus (see Tab. 1),
the specification is transformed into Horn-clause normal form (HCNF).

— Rewriting Normal Form Computation: via the standard rewrite rules the
current specification is simplified.

— TNF Computation: by re-ordering of the clauses, the calls of the program
under test are rearranged such that they only occur in the conclusion, where
they must occur at least once.

— TNF Minimization: redundancies, e.g., clauses subsumed by others, are elim-
inated.

— Exploiting Uniformity Hypothesis: for free variables occurring in recurring
argument positions of primitive recursive predicates, a suitable data separa-
tion lemma is generated and applied (leading to a test hypothesis THYP).

— Exploiting Regularity Hypothesis: for all Horn-clauses not representing a
test hypothesis, a uniformity hypothesis is generated and exploited.

After a brief introduction of concepts and use of Isabelle in our setting, we will
follow the sequence of these phases and describe them in more detail in the
subsequent sections. We will conclude with a discussion of coverage criteria.

3.1 Concepts and Use of Isabelle/HOL

Isabelle [17] is a generic theorem prover of the LCF prover family; as such, we use
the possibility to build programs performing symbolic computations over formu-
lae in a logically safe (conservative) way on top of the logical core engine: this is

210 Achim D. Brucker and Burkhart Wolff

what TestGen technically is. Throughout this paper, we will use Isabelle/HOL,
the instance for Church’s higher-order logic. Isabelle/HOL offers support for data
types, primitive and well-founded recursion, and powerful generic proof engines
based on rewriting and tableaux provers.

Isabelle’s proof engine is geared towards Horn-clauses (called “subgoals”):
Al = ...= A, = A, 41, written [A;;...; A,] = A1, is viewed as a rule
of the form “from assumptions A; to A,, infer conclusion A, 4+1”. A proof state
in Isabelle contains an implicitly conjoint sequence of Horn-clauses ¢q,...,0,
and a goal ¢. Since a Horn-clause

[A1;.. . An] = Anpa
is logically equivalent to
—A1 V- VoA, VAL,

a Horn-clause normal form (HCNF) can be viewed as a conjunctive normal form
(CNF). Note, that in order to cope with quantifiers naturally occurring in speci-
fications, we generalize the idea of a Horn-clause to Isabelle’s format of a subgoal,
where variables may be bound by a built-in meta-quantifier:

/\xl,,xm[[Al,,An]] — An+1

Subgoals and goals may be extracted from the proof state into theorems of the
form [¢1;...; ¢n] = ¢; this mechanism is used to generate test theorems. The
meta-quantifier A is used to capture the usual side-constraints “z must not occur
free in the assumptions” for quantifier rules; meta-quantified variables can be
considered as free variables. Further, Isabelle supports meta-variables (written
%, %, ...), which can be seen as “holes in a term” that can still be substituted.
Meta-variables are instantiated by Isabelle’s built-in higher-order unification.

3.2 Normal Form Computations

In this section, we describe the tableaux, rewriting and testing normal form
computations in more detail. In Isabelle/HOL, the automated proof procedures
for HOL formulae depend heavily on tableaux calculi [13] presented as (derived)
natural deduction rules. The core tableaux calculus is shown in Tab. 1 in the
Appendix. Note, that with the notable exception of the elimination rule for
the universal quantifier (see Tab. 1(c)), any rule application leads to a logically
equivalent proof state: therefore, all rules (except V elimination) are called safe.
When applied bottom up in backwards reasoning (which may introduce meta-
variables explicitly marked in Tab. 1), the technique leads in a deterministic
manner to a HCNF.

Horn-clauses can be normalized by a number of elementary logical rules (e.g.,
False = P = True), the usual injectivity and distinctness rules for constructors
implied by data types and computation rules resulting from recursive definitions.
Both processes together bring an original specification into Rewriting HCNF.

Symbolic Test Case Generation For Primitive Recursive Functions 211

However, these forms do not exclude clauses of the form:
[~(prog = = ¢); ~(prog = = d)] = An11

where prog is the program under test. Equivalently, this clause can be trans-
formed into
[-(Apnt1)] = prog x =cVprogz =d

We call this form of Horn-clauses testing normal form (TNF). More formally, a
Horn-clause is in TNF for program under test F' if and only if

— F does not occur in the constraints, and
— F does occur in the conclusion.

Note that not all specifications can be converted to TNF. For example, if the
specification does not make a suitably strong constraint over program F, in par-
ticular if F' does not occur in the specification. In such cases, gen_test_case_tac
stops with an exception.

3.3 Minimizing TNF

A TNF computation as described so far may result in a proof state with redun-
dancies. Redundancies in a proof state may result in superfluous test data and
should therefore be eliminated. A proof state may have:

1. several occurrences of identical clauses
2. several occurrences of clauses with subsuming assumption lists; this can be
eliminated by the transformation

[P; R] = A; [P;Q; R] = A;
[P; R] = A;

3. and in particular, clauses that subsume each other after distribution of V;
this can be eliminated by the transformation

[P;R] = A; [-P;Q] = B; [R;Q] = AV B;
[P;R] = A; [-P;Q] = B;

The notation above refers to logical transformations on a subset of clauses within
a proof state and not, as usual, on formulae within a clause. Since in backward
proofs the proof state below is a refinement of the proof state above, the logical
implication goes from bottom to top.

3.4 Exploiting Uniformity Hypothesis for Recursive Predicates

In the following, we address the key problem of test case generation in our
setting, i.e.; recursive predicates occurring in preconditions of a program. As an

212 Achim D. Brucker and Burkhart Wolff

introductory example, we consider the membership predicate of an element in a
list:

primrec x mem [] = False (1)

x mem (y#ys) = ify = xthenTrueelsex mem ys

which occurs as precondition in an (abstract) program specification:
x mem S — prog x S

For the testing of recursive data structure, Gaudel suggested in [12] the intro-
duction of a uniformity hypothesis as one possible form of a test hypothesis, a
kind of weak induction rule:
[lz] < k]

Pz

Pz
This rule formalizes the hypothesis that provided a predicate P is true for all
data = whose size, denoted by |x|, is less then a given depth k, it is always true.
The original rule can be viewed as a meta-notation: In a rule for a concrete data-
type, the premises |x| < k can be expanded to a number of premises enumerating
constructor terms.

For all variables in clauses that occur as (recurring) arguments of primitive
recursive functions, we will use a testing hypothesis of this kind — called data
separation lemma — in an exercise in poly-typic theorem proving [19] described
in the following.

The Isabelle/HOL data type package generates definitions of poly-typic func-
tions (like case-match and recursors) from data type definitions and derives a
number of theorems over them (like induction, distinctness of constructors, etc.).
In particular, for any data type, we can assume the size function and reduction
rules allowing to compute |[a, b, c]| = 3, for example. Moreover, there is an
exhaustion-theorem, which for lists has the form

[y:[]:>P;/\a:x5.y:a:#xs:>P]] = P
Now, since we can separate any data x belonging to a data type 7 into:
ve{zurl|z|<d}vae{zurd <z} (2)

i.e., x is either in the set of data smaller d or in the remaining set. Note that both
sets are infinite in general; the bound for the size produces “data test cases” and
not just finite sets of data. Consequently, we can derive for each given type 7
and each d a destruction rule that enumerates the data of size 0,1,...,k — 1.
For lists and d = 2, 3, it has the form:

(z:{z=alist|z] <2} 2z =[]) vV (Jax
(z:{z=alist|z] <3} 2z =[]) V (3ax

[a])
la]) vV (3ab.z = [a, b))

Symbolic Test Case Generation For Primitive Recursive Functions 213

Putting lemma (2) together with the destruction rule for d = 2, instead of the
unsafe uniformity hypothesis in the sense of Gaudel we automatically construct
the safe data separation lemma of the form

o=] o = [a] 2 = fa.b]
P(z) Na P(x) Nab. P(x) THYP (2 < || — P(x))
P(x)

The purpose of this rule in backward proof is to split a statement over a program
into several cases, each with an additional assumption that allows to “rewrite-
away” the x appropriately. Here, the constant THYP :: bool — bool (defined as
the identity function) is used to label the test hypothesis in the proof state. Since
we do not unfold it, formulae labeled by THYP are protected from decomposition
by the tableaux rules shown in Tab. 1.

The equalities introduced by this rule of depth d = 2 allow for the simplifi-
cation of the primitive recursive predicate mem which leads to further decom-
positions during the TNF computation. Thus, for our test specification:

x mem S — prog x S
executing gen_test_case_tac results in the following TNF:
1. prog x [z]
2. /\b.prog x [x,b]

3. /\a.a # x — prog = [a,x]
4. THYP(3 < |S| — = mem S — prog z 5)

The simplification of the mem predicate along its defining rules (1) leads to
nested “if then else” constructs. Their decomposition during HCNF computa-
tion results in the constraint that the lists fulfilling the precondition must have
a particular structure. Even the simplest “generate-and-test”-method for test
data selection will now produce adequate test statements, while it would have
produced mostly test failures when applied directly to the original specification.

The handling of quantifiers ranging over data types can be done analogously:
since Vz.P(z) is equivalent to Va : UNIV.P(z) and since UNIV = {z : 7.|z| <
d} U {z = 7.d < |z|}, the universal quantifier can be decomposed into a finite
conjunction for the test cases smaller than d and a test hypothesis THYP for
the rest.

From the above example it follows that the general form of a test theorem
is [A1;...;An; THYP(H,y);...; THYP(H,,)] = TS. Here the A; represent the
test cases, the H; the test hypothesis, and TS the testing specification.

3.5 Exploiting Regularity Hypothesis

After introducing the regularity hypothesis and computing a TNF (except for
clauses containing THYPs), we use the clauses to construct another form of

214 Achim D. Brucker and Burkhart Wolff

testing hypothesis, namely the regularity hypothesis [12] (sometimes also called
partitioning hypothesis) for each test case. This kind of hypothesis has the form:

THYP(3x1,...,2n.P x1,..., 2 = V21,...,Zn. P x1,...,2p)

This means that whenever there is a successful test for a test case, it is assumed
that the program will behave correctly for all data of this test case.

Using a uniformity hypothesis for each (non-THYP) clause allows for the
replacement of free variables by meta-variables; e.g., for the case of two free
variables, we have the following transformation on proof states:

[Ai zy;...; Az yl = Aps1 2 y
[A1 % %y;...; Ay e) = Apia?e %y; THYP((3zy.P x y) — (Voy.P z y));

where Pz y = Ay x yA...NA, £y — A,a1 x y. This transformation is logically
sound. Moreover, the construction introduces individual meta-variables into each
clause for the ground instances to be substituted in the test data selection; this
representation allows for partial grounding and is also a necessary prerequisite
for structured test data selection as discussed in Sec.4.

3.6 Coverage Criteria: A Discussion

In their seminal work, Dick and Faivre [11] propose to transform the original
specification into disjunctive normal form (DNF), followed by a case splitting
phase converting the disjunctions AV B into AAB, ~AAB and AA—B and further
(logical and arithmetic) simplifications and minimizations on the disjunctions.
The resulting cases are also called the partitions of the specification or the (DNF)
test cases. The method suggests the following test adequacy criterion: a set of
test data is partition complete if and only if for any test case there is a test data.
Consequently, a program P is tested adequately to partition completeness with
respect to a specification S if it passes a partition complete test data set.

Our notion of a successful test, see Sec. 2, is a HCNF based adequacy criterion.
DNF and HCNF based adequacy result in the same partitioning in many practical
cases, as in the triangle example, while having no clear-cut advantage in others.
Since the DNF technique has the disadvantage of producing a double exponential
blow-up (the case splitting phase alone can produce an exponential blow-up)
while HCNF computation is simply exponential, and since HCNF-computation
can be more directly and efficiently implemented in the Isabelle proof engine,
we chose the latter.

HCNF adequacy subsumes another interesting adequacy criterion under cer-
tain conditions, namely path coverage with respect to the specification. Path
coverage means that in any (mutual) recursive system of functions, all reach-
able paths, e.g., of the if P then A else B statements, were activated at
least once. For a mutual recursive system consisting only of primitive recursive
functions, (i.e., with each call the size of data will decrease exactly by one), it
can be concluded that if the testing depth d is chosen larger than the size of

Symbolic Test Case Generation For Primitive Recursive Functions 215

the maximal strong component of the call graph of the recursive system, each
function is unfolded at least once. Since the unfold results in conditionals that
were translated to (P — A) A (=P — B), any branch will lead to a test case.

Thus, while gen_test_case_tac often produces reasonable results for arbi-
trarily recursive functions, we can assure only for primitive recursions that the
underlying HCNF adequacy of our method subsumes path coverage.

4 Structured Test Data Selection

The motivations to separate test data selection from test case generation are
both conceptual and technical. Conceptually, test data selection is a process
where we would also like to admit more heuristic techniques like random data
generation or generate-and-test with the constraints. Test data selection yields
sequences of ground theorems (no meta-variables, no type variables); this paves
the way for evaluation by compiled code, a new approach is needed to cope with
the unavoidable state explosion in the late stages. A purely technical motivation
for this separation is Isabelle-related: within a test theorem, it is not possible to
instantiate polymorphic type variables « in different ways when generating test
statements, however, this flexibility may be desirable.

The generation of a multitude of ground test statements from one test the-
orem containing the test cases and the test hypothesis is essentially based on a
random-procedure followed by a test of the satisfaction of the constraints (simi-
lar to QuickCheck). For each type, this default procedure may be overwritten in
TestGen-specific generators that may be user defined; thus, the usual heuristics
like trying [0, 1,2, mazxint, mazint + 1] can be easily implemented, or the counter-
example generation integrated in Isabelle’s arithmetic procedure can be plugged
in (which, in our experience, is difficult to control in larger examples).

Now we will discuss the issue of structured test data generation. Similar to
theorem proving, the question of “how many definitions should be unfolded” is
crucial; exploiting suitable abstractions is the major weapon against complexity.
In our first attempt to generate a test theorem for the triangle example (see
Sec. 2), the auxiliary predicate triangle is unfolded in the test specification. This
resulted in the aforementioned 26 cases. If we do not unfold it, the resulting test
theorem has only 10 test cases, but contains “abstract constraints” such as:

[triangle z z z] = prog(z, z, z) = equilateral
[—triangle z z z] = prog(z, z, z) = error

ly # z; 2 # y; triangle z y z] = prog(z,y, z) = isosceles

Thus, a substantial part of the proof state explosion can be postponed by treating
triangle as a building block in the constraints or, in other words, by generating
more abstract test cases.

Now, if we could generate a local test theorem for triangle as such, generate
the local test data separately and resolve the resulting test statements for it into
the test theorem for the global computation, the state explosion could be shifted

216 Achim D. Brucker and Burkhart Wolff

to the test data selection. The trick can be done as follows: we define a trivially
true proof goal for:

prog(x,y, z) = triangle x y z = prog(z,y, z) = triangle x y z

unfold triangle and compute TNF(prog). When folding back triangle via the
assumption we get the following local test cases:

—triangle 0 y z -z < x4y = —triangle x y 2
—triangle © 0 z -z < y+ 2z = —triangle x y z
—triangle © y 0 Yy < x4+ 2z => triangle v y 2

|[0<z;0<y;0< 2;

z<9c+y;3c<y+z;y<9€+z}]:> triangle @ y 2

which can easily be converted into abstract test statements such as triangle 11 1.
When resolving the latter in all combinations into the abstract global test theo-
rem, (partial) ground instances for variables were generated that make random
choices for them superfluous. Thus, the test statements of previously developed
theories can be reused when building up larger units. Of course, when building
up test data in a modular way, this comes at a price: since the local test state-
ments do not have the same logical information available as their application
context in a more global test theorem, the instantiation may result in unsatisfi-
able constraints. Nevertheless, since the criterion for success of a decomposition
is clear — at the very end we want constraint-free test statements achieving a
full coverage of the TNF— the implementor of a test has more flexibility here
helping to deal with larger problems. In our example, there is no loss at all: test
data for the local predicate is valid for the global goal, and by construction, the
set of test statements is still complete for HCNF coverage.

5 Applications

We applied our method to specifications of two widely used variants of balanced
binary search trees: AVL trees and red-black trees. These case studies were per-
formed using Isabelle 2003 compiled with SML of New Jersey running on Linux
with 512 MBytes of RAM, and an Intel 1.6 GHz P4 processor.

5.1 AVL Trees

In 1962 Adel’son-Vel’skii and Landis [3] introduced a class of balanced binary
search trees (called AVL trees) that guarantee that a tree with n internal nodes
has height O(logn). Based on an AVL-theory from the Isabelle library we gen-
erated test cases for the following invariant: if an element y is in the tree after
insertion of x in the tree ¢ then either z = y holds or y was already stored in t.
Based on the depth 3, this test specification leads to an amazing 236 test cases
which were computed in less than 30 seconds.

Symbolic Test Case Generation For Primitive Recursive Functions 217

5.2 Red-Black Trees

A widely used variant of balanced search trees was presented by Bayer [4]. In
this data structure, the balancing information is stored in one additional bit
per node. This is called “color of a node” (which can either be red or black),
hence the name red-black trees. A valid (balanced) red-black tree must fulfill the
following two invariants:

— Red Invariant: each red node has a black parent.
— Black Invariant: each path from the root to an empty node has the same
number of black nodes.

We aimed for testing a “real-world” implementation of red-black trees and de-
cided to test the red-black trees provided in the standard library of SML of New
Jersey (SML/NJ) [2]. There, red-black trees are used for implementing finite sets
and maps which are intensively used throughout the SML/NJ compiler itself.

Our specification is based on the formalization [16] of the SML/NJ red-black
trees (based on version 110.44 of SML/NJ). The specification starts with the
basic data type declaration for binary trees:

datatype color =R |B
atree = E | T color (« tree) (o item) (« tree)

In this example we have chosen not only to check if keys are stored or deleted
correctly in the trees but also to check if the trees fulfill the balancing invariants.
Therefore our specification has to formalize the red and black invariants. This
is done by the following recursive predicates:

consts
redinv :: (« item) tree = bool
blackinv:: (« item) tree = bool

recdef redinv “measure (At.(size t))”
“redinv E = True”
“redinv (T B a y b) = (redinv a A redinv b)”
“redinv (T R (T R a = b) y c)= False”
“redinv (T Rax (T Rby c))= False”
“redinv (T R a x b) = (redinv a A redinv b)”

recdef blackinv “measure (At.(size t))”
“blackinvE = True”
“blackinv(T color a y b) = ((blackinv a) A (blackinv b)
A((maz_B_height a) = (maz_B_height b)))”

We use the following test specification for checking if the delete operation fulfills
these invariants:

(redinv t A blackinv t) — (redinv (delete x t) A blackinv (delete x t))

218 Achim D. Brucker and Burkhart Wolff

In other words, for all trees the deletion operation maintains the red and black
invariant. For testing purposes, we instantiated ¢tem with Integers. The test case
generation takes less than two minutes and results in 348 test cases. Among them

delete 8 (T B (T B(T RE2E)5E)6 (T BE8E))
=(TB(TBE2E)5 (T BE 6 E))

which describes that the deletion of the node 8 in the tree shown in Fig. 1(a)
must result in the tree shown in Fig. 1(b). This test case revealed a major error
in the standard library of SML/NJ. Using a simple SML test script one observes:

val input = T (B,T (B,T (R,E,2,E),5,E),6,T (B,E,8,E))
- val output = delete(input,8);
val output = T (B,E,2,T (B,T (R,E,5,E),6,E))

Obviously, the black invariant does not hold for output (see Fig. 1(c)).

(a) pre-state (b) correct result (c) result of SML/NJ

Figure 1. Test Data for Deleting a Node in a Red-Black Tree

This example shows that specification based testing can find efficiency bugs:
combinations of insert and delete operations of the SML/NJ implementation
easily lead to trees that degenerate to sorted lists. In our case, the revealed flaw
has not been detected in the last 12 years, although red-black trees are widely
used within the SML/NJ compiler itself. Fixing this bug will presumably lead to
a perceptible performance gain of the SML/NJ compiler.

Based on our definitions, the bug could be reproduced by QCheck/SML [1], a
QuickCheck-like random testing tool. Although this particular bug can even be
found without using a hand-programmed test data generator, the QuickCheck
method would have, in general, imposed one to write such a test data generator.
Moreover, our method allows to conclude that certain coverage criteria are ful-
filled and makes all underlying test hypotheses explicit. Further, our approach
can profit from the underlying theories for data-types offering the potential for
problem-specific case splits.?

2 .. .such as [P(minBound :: Int);a # minBound :: Int P(—a)] = P(—a)) which also

produces the problem x = minBound :: Int + 2 for abs(x-2)>=0 after unfolding abs.

Symbolic Test Case Generation For Primitive Recursive Functions 219

6 Conclusion

We have presented the theory and implementation of a test case generator for
unit tests. Our approach is focused on functional programs, but since imperative
programs can be provided with a functional interface (by compiling a functional
call to a statement sequence consisting of (i) initialization, (ii) executing con-
structors representing data types, (iii) calling the program under test, and (iv)
checking the result), this is not a real limitation of our approach. We demon-
strated its practical feasibility for the systematic test of libraries of large software
systems by testing functions from the SML/NJ library, which revealed a major
bug leading to inefficiency in basic data structures of the SML/NJ compiler.

In our opinion, test data generation is an activity that clearly needs some
user interaction: as in model-checking, one has to experiment with the form
of the specifications and basic parameters (depth of data separation, the level
of abstraction, etc.) in order to get a feasible test data set for the test of a
“real program”. Therefore, we believe such an activity is best supported by an
integration into an interactive theorem proving environment such as Isabelle.
Since TestGen is ca. 400 lines of SML code that is loaded into Isabelle, we still
consider our approach fairly “lightweight”. Nevertheless, TestGen is at present
the only implementation of a test case generator that combines state-of-the-art
deduction technology based on derived rules (formally proven inside Isabelle)
with a powerful logic.

We believe that there is another line of criticism against Dijkstra’s verdict. A
successful test together with explicitly stated test hypotheses is not fundamen-
tally different from program verification: all sorts of modeling assumptions were
made, adding test hypothesis is just one more of them. The nature and trust-
worthiness of these assumptions may be different, but a clear-cut line between
testing and verification does not exist.

6.1 Future Work
We see the following lines of extension of our work:

1. Investigating the test hypothesis: a new test hypothesis (like congruence hy-
pothesis on data, for example) may dramatically improve the viability of the
approach. Furthermore, it should be explored if the verification of the test
hypothesis for a given abstract program offers new lines of automation.

2. Better control of the process: at the moment, our implementation can only
be controlled by very globally applied parameters such as depth. The ap-
proach could be improved by generating the test hypothesis and the test
data depending on the local context within the test theorems.

3. Integration tests: integrating/combining our framework into behavioral mod-
eling leads to the generation of test sequences as in [15, 18].

4. Generating test data for many-valued logics such as HOL-OCL [6] should make
our approach applicable to formal methods more accepted in industry.

220 Achim D. Brucker and Burkhart Wolff

References

[1]
[2]
3]

[4]

[5]

8]

[9]

[16]
[17]

[18]

[19]

[20]

QCheck/SML. http://contrapunctus.net/league/haques/qcheck/.

SML of New Jersey. http://www.smlnj.org/.

G. M. Adel’son-Vel’skii and E. M. Landis. An algorithm for the organization of
information. Soviet Mathematics Doklady, 3:1259-1263, 1962.

R. Bayer. Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta Informatica, 1(4):290-306, 1972.

A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. Number 58 in Advances In Computers. 2003.

A. D. Brucker and B. Wolff. A proposal for a formal OCL semantics in Is-
abelle/HOL. In C. Mufioz, S. Tahar, and V. Carreno, editors, TPHOLs, volume
2410 of LNCS, pages 99-114. Springer-Verlag, Hampton, VA, USA, 2002.

A. D. Brucker and B. Wolff. A case study of a formalized security architecture.
In T. Arts and W. Fokkink, editors, FMICS’03, volume 80 of FElectronic Notes in
Theoretical Computer Science, Roros, 2003. Elsevier Science Publishers.

K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268—-279. ACM Press, 2000.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 238-252. ACM Press, 1977.

0O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming, volume 8
of A.P.I.C. Studies in Data Processing. Academic Press, London, 1972.

J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specications. In J. Woodcock and P. Larsen, editors, FME 93,
volume 670 of LNCS, pages 268-284. Springer-Verlag, 1993.

M.-C. Gaudel. Testing can be formal, too. In P. D. Mosses, M. Nielsen, and
M. I. Schwartzbach, editors, TAPSOFT 95, volume 915 of LNCS, pages 82-96.
Springer-Verlag, Aarhus, Denmark, 1995.

R. Hédhnle. Tableaux for many-valued logics. In M. D’Agostino, D. Gabbay,
R. Hahnle, and J. Posegga, editors, Handbook of Tableau Methods, pages 529-580.
Kluwer, Dordrecht, 1999.

S. Hayashi. Towards the animation of proofs—testing proofs by examples. Theo-
retical Computer Science, 272(1-2):177-195, 2002.

F. Huber, B. Schétz, A. Schmidt, and K. Spies. AutoFocus - a tool for distributed
systems specification. In FTRTFT 96, volume 1135 of LNCS, pages 467-470.
Springer-Verlag, 1996.

A. Kimmig. Red-black trees of smlnj. Studienarbeit, Universitidt Freiburg,
Freiburg, 2003.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

A. Pretschner. Classical search strategies for test case generation with constraint
logic programming. In E. Brinksma and J. Tretmans, editors, Proc. Formal ap-
proaches to testing of software, pages 47-60. BRICS, 2001.

K. Slind and J. Hurd. Applications of polytypism in theorem proving. In D. Basin
and B. Wolff, editors, TPHOLs, volume 2758 of LNCS, pages 103—119. Springer-
Verlag, Rome, Italy, 2003.

H. Zhu, P. A. Hall, and J. H. R. May. Software unit test coverage and adequacy.
ACM Computing Surveys, 29(4):366—-427, 1997.

Symbolic Test Case Generation For Primitive Recursive Functions

A Appendix

221

P /\x.Pa:

dx.P x Ve.P x

(a) Quantifier Introduction Rules

e
P Q P Q False Q P
; True PAQ PVvVQ P—-Q P P=qQ
(b) Safe Introduction Rules
[P.?x] Vz.P ; P)
Vz.P x R Vz.P x R
R R
(c) Unsafe Elimination Rules
P Q) Pl (@ P [Q)
False PAQ R PVvQ R R P—qQ R R
P R R R
[P af P Q[P ~Q
Jz.P x /\x Q P=Q R R
Q R

(d) Safe Elimination Rules

if P then A else B= (P — A)A(—P — B)

(e) Rewrites

Table 1. The Standard Tableaux Calculus for HOL

222 Achim D. Brucker and Burkhart Wolff

Part 111

Selected Papers:
Encapsulation and Tool
Integration

HOL-Z in the UniForM-Workbench -
a Case Study in Tool Integration for Z ~

C. Liith!, E. W. Karlsen®!, Kolyang!, S. Westmeier!, and B. Wolff?

! Bremen Institute for Safe Systems, FB 3, Universitiit Bremen
Postfach 330440, 28334 Bremen
{cx1,ewk,kol,litfox}@informatik.uni-bremen.de
Universitat Freiburg, Institut fir Informatik
wolff@informatik.uni-freiburg.de

2

Abstract. The UniForM-Workbench is an open tool-integration environment pro-
viding type-safe communication, a toolkit for graphical user-interfaces, version man-
agement and configuration management.

We demonstrate how to integrate several tools for the Z specification language
into the Workbench, obtaining an instantiation of the Workbench suited as a soft-
ware development environment for Z. In the core of the setting, we use the encoding
HOL-Z of Z into Isabelle as semantic foundation and for formal reasoning with Z
specifications. In addition to this, external tools like editors and small utilities are
integrated, showing the integration of both self-developed and externally developed
tools.

The resulting prototype demonstrates the viability of our approach to com-
bine public domain tools into a generic software development environment using a
strongly typed functional language.

1 Introduction

The need for tool integration has been widely recognised throughout software
engineering. There is no single tool for all purposes. Moreover, we live in
a highly distributed software production culture. Hence, it is likely to be
impractical and unproductive to prescribe ex cathedra the particular tools
to be used in a given development. Rather, it seems more advantageous to
let software engineering teams employ the tools they are most comfortable
with, and combine the various tools into one integrated Software Development
Environment (SDE).

In response to this need, a number of tool-integration techniques have
been developed. In the most simple approach, tools run independently, with
the file system as a persistent store, and communication achieved by string-
based “glueing” using Tcl [22], Expect [19] or Emacs Lisp. Unfortunately,
this approach does not scale up to more sophisticated development envi-
ronments, where features such as type-safe communication, persistent and

" This work has been supported by the German Ministry for Education and Re-
search (BMBF) as part of the project UniForM under grant No. FKZ 01 IS 521
B2.

226 Christoph Liith et al

distributed storage, version management and workflow management are re-
quired. In particular, this is the case for formal methods, where the semantic
integrity of the documents produced by the various formal method tools have
to be maintained, in order to enable a fine-grained configuration management
of individual theorems, lemmata, proof obligations and proofs.

During the last decade, several attempts to meet this challenge were made
based on environments for synthesising tightly integrated SDE’s from the basis
of abstract language specifications such as the Cornell Synthesizer Generator
[27], Gandalf [8], PSG [1] or the Ipsen system [20]. These were not entirely
satisfactory, due to either the development costs involved in requiring tools
to be developed from scratch in a homogeneous language framework, or to
the inapplicability of the language framework itself in the problem domain.

In the UniForM approach, tool integration is based on a loosely coupled
architecture [18,28] where prefabricated tools are integrated on top of a tool
integration framework. The UniForM Workbench, introduced in section 2, is
the implementation of this framework, which offers support for data, control
and presentation integration. It is generic, and we will here introduce its in-
stantiation to the Z specification language (section 3), the Z Workbench. The
semantic cornerstone of this instantiation is the encoding of Z into the theo-
rem prover Isabelle, called HOL-Z. The encoding lends a semantic aspect to
the integration, by providing type checking and the ultimate certification of
the correctness of proof-scripts, allowing to maintain the semantic integrity
of documents during the development process, and moreover allowing for-
mal reasoning within Z specifications. HOL-Z and Isabelle will be the focus
of section 4. This is followed by the main section (section 5) of our paper
concerned with the data model of our Z Workbench. We demonstrate the Z
Workbench at work with the canonical example at hand in section 6.

2 The UniForM-Workbench

The design of the UniForM-Workbench [13] reflects the guidelines of the
ECMA Reference Model [4] (see Figure 1), which outlines the abstract func-
tionality required to support the various dimensions of a tool integration
process:

Data Integration addresses the issue of sharing and exchanging data be-
tween tools. It is mainly provided by the repository manager.

Control Integration is concerned with communication and inter-operation
among tools and between tools and the integration framework. It is pro-
vided by the subsystem interaction manager.

Presentation Integration addresses the issue of tool appearance and user
interaction, i.e. look-and-feel. It is provided by the user interaction man-
ager.

Process Integration is concerned with the functions between tools of the
environment and the end user, i.e. workflow management. It will be pro-
vided by the development manager (work in progress).

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 227

/ Repository Manager

Tools

/ Development Manager

User Interaction Manager

—

[]

Subsystem Interaction Manager

Fig. 1. ECMA Toaster Model

The ECMA reference model is also called the “ECMA Toaster Model”,
with the integration services in the rdle of the toaster. In this integration
framework SDE’s are constructed by encapsulating existing development tools
such as editors, model checkers and proof tools. The pure functional language
Haskell [9,24], extended with a higher order approach to concurrency [11] is
used as a central integration language, i.e. as GlueWare! in this context.
Each tool is encapsulated by wrapping Haskell interfaces around it using the
integration manager. Section 5 will give an example of this process.

In the UniForM Workbench, an SDE is viewed as a reactive, event driven
system. Events in such an environment amount to user interactions of the user
interaction manager, change notifications of the active repository manager,
operating system events and individual tool events. The subsystem interac-
tion manager [10] takes the role of the central control component in this
reactive systems architecture. It is structured as a network of communicat-
ing agents called interactors, whose behaviour is expressed using composable
event values in the style of Concurrent ML [26]. New events can be defined
from the basis of existing ones, using the guarded choice operator that pro-
vides a choice between two events, or the event-action combinator that com-
bines an event with some additional reactive behaviour. This way, integration
can be expressed at a very high level of abstraction.

The repository manager [31] provides databases services for the persistent
storage of objects, and their exchange between tools. It is implemented by a
Haskell encapsulation of the Portable Common Tool Environment (PCTE)
[5] standard extended with version, configuration and workspace manage-
ment. The repository manager is an active database: changes to an object

! Thank you to Phil Trinder for coming up with this wonderful term!

228 Christoph Liith et al

(i.e. committing a new version of an object) result in change notification
events being sent to all other tools accessing the object. In order to integrate
one or more tool, one first develops a data model in terms of the extended
entity-relationship model underlying PCTE. From this semi-formal model,
the actual implementation in terms of Haskell data types and type classes is
derived in a systematic way. During the integration process, each tool is set
up to work with persistent objects of the repository manager, rather than the
plain files of the file system. Alternatively, the repository manager can export
and import objects from the repository into the file system and back; this is
less safe, but one does not need to change an existing tool’s data access.

The user interaction manager [12] provides Haskell-Tk, a strongly typed,
fully concurrent graphical user interface, with which graphical user interfaces
for integrated tools can be constructed. Another component, the graph visu-
alization system daVinci [7], is used to provide graphical user interfaces to
the repository itself such as version and configuration graphs.

The Workbench obeys established industry standards such as the ECMA
Reference Model, PCTE and Motif [6]. It has been implemented on the basis
of public domain, off-the-shelf components supporting these standards. The
repository manager for example is based on H-PCTE [3], whereas the user
interaction manager integrates Tk [22] and the graph visualisation system
daVinci [7]. Moreover, the Workbench offers a higher level of abstraction and
uniformity than its underlying components, as well as additional utilities to
support tool integration. The integration process is therefore much easier than
if we had used these tools in their bare-bone form. One example is Haskell-
Tk, which, as opposed to Tcl/Tk that it is based on, is strongly typed and
fully concurrent. Another example is the repository manager, which provides
version, configuration and workspace management on top of H-PCTE.

3 The Z-Workbench

The Z-Workbench is a Software Development Environment for Z built using
the integration services provided by the UniForM Workbench — in other
words, an instantiation of the generic framework provided by the Workbench
to software development using Z. Its main component, providing a variety of
services and the semantical underpinning of the integration, is the encoding
of Z into Isabelle/HOL called HOL-Z [16].

HOL-Z reads Z specifications in the email format and does a type and
consistency check (i.e. it will reject specifications which do not typecheck or
are obviously inconsistent). One can then prove theorems within the specifica-
tion, generate formatted documentation, or if the specification can be shown
to be executable, generate program code. Thus, HOL-Z offers the following
services:

— type and consistency check;
— symbolic theorem proving;

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 229

] Isabelle/HOL Window Systy | davinci v2.1 alpha davinci v2.1 alphal0 — Configuration; BBI3]
File Edit Search Settings Hle Edit View MNavigation ghstr{ Hle Edit View HNavigalion Abstraction Layoul Options ﬂalpa|
#4 [Tanm |
- i
& 83 = 2|
, eSS Z[] BE[3]
HOL 55 HOL s JHOLes i = I:EI LLEY
@B -
TS
o B (2| (Z z [z
/ 7 n 781 Z041 ZMathToell1]
r‘ﬂeWDmEﬂ‘ | daVinci V2.1 alphal0 — Development: BirthdayBook
z Edit View Havigation Abstraction Layoul Options Help |
g il IsaWin Pro|
i z[s] El
Slate History View Special Tactics]
el Sl lm — e *
settings
Subgoats: |1 |- AddBirthday
ato =+=>
+.
i st 2Delta BirthdayEook
tewirite_goals l_;l;{!wn »= known’
asm_simp i
fast
‘ assumption | BirthdayBook[4]
‘ sinip tac | L

ALLGOALS asm_=inp_tac 2zHOL_s=

Fig. 2. Z-Workbench

— documentation generation;
— code generation.

Furthermore, to edit specifications a text editor is integrated. At present,
this is a basic Unix text editor, but a structure-oriented schema editor could
be integrated very easily as well. Finally, utilities such as the Unix tool diff
are integrated, which is used by the version management.

A session with the Z-Workbench is pictured in Figure 2, where HOL-Z that
has been started up in order to develop version BB[3] of the birthday book
theory. The session has been invoked from within the development graph at
the lower right corner by selecting the development named BirthDayBook [2]
which yields a new session BirthDayBook[4]. The corresponding configura-
tion graph for the birthday-book theory is shown in the upper right corner.
This configuration imports version Z[5] of the standard Z library, whose ver-
sion graph is in turn shown to the left. The persistent objects taking part in
the session are visualized in a brighter colour than objects that are not used
by the session. These are also the objects that have been exported to the file
system (behind the scene), in order to make them accessible to HOL-Z.

Integrating these tools into a Z-Workbench has numerous advantages over
an implementation using stand alone tools working with a plain file system: all
objects of the Z-Workbench, such as specifications and proofs are versioned

230 Christoph Liith et al

and permanently kept consistent in a distributed, multi-user environment.
Not only Z specifications, but also tools and proofs are put under control of
the version management system. Old versions are never deleted, only out-
dated, and can always be reverted to. Hence, a formal development is always
kept consistent — if a specification is outdated, the development using the
old, outdated specification is still available.

The views provided by the Z-Workbench are at all times kept consis-
tent with the current state of the repository. Changes to the repository are
broadcasted to all running tools, such that changes made by one user can be
recognised immediately by others. Developers may for example be notified
immediately when a proof has been either proved correct or rejected, to avoid
that development resources are wasted on redundant work or blind alleys.

Interaction with the environment is on a query by navigation basis, where
the user browses through the object base using graphical user interfaces such
as folder, version and configuration graphs visualised by daVinci. Tools are
then invoked from within these views.

The Z-Workbench is, being based on the generic integration services of
the UniForM Workbench, an open integration framework that can be extended
with other development tools if needed. However, integration of other tools is
not always as easy as could be hoped for, since it can be hampered by idiosyn-
crasies of prefabricated tools. In particular, the plethora of existing styles for
Z specifications (email, IATEX, box style) and deviations from these styles
by existing tools may impose the need of converting a specification before
it is passed to a tool. Still, the Workbench provides an excellent framework
for hiding such technicalities, since the specifications are treated as logical
objects, and the conversions will happen behind the scenes whenever possible.

4 Isabelle, HOL-Z and IsaWin

In short, Isabelle [23] is a generic tactical LCF theorem prover. Here, generic
means that it is particularly suited for the encoding of different logics and for-
mal methods, tactical means that it offers user-programmable proof support,
and the LCF design means that the prover is centred around an abstract
data type theorems, whose objects can only be constructed by applying the
basic logical rules. The overall correctness on all formal activities is based on
this (relatively small and well-investigated) logical engine.

As implementation, the prover can be viewed as a collection of ML types
modelling theorems, proofs and theories, and ML functions modelling the
possible proof activities.

The encoding of Z into Isabelle, called HOL-Z, benefited in particular from
Isabelle’s genericity, while the LCF design allowed the implementation of a
versatile graphical user interface called IsaWin, not only for Isabelle itself,
but also for other applications based on Isabelle, such as HOL-Z. We will now
describe HOL-Z and IsaWin in greater detail. Their combination will yield

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 231

a tool Win-Z for formal reasoning in Z specifications with a graphical user
interface.

4.1 HOL-Z

HOL-Z is a shallow embedding which has the ability to preserve the structure
of large specifications. This has the advantage that HOL-Z can be used for
theorem proving in “real” Z-Specifications.

HOL-Z essentially consists of three parts:

— Isabelle Theories: An Isabelle theory (supporting the e-mail format of Z
along the Z Standard [21]), a collection of extensions of the Isabelle/HOL-
standard and the mathematical toolkit, the “library” of Z which consists
itself of a collection of theories (relations, bags, sequences etc.)

— A loader for Z specifications

— A collection of tactics to support working with Z (prover)

HOL-Z supports the email format as proposed in the Draft Standard for
Z. Thus, a schema is given in the e-mail format; a loader converts it into a
semantic representation where the corresponding schema is a boolean-valued
function.

The following schema known from the Birthday Book will be represented
in the email input syntax as follows:

"+-- BirthdayBook ---
birthday: (Name -|-> Date);
known : Pow Name

known = dom(birthday)

"+-- AddBirthday ---
date_i:Date;
name_i:Name;

%Delta BirthdayBook

name_i~ :known &
birthday’= birthday Un {(name_i,date_i)}

The Z loader takes this schemas and produces a theorem in Isabelle which
is pretty printed as shown below:

+-- BirthdayBook ---
birthday : (Naturals -|-> Date); known : Pow Name

known = dom(birthday)

232 Christoph Liith et al

4.2 TIsaWin and Win-Z

IsaWin is a graphical user interface (GUI) for the theorem prover Isabelle.
It represents the theorem prover’s objects — theorems, proofs, theories, sets
of rewriting rules — by icons. The operations on these objects making up
the proof activity, are mostly affected by drag&drop, or to a lesser extent by
activating buttons or menu entries. This gives the user access to nearly the
full proof power of Isabelle without having to concern himself with ML and
its syntax.

An interesting feature of the system architecture of IsaWin is its versa-
tility. Since it is implemented entirely in Standard ML “on top” of Isabelle,
it makes use of Standard ML’s powerful abstraction and modularisation con-
cepts, in particular its parameterised modules, called functors. This way, to
obtain a graphical user interface for an encoding or other application based
on Isabelle, we merely need to instantiate the functor with different param-
eters?.

The instantiation of IsaWin for HOL-Z is called Win-Z. It contains ZThe-
ories which are collections of schema declarations (sections) and serve essen-
tially the same functions that Isabelle-theories do during theorem proving -
forming the context a theorem is living in. Furthermore they incorporate an
environment, ZFEnv, containing an extralogical information about the occur-
rence of schemas, to respect the ’define before’ principle of Z. In Figure 2,
Win-Z can be seen on the left side.

5 The Integration

The development of integrated SDE’s within the UniForM Workbench starts
out with a number of prefabricated development tools that have not been
integrated yet. In order to reach an integrated framework for Z development,
issues regarding control, data and presentation integration must be addressed.
Control integration means that the tool is given a Haskell API so that it can
be controlled by the subsystem interaction manager, data integration that it
is set up to interface the development objects maintained by the repository
manager, and presentation integration that a graphical user interface along
the guidelines of the Motif standard are wrapped around the tool, unless of
course, the tool already comes with such an interface.

The resulting SDE is organised according to the Model- View-Controller
paradigm [17], with the repository manager in the role of the Model, the user
interaction manager in the role of the View and the subsystem interaction
manager in the role of the Controller [14].

2 In fact, IsaWin itself is the instantiation of a more generic graphical user interface
called GenGUI [15].

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 233

5.1 Data Integration

The data model for the Z-Workbench is given in Figure 3 as an extended
Entity-Relationship diagram, which is then systematically converted into the
actual Haskell modelling (see Section 2). The two most basic object types
are folders and wversioned objects. Folders are the basic structuring mecha-
nism within the repository, comparable to directories in conventional file sys-
tems. Each folder may however be contained in a number of parent folders,
and each folder may contain, in addition, a number of versioned objects. Ver-
sioned objects are the basic building blocks of the application. Each versioned
object has two kinds of relationships: dependency and development. Depen-
dency links model structural dependency, such as imports, and are given by
all those links between the four subtypes of versioned objects marked © in
Figure 3. The development relationship defines revisions of an object, and
can only exist between versioned objects of the same subtype. Dependency
links are essential to model change propagation: if a new revision of an object
is created, the revisions of the objects depending on this object will have to
be updated as well. Thus, if we create a new theory by editing an existing
one, all proof scripts living in the old theory will have to be updated as well
in order to live in the new theory.

Versioned objects come in five subtypes: tools, theories, sessions and proof
scripts.

subfolder
Entity Folder
.) contains
O Relationship Jﬁ
® Dependency Rel. revises

— + ISAR. Versioned §>

/ ®
imports loads prod_by Proof Documen-

Tool (DE Theory Sesson |~—@— -
I Script i
checks P tation

.
\ edited_b f \ session_of ‘ / T generated_igy

\ [-

. HOL HOL
Isabelle Editor Theory Session
\ HOL-Z HOL-Z
Theory Session

HOL HOL-Z

Fig. 3. Z-Workbench Data Model

234 Christoph Liith et al

Tools are either those based on Isabelle, such as HOL or the Z-encoding
HOL-Z, or a text editor. By modelling tools as versioned objects, the Work-
bench is able to maintain and invoke different versions of the same tool. Tool
revisions are used to represent new versions of the tool which are incompat-
ible to existing developments; this is in particular relevant for Isabelle (and
hence HOL-Z), where old tactical scripts will quite often not run on newer
versions of Isabelle.

Theories represent specifications, type and datatype definitions and so
forth. They come in subtypes corresponding to the different flavours of Isa-
belle; thus, there are HOL-Theories and Z-Theories, read by Isabelle/HOL
and HOL-Z, respectively. Theories are edited externally (i.e. not within Isa-
belle itself). Theories are checked, if they have been successfully read by
Isabelle (or HOL-Z), and become unchecked if they are subsequently edited.
Theories in Isabelle are structured hierarchically, and hence come with an
import relationship. Theories are edited_by the text editor.

Sessions represent the persistent state of a session with Isabelle or HOL-
Z. Essentially this means that the user may save a session, and resume work
later. When a session is resumed, the proof work being done up to that
point is reconstructed. To maintain consistency of sessions, the distinction
between checked and unchecked theories is important, since each session is
reconstructed with the last checked version of the theory (which may be
different from the last version of the theory, if it is unchecked). Every session
is related (by the is_session_of link) to one specific HOL tool, which it runs
on. Further, every session may load several theories (as indicated by the loads
link), and if it successfully loads them makes them into checked theories (as
indicated by the checked link).

Proof scripts are self-contained tactical Isabelle scripts. Since there is a
multitude of objects and tactical operations within Isabelle making up these
tactical scripts, modelling all of these in detail would be impractical, and we
just treat them abstractly as a tactical script represented textually. Every
proof script lives in the context of a theory, given by the lives_in link, and is
produced by one Isabelle session given by the prod_by link.

Finally, documentation can be generated out of a session having loaded
several theories. These documentations can be subdivided into several modes
(concerning theories, lists of theorems, proofs) and formats (e.g. HTML as
done presently by Isabelle, WTEX or RTF). The situation for generated doc-
umentation is analogous to generated program code (in the form of Standard
ML) that can be generated from executable specifications. The program gen-
erator used for Z is currently under development.

Figure 3 is actually an abstraction from the more complicated modelling
used in our integration. In particular, there are different types of sessions and
proof scripts just as there are different kinds of theories and Isabelle tools;
and the relationships between theories, sessions and proof scripts are on the

level of these subtypes. There is however just one type of program code (viz
Standard ML).

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 235

The Workbench uses Haskell classes to structure the code and to gen-
eralise the APT’s. The operations and events of relevance to the class of
versioned objects, one of the central concepts of the repository, is for example
outlined by the following class declaration:

class (RMIdObjectC vo) => RMVersionedObjectC vo where

revise :: vo => I0 vo
getRevisions :: vo -> I0 [vo]
getPredecessors :: vo -> I0 [vo]
revised :: vo => EV vo

The class provides (among others of course) a revise operation for cre-
ating new revisions, two computations for traversing the version tree (get-
Revisions, getPredecessors) together with a revised event that occurs
whenever a versioned object has been revised. This class is then instantiated
on need with theories, sessions and proof scripts.

5.2 Control Integration

All the tools of the Z-Workbench happen to be interactive Unix tools. Even
HOL-Z can, although it comes with a graphical user interface, be squeezed
into this category, since it is started and controlled from within a ML session.
The Workbench provides a utility called Haskell-Expect (inspired by
expect [19]) for integrating such interactive Unix tools. It runs the Unix tool
in the background, and lets the Workbench take over communication with
the tool by simulating the user dialogue. The encapsulation of HOL-Z comes
quite straightforward in this setting, as we shall demonstrate by the following
computation that starts up HOL-Z loaded with a given session and theory:

startHolZ session theory = do {
hz <- newExpect "holz" [];
sync (match hz "~- ");
sendCmd hz (load session theory);
interactor (finished hz >>> do{sendCmd hz "quit();\n"; stopl});
return hz
} where load s t = "load " ++ show s ++ " " ++ t ++ ";\n"

An Expect tool is created first that starts up HOL-Z as a ML session.
We then wait until the ML interpreter responds with a prompt, as specified
by the match event and responds by sending a command (sendCmd) that will
start up WIN-Z and load the given session and theory. The command
is forwarded in the form of a string as specified by the function load. An
interactor is finally spawned off to catch the events that occur when WIN-
Z finally returns control to the ML interpreter. The interactor responds by
quitting the session with ML before it terminates itself by calling stop.

236 Christoph Liith et al

The Workbench is based on a higher order composable approach to event
handling, where events are first class values. Base events can be combined
into composite events using the guarded choice operator (el +> e2), and
additional reactive behaviour can be glued onto existing events using the
event-action combinator (e >>> a). The event that occurs when the session
with HOL-Z is over, consists for example of two base events:

finished hz = (match hz ""- ") +> (match hz "uncaught.*\n")

The first event occurs when the session has terminated normally, i.e. load
has finished and the ML interpreter has generated a prompt and awaits ” user
input”. The second event should actually never occur, since it is generated
when the session with HOL-Z has ended abruptly with an uncaught excep-
tion.

The Workbench can furthermore communicate with HOL-Z running as
a server, in order to request services of HOL-Z or to inform HOL-Z about
some external event of relevance to the session (new theorems etc.). The way
this is achieved has already been demonstrated: sendCmd is used to submit
commands to the tool and match for looking for specific response patterns.

5.3 Presentation Integration

The need for presentation integration within the Z-Workbench is quite re-
stricted since all tools come with a graphical user interface. What remains is
to develop the version and configuration graphs of the system, and provide
the user with additional menus and user dialogues for calling and customising
the services of the integrated Workbench.

When the user requests the system to open up a new view such as a
version graph, an initial view is built first, i.e. the repository is traversed
and the appropriate visualisation commands are passed to daVinci. A bunch
of interactors are then associated with the graph to maintain consistency
between the view and the underlying repository. An interactor for monitoring
a single version looks like:

monitor g vo = interactor (
revised vo >>>= (\rev -> do
showRevision g vo rev
monitor g rev
redrawGraph g

))

The interactor reacts to the revised event by showing the new revision
link within the current version graph. It then spawns off a monitor for the new
revision rev and redraws the graph. It actually is as simple as this, although
the interactor is in reality set up to listen to a couple of events more.

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 237

Generating views, and maintaining the consistency of views, is one issue,
tool invocation is another. The services of the Workbench are invoked by
using pull-down menus that are associated with the nodes within a view.
For example, the version graph has a single interactor that listens to node
selection events and menu invocation events:

controller g m o = interactor (
nodeSelected g >>>= \o’ -> become (controller g m o’)
+> invoked m >>>=\f -> f o

)

The controller takes as parameter a handle to the current graph g, the
application menu m and the selected object o. It responds to a node selec-
tion event by becoming an interactor that will apply commands to the new
selection o’ rather than the old one.

The second guard is concerned with handling menu invocations. The
Workbench is higher order meaning that menus and menu items are functors
that may return some value of interest to the application when the menu
is invoked. In the case above, the application menu is set up to return the
computation that defines the behaviour associated with the menu item. This
computation is then applied to the object currently selected.

The missing link is the following piece of code that ensures that a new
session with HOL-Z is started whenever the user clicks the "Revise" button
associated with a HOL-Z session:

button [text "Revise", command (return newHolZSession)]

newHolZSession vo = do
vo’ <- revise vo
(session,theory) <- exportSession vo’
startHolZ session theory

A new revision is created first and all files of relevance to the HOL-Z
session are then exported to the file system. A new development using HOL-
Z is then started in the context of the given session and theory.

5.4 Experiences gained from the Prototype

The Workbench provides, being based on Haskell extended with a higher
order approach to concurrency, a high level of abstraction and expressive
power that comes very close to the one of constructive formal specifications.
There are several key features in achieving this.

First of all we benefit from Haskell’s expressive power by being a higher
order and strongly typed language. Classes are furthermore used to struc-
ture the code and to standardise the interfaces to the system. The sequential
behaviour of the system is expressed in terms of IO computations that have

238 Christoph Liith et al

a theoretical foundation in the monadic approach to I0. A more practical
consequence is that we have an extensible language framework that can be
enhanced with new computational paradigms on need. The innovative part
of the system however is the approach to event handling that treats all events
of the system, whether they are user interactions, data base change notifica-
tions, operating system signals or individual tool events in terms of first class
composable values that entirely hide the source of the event. Tool integration
can therefore be expressed in a style that comes close to the one used, had
we just made a formal specification using process algebras. The difference
though is that Haskell is executable - and highly efficiently compiled as well.

6 Proving in the Birthday Book

In this section we will use the classical birthday book example to demon-
strate the look-and-feel for Win-Z and its interaction with the surrounding Z-
Workbench. This will be done with a proof of a tiny property of AddBirthday,
namely that the set of names known to the system will be different with the
addition of a given new name.

r':] Isawin Proof: *new proof* 4
State History Yiew Special Tactics Help
Tatic To Shour: Kifmem o knong
seftings
Subgoals: |
!M 1. ! 'birthday birthday” date i known known® name i.
I | Addbirthday
i inst iy
TN i
|r?"""”_t9__@°a_]J iDelta BirthdayBook
| asm_sim| | known ~= known'
Lt
| strip_fac I . .
Lo | Cmds: (ALLGOALS =trip_shinder
| induct |
B

Fig. 4. Making implicit variables explicit

First of all, we defined a Z-theory BB.zthy, which is a Z paragraph con-
taining the Z schemas defining the Birthday Book. The leading fragment of
this paragraph has already been shown in section 4.

We state our desired property as follows:

|-- AddBirthday =+=> +..)Delta BirthdayBook |--- known ~= known’

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 239

= IsaWin Proof: *new proof* i
State History View Special Tactics Help
Tatic ToShow. | KHEWTES e
settings
s i i) | 'f:']1"6£££haéiuﬂi}kh&é§;‘a&iéii"kﬁéﬁﬁuﬁﬁd§h7"ﬁéaé;iuu"""""”'"""""

idate i : Date f%
(name i : Name /Y
‘ lbirthday : Name -|-» Date i\
(known : Pow Name /\
(known = dam birthday r
lbirthday’ : Name -|-» Date 1
(known’ : Pow Name [\
| TR AT {known' = daun birthday’ /4
| fast | (name i ~: known Ji
e birthday’ = birthday Un |iname i, date i)}i1131000)

o inzt

=t=>
(dan birthday : Pow Name /i
birthday Un {iname_i. date i)} : Name -|-> Date /i
{dan ihirthday Un {iname_i, date i)}) : Fow Name /3
{dam birthday ~= dan ibirthday Un {inams i. date i)}]10)

|
| assumption |

strip fac RS Y
plt T i |ALLGOALS asm_simp_tac Z2HOL_s=

- Cmds:
induct |

Fig. 5. After Schema Expansion and Simplification

We start with a Z-session where BB.zthy has already been loaded, and
enter this goal with Win-Z. Figure 4 shows a screenshot where the goal above
has been refined with one tactical step, that makes all the implicit free vari-
ables (the parameters of the schema), explicit by universally quantified vari-
ables.

We proceed now by expanding the schema definitions for AddBirthday
and BirthdayBook. Further, elementary simplification leads to the following
proof-state as shown in Figure 5. At this level, our fictive user interrupts the
development, and wishes to save the session. Figure &8 shows this possibility,
where the Workbench saves the HOL-Z session.

Another user goes to the version graph of the Z-session shown in section 3.
The Workbench has meanwhile reacted to the change notifications of the
repository manager, and has updated the version graph accordingly to show
the new revision. The user just clicks on this generated version, and the
Z-Workbench will start Win-Z in exactly the state saved by our first user.

After applying some minor tactics the goal is divided now in small sub-
goals as shown in Figure 6. The last three subgoals are proven automatically
by using Isabelle’s decision procedures for sets. The first one involves some
knowledge about domains. One has therefore to use the simplifier sets related
to the Z Mathematical toolkit. Figure 7 shows the result of this simplification.

At this level of the development the user needs a lemma about subsets
and union, stating that if B is not included in A, then A is not equal to the
union of A and B:

not(B <= A) ==> A "= A Un B

240 Christoph Liith et al

e IsaWin Proof: Birthday 5
Siate History Yiew Special Tactics Help
Tactic To Show:
seftings
Subgoals: 1. !lbirthday birthday® date i known known' name i.
I [l date i : Date; name i : Mame; birthday : (Name —|-» Date);
known : Pow Name; known = dam birthday; birthday’ : (Name -|-> Date);
known® | Pow Name; known® = dan birthday’; name i ~: known:

birthday’ = birthday Un {(name i, date i)} |]
==» dam birthday ~= dan (birthday Un {(name_i, date i) })
2. !lbirthday birthday’ date i known known' name i.

[| date i : Date; name i : Name; birthday : (Name -|-»> Date);
known : Pow Name; known = dam birthday; birthday’ : (Name -|-» Date);
known’ : Pow Name; known® = dan birthday’; name i ~: known;

birthday’ = birthday Un {iname_i. date i)} |]
==» dam birthday : Fow HName
3. !'birthday birthday’ date i known known' name i.

[l date i : Date; name i : Name; birthday : (Name -|-» Date);
known : Pow Name; known = dam birthday; birthday® : (Wame -|-» Date);
known’ : Pow Name; known' = dom birthday’; name i ~: known:
birthday’ = birthday Un {(name i, date i} |]
==» birthday Un {(name i, date i)} : (Name -|-> Date]
4. !lbirthday birthday” date i known known' name i.
[l date i : Date; name i : Name; birthday : (Name -|-» Date);
known : Pow Name; known = dam birthday; birthday® : (Hame -|-» Date);
P known' : Pow Name; known’ = dam birthday’; name i ~: known;
| assumption birthday’ = birthday Un {iname i, date i)} |]
! == cdam (birthdav n | iname i. date i1l] : Pow Nams

| i G- by (REFERAT tetac comjE 137;

TR i ‘by (REPEAT ¢irtac conjl 13 THEN (defer_tac 1331;
| induct

|

Fig. 6. Breaking up the Conjunction of the Conclusion

Now, using this lemma produces the following proof state as shown in
Figure 8, Isabelle’s decision procedure will do the rest. Again, our new user
can save the newly generated session and extract from it the proof-script
underlying the demonstrated proof-development.

7 Conclusion

We have seen an instantiation of the UniForM-Workbench for Z based on a
specific LCF-style prover environment called HOL-Z[16]. The resulting proto-
type gives an impression of the power of the modular, generic and functional
technology employed.

The modular aspect allows that the components of the Workbench can be
developed by different groups of developers and users. It is perfectly possible
to use the pure encoding HOL-Z or its combination with Win-Z in itself. It is
possible to use the GlueWare of the Workbench for completely different tools,
not necessarily connected to Formal Methods at all.? But it is the combination
of these three that scales up a correctness-oriented, but notoriously difficult
to use prover-environment to an formal methods environment, that enables
versioning (hence reproducibility) and overall semantic integrity (this piece

3 This has been done for the Hugs-Workbench [10,14].

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 241
JJL| IsaWin Proof: Birthday

Siate History Yiew Special Tactics Help

Tactic To Show:
settings

1. !''pirthday birthday’ date i known known’ name i.
[l date i : Date; name i : Name; birthday : (Name -|-» Datel:
known : Pow Name; known = dam birthday; birthday” : (Name -|-» Date):
known” Pow Name; known' = dam birthday’; name i ~: dam birthday;
birthday’ = birthday Un {iname i, date i)} |]
==> dam birthday ~= dam birthday Un {name i}

lby (Fast_tac 203
lby ¢asm_full_sinp_tac =math_ss 13;

Fig. 7. Simplification with the Mathematical Toolkit

T i Isawin Proof: Eirthday
Stale History Yiew Special Tactics Help
File ! Edit Tattic: To Show:
seftings
e Gubgoals: |1 ! 'eirthclay birthday’ date i known known’ name_i.

[| date i : Date; name i : Name:
birthday : (Mame —|-> Date);
known © Pow Name; known = dam birthday;
birthday’ : (Name —|-> Date):

Load E| {I-r}

known’ : Pow Name; known' = dam birthday’:
Save name i - dam birthday;
i 5 EE2HEIL_$$ birthday’ = birthday Un | (name i, date il} |]
==3 dnot {{name_i} <= dem birthday)
o by (Fast_tac 2);
Quit Crds: |by tasm_full_simp_tac =math_ss 137
1] b subsetlinion 13

Fig. 8. HOL-Z Session (left), Proof State after Lemma Introduction (right)

of code or this generated documentation belongs to this specific state of a
Z-theory) even in a multi-user setting. Thus, it is possible to reconfigure the
Workbench with little effort with new external tools on the one hand and
new semantic embeddings like [30].

The pervasive generic aspect of our technology stresses this toolkit-character
of the Workbench even more. The tools themselves are built by many com-
ponents, for example the generic graphical user-interface GenGUI, that are
designed to be independent from each other and that can be instantiated
for there particular application: In principle, GenGUI could be used for a
completely different, sml-based LCF-prover such as the HOL/HOL System.

We are very happy with our decision to use strongly-typed, state-of-the-
art functional programming languages for both the Workbench and Win-Z.
The combination of a purely functional language extended with a higher order
model to concurrency, allows the integration to be done at a very high level
of abstraction. Working with tool support for formal methods this has be-
come a crucial aspect, since the technology allows us to experiment with new
ideas without being slowed down by a large implementation and maintenance
overhead.

242 Christoph Liith et al

7.1 Related Work

A short discussion of related general tool-integration techniques has already
been done in section 2. In this section, we will therefore concentrate on inte-
gration techniques used for formal method tools.

Roughly, we divide existing approaches into two categories; first, ad-hoc
approaches, which we refer as “Glue&Pray”, and secondly more refined ones
labelled “Glue&Play”. This division is clearly debatable, and the two cate-
gories are rather the extreme poles in a continuum, and a tool belonging to
the former, admittedly polemically labelled class is not necessarily a bad tool.
But we believe that formal method tools as particularly complicated software
products suffer to a larger extent from poor implementation technology than
other software, be it with respect to the reliability of their results or be it with
respect to maintainability necessary to cope with the rapidly evolving field. A
case in point being PVS, which although as a prover is as powerful as Isabelle,
and more widely used, suffers from an untyped implementation and interface
language; or Tcl-based interfaces to LCF-provers like TkHOL or XlIsabelle,
which rarely survive the rapidly changing revisions of the underlying prover.

Examples for the “Glue&Play” approach are the Cogito [2] system or
KIV [25]. As tools, these are clearly superior to our Workbench in terms of
availability, user-friendliness and stability; but again, we believe they suffer
from a system architecture which does not have a theorem prover as powerful
and versatile as Isabelle at its heart, and which does not allow them to keep
up with changes as good as our Workbench, the modular design of which
allows easy exchange of parts which are outdated or superseded by newer
developments.

7.2 Future Work

With respect to the Workbench for Z, more tools supporting different docu-
mentation formats like A TEX, RTF or HTML on the one hand and anima-
tors on the other would be desirable extensions to the existing prototype.
The Win-Z component needs the integration of the code-generator currently
under development, and more GUI-specific tactical support.

Another line of extension is the integration of other Z-Tools (like ani-
mators or test-case generation tools) not based on the Isabelle-Kernel. This
kind of integration requires, due to the variety of syntactical constructs of
Z, very carefully constructed translators, which often represent a reliability
problem to the integration in practice. Paradoxically, it seems easier for us
to integrate other Isabelle-Encodings (like our CSP-Encoding) plus formally
proven sound combination formalisms for Z and CSP (such as [29]) into our
logical core engine, turning the Workbench into a technical framework for
combined reasoning over them.

In our actual prototype, the granularity of data to be exchanged between
different sessions is still rather coarse. For instance, the Workbench has no

HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration 243

access to the components of proof scripts. A refinement of the data model
could allow individual proofs to be transferred from one session to another.
This could be substantially enhanced if general merge techniques on proof
scripts (as developed for a specialised logic inside KIV) were available. All
these techniques could be combined with an active change propagation mode
of the Workbench — i.e. the Workbench starts the logical engine in a batch
mode, passes it a textually modified Z-theory, causes a re-evaluation of de-
pending proof scripts with the aim to recertify as much as possible, and to
save the resulting state of the logical engine in a session that is ready for
further interactive development.

References

1. R. Bahlke and G. Snelting. The PSG System: From Formal Language Defini-
tions to Interactive Programming Environments. ACM Transactions on Pro-
gramming Languages and Systems, October 1986.

2. A. Bloesch, E. Kazmierczak, P. Kearney, and O. Traynor. Cogito: A Method-
ology and System for Formal Development. International Journal of Software
Engineering, 4(3), 1995.

3. The H-PCTE Crew. H-PCTE vs. PCTE, version 2.8. Technical report, Uni-
versitat Siegen, June 1996.

4. ECMA. Reference Model for Frameworks of Software Engineering Environ-
ments. Technical Report TR /55, European Computer Manufacturers Associa-
tion, June 1993.

5. ECMA. Portable Common Tool Environment (PCTE) — Abstract Specifica-

tion. European Computer Manufacturers Association, 3 edition, December

1994. Standard ECMA-149.

Open Software Foundation. OSF/Motif Series. Prentice Hall, 1992.

7. M. Frohlich and M. Werner. daVinci V2.0.3 Online Documentation. Universitat
Bremen, http://www.informatik.uni-bremen.de/~davinci, 1997.

8. A.N. Habermann and D. Notkin. Gandalf: Software Development Environ-
ments. IEEE Transactions on Software Engineering, December 1985.

9. P. Hudak, S. L. Peyton Jones, and P. Wadler. Report on the Programming
Language Haskell - a non strict purely functional language, version 1.2. ACM
SIGPLAN notices, 27(5):1-162, 1992.

10. E. W. Karlsen. Integrating Interactive Tools using Concurrent Haskell and Syn-
chronous Events. In CLaPF’97: 2nd Latin-American Conference on Functional
Programming, September 1997.

11. E. W. Karlsen. The UniForM Concurrency Toolkit and its Extensions to Con-
current Haskell. In GWFP’97: Glasgow Workshop on Functional Programming,
September 1997.

12. E. W. Karlsen. The UniForM User Interaction Manager. Technical report,
FB 3, Universitat Bremen, 1998.

13. E. W. Karlsen. The UniForM WorkBench - a Higher Order Tool Integration
Framework. Technical report, FB 3, Universitdt Bremen, 1998.

14. E. W. Karlsen and S. Westmeier. Using Concurrent Haskell to Develop Views
over an Active Repository. In IFL’97: Implementation of Functional Languages,
September 1997.

&

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.
29.

30.

31.

244 Christoph Liith et al

Kolyang, C. Liith, T. Meier, and B. Wolff. TAS and IsaWin: Generic interfaces
for transformational program development and theorem proving. In M. Bidoit
and M. Dauchet, editors, TAPSOFT 97’: Theory and Practice of Software De-
velopment, number 1214 in Lecture Notes in Computer Science, pages 855—
859, Lille, France, April 1997. Lecture Notes in Computer Science.

Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in
Isabelle/HOL. In J. von Wright, J. Grundy, and J. Harrison, editors, Theorem
Proving in Higher Order Logics — 9th International Conference, number 1125
in Lecture Notes in Computer Science, pages 283 —298. Springer Verlag, 1996.
G. Krasner and S. Pope. A Cookbook for using the Model-View-Controller User
Interface Paradigm in Smalltalk-80. Journal of Object Oriented Programming,
1(3):26-49, 1988.

M. Lacroix and M. Vanhoedenaghe, editors. Tool Integration in an Open En-
vironment, volume 387 of Lecture Notes in Computer Science. Springer Verlag,
1989.

D. Libes. expect: Scripts for Controlling Interactive Processes. In Computing
Systems, Vol 4, No. 2, Spring 1991.

Manfred Nagl, editor. Building Tightly Integrated Software Development En-
vironments: The IPSEN Approach, volume 1170 of Lecture Notes in Computer
Science. Springer, 1996.

J. Nicholls and The members of the Z Standards Panel. Z notation, September
1995. Available at http://www.comlab.ox.ac.uk/oucl/groups/zstandards/.
J. K. Ousterhout. T'cl and the Tk Toolkit. Addison Wesley, 1994.

L. C. Paulson. Isabelle - A Generic Theorem Prover. Number 828 in Lecture
Notes in Computer Science. Springer Verlag, 1994.

S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Principles
of Programming Languages 96 (POPL’96), Florida, 1996.

W. Reif, G. Schellhorn, and K. Stenzel. Proving system correctness with KIV.
In M. Bidoit and M. Dauchet, editors, TAPSOFT 97’: Theory and Practice
of Software Development, number 1214 in Lecture Notes in Computer Science,
pages 859— 862, Lille, France, April 1997. Lecture Notes in Computer Science.
J. H. Reppy. Higher-Order Concurrency. PhD thesis, Department of Computer
Science, Cornell University, 1992.

T. Reps. Generating Language Based Environments. PhD Thesis, Cornell
University. MIT Press, 1983.

D. Schefstrom and G. van den Broek. Tool Integration. Wiley, 1993.

G. Smith. A semantic integration of object-Z and CSP for the specification
of concurrent systems. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors,
Proceedings of the FME 97 — Industrial Applications and Strengthened Foun-
dations of Formal Methods, number 1313 in Lecture Notes in Computer Science,
pages 62— 81. Springer Verlag, 1997.

H. Tej and B. Wolff. A corrected failure-divergence model for CSP in Isa-
belle/HOL. In J. Fitzgerald, C. B. Jones, and P. Lucas, editors, Proceedings
of the FME ’97 — Industrial Applications and Strengthened Foundations of
Formal Methods, number 1313 in Lecture Notes in Computer Science, pages
318- 337. Springer Verlag, 1997.

S. Westmeier. Verwaltung versionierter persistenter Objekte in der UniForM
WorkBench (UniForM OMS Toolkit). Master thesis, FB 3, Universitat Bremen,
January 1998.

Functional Design and Implementation of
Graphical User Interfaces for Theorem Provers

C.Liuth f

Bremen Institute for Safe Systems, TZI, FB 3, Universitit Bremen
cxl@informatik.uni-bremen.de

B. Wolff T

Institut fir Informatik, Albert-Ludwigs-Universitat Freiburg
bu@informatik.uni-freiburg.de

Abstract

The design of theorem provers, especially in the LCF-prover family, has strongly prof-
ited from functional programming. This paper attempts to develop a metaphor suited
to visualize the LCF-style prover design, and a methodology for the implementation of
graphical user interfaces for these provers and encapsulations of formal methods. In this
problem domain, particular attention has to be paid to the need to construct a variety
of objects, keep track of their interdependencies and provide support for their reconstruc-
tion as a consequence of changes. We present a prototypical implementation of a generic
and open interface system architecture, and show how it can be instantiated to an inter-
face for Isabelle, called IsaWin, as well as to a tailored tool for transformational program
development, called TAS.

1 Introduction

The story of graphical user interfaces (GUT’s) for theorem provers and formal
method tools as a whole is not exactly a success story so far. There is widespread
scepticism (Merriam & Harrison, 1997) that GUI’s adopting techniques from the
field of human computer interaction (HCI) can increase productivity to a similar ex-
tent as they did, say, in the area of office applications. GUI’s for widely used tools
like PVS, FDR or Isabelle are still dominated by text-based subwindows barely
hiding the roots of the underlying tool. We believe this has predominantly historic
reasons.

The history of functional languages, in particular ML, has been deeply inter-
twined with the genesis of the LCF theorem prover family, for which it was origi-
nally developed as a meta language. The essential idea in LCF-style provers (like
HOL (Gordon & Melham, 1993) or Isabelle (Paulson, 1994)) is to encapsulate the

¥ This work has been partially supported by the German Ministry for Education and
Research (BMBF) as part of the project UniForM under grant No. FKZ 01 IS 521 B2.

246 Christoph Liith and Burkhart Wolff

logical engine in an abstract datatype, the objects of which can only be constructed
by operations implementing the rules of the underlying logic. This yields the basis
for an open system design allowing user-programmed extensions in a logically sound
way. The flexibility, generality and expressiveness of LCF-style provers makes them
symbolic programming environments, into which other languages can be logically
embedded, e.g. Haskell (Regensburger, 1994), Java (Nipkow & von Oheimb, 1998),
Z (Bowen & Gordon, 1994; Kolyang, Santen & Wolff, 1996b) or CSP (Tej & Wolff,
1997). Together with appropriate, customised proof support and a graphical user
interface which hides the details of the embedding, this leads to an implementation
technology for formal method tools which we call encapsulation.

Thus, while the LCF-design has its undoubted advantages, these systems have
inherited a very restricted model of user interaction based on a command line
interface, and not profited as much as possible from recent advances in interface
design (Shneiderman, 1998; Thimbleby, 1990; Dix et al., 1998). As Bornat and
Sufrin (1998) put it, this problem cannot be overcome by “bolting a bit of Tcl/Tk
onto a text-command-driven theorem prover in an afternoon’s work”.

Our contributions towards filling the gap between classical command-line inter-
action and more modern concepts of graphical user interaction are firstly to develop
a new metaphor for the visualization of LCF-style provers. The metaphor serves as
a vehicle to make the data structure of the prover accessible to pervasive direct ma-
nipulation. Secondly, the metaphor develops an abstract notion of user interaction,
and is compatible with the need for their systematic replay. Replaying proofs is a
central issue in theorem proving. Thirdly, the metaphor is implemented in a generic
system architecture, based on the structuring mechanisms of Standard ML, using
a functional encapsulation of Tcl/Tk and the theorem prover Isabelle. Besides a
graphical user interface for a theorem prover, this gives an encapsulation technique
for formal methods.

This paper is organized as follows: we will first discuss issues relating to the
conceptual design and the metaphor. We will then turn to the architecture of the
system, introducing a data model and a process model. This will be followed by a
section expanding on some aspects of the implementation, and a section introducing
a different instantiation of the generic system. We close with an evaluation of the
proposed work, and a comparison to related work.

2 Conceptual Design Issues

Direct manipulation, a term attributed to Shneiderman (1982), is a widely known
technique in HCI and graphical user interface design (Shneiderman, 1998; Thim-
bleby, 1990; Dix et al., 1998), characterized by continuous representation of the
objects and actions of interest with a meaningful visual metaphor and incremental,
reversible, syntax-free operations with rapid feedback on all actions. In this section,
we will introduce the notepad metaphor, serving as a vehicle to make the internal
objects of a theorem prover accessible for direct manipulation.

Functional Design and Implementation of GUI’s 247

2.1 The Notepad Metaphor

As a motivating example, consider the way we do everyday mathematics and cal-
culations: one typically uses a piece of paper or a blackboard to write down inter-
mediate results, calculations or lemmas, but overall in an unstructured way, adding
a column of numbers in one part of the pad, while doing a multiplication in the
lower corner and a difficult diagram-chase in the middle.

A simple instance of this is a small notepad on which we can write down num-
bers and arbitrary text. The operations would either be arithmetic (e.g. add two
numbers), or textual (write some new text). Technically, the notepad could be visu-
alized as a window in which the user can manipulate objects, represented as icons,
by dragédrop. The world of objects on our notepad is structured by an inherent
notion of typing (here, numbers and texts). This typing is crucial when considering
the operations, because an operation taking numbers as arguments is different from
an operation taking texts as arguments. The operations are applied by drag&drop,
so if we drop a number onto a number, we may want to add them up, whereas if we
drop a text onto a text, we may want to concatenate them. Figure 1 illustrates our
example: On the left, we can see objects representing numbers 2, 4 and 5, and two
pieces of text. If we move the number 2 on the number 4 (second from the left),
they are added up, and we obtain a new object: the number 6 appears (third from
the left).

ll [l El [l Il [g] e
2 Rename #t!

Texti Texti Texti B sl)
c Update ..
Plus
Minus
Times
Text2 Text2 B Text2 Divide

Fig. 1. Introducing the notepad metaphor and manipulation by dragé&drop.

This shows the first main principle of a functional GUI: objects represent values,
and hence the interaction of objects produces new objects, rather than changing
existing ones. Dropping an object onto another corresponds to function application.
These functions are called binary operations; passing several objects to a binary op-
eration is possible by grouping objects via multiple selections. Additionally, unary
operations may be defined for each object type, which take exactly one argument,
and are invoked via a pop-menu (see Fig. 1 on the right, where the standard oper-
ations Show, Rename and Delete can be seen.)

In practice, the simple typing discipline has proven insufficient — e.g. instead of
adding two numbers, we might as well want to subtract, multiply or divide them.
To this end, we introduce the concept of a mode that an object may have. In our
example, each object of type natural number has four modes: plus, minus, times
and divide. The function applied by dragé&drop is determined by the mode of the

248 Christoph Liith and Burkhart Wolff

object being dropped onto: dropping a number onto another number in ¢imes mode
multiplies the two numbers.

At first sight the modes seem to contradict our principle of a functional GUI,
since they allow a form of state. However, the modes only serve to disambiguate
or simplify user interaction. This context information may help the system to pro-
vide additional parameters that had to be provided explicitly otherwise; we do
not allow side effects when applying operations. As a general rule of interface de-
sign(Thimbleby, 1990), modes should not be hidden, so the icon of an object is
determined by both the mode and the type of the object. This way, the action
which will take place is always transparent to the user. In Fig. 1, the modes of the
numbers are shown by an additional sign on the upper right corner of the symbol.
The user can change the mode of an object by a pop-up menu (Fig. 1 on the right).

2.2 Undo, Persistence and Replay

According to the main principle of a functional GUI, function application can not
change the arguments of the function. This allows an easy implementation of undo:
we just delete the object created by applying the function. Moreover, the functional
approach makes it easy to reconstruct an object. By recording the operations which
have been applied to construct an object, we can reconstruct the object later by
replaying the operations. This is needed to implement a persistent state, and to
deal with external objects.

By persistent state, we mean that we want to be able to save the current state
at a given moment, exit the system, and later restart the system in the same state
where we left it. Under the assumption that only operations, but not objects, can
be saved externally, persistence is achieved by recording for every object how it
was constructed, and reconstructing the object by replaying the operations upon
restart.

As an example of external objects, suppose that the texts on our notepad are
given as post-it notes stuck to the pad. Their value is the text written on them. We
can concatenate two texts, but if we then write something different on one of the
notes, the value of the concatenation should change accordingly. In our example,
suppose the text objects (like Text! and Text2 in Fig. 1) are read from external
files. By dragging Text! on Text2, we create a new object, say Text3. If now Textl
is reloaded, the value of the object may change, and consequently the value of Text3
should change as well. We say Text3 is outdated, which is is indicated by shading
the icon of Textd. Outdated objects can be updated again by replaying its history.
Updating is invoked via the pop-up menu (as in Fig. 1).

Replay is very important in the theorem proving context, because most theorem
provers read declarations and definitions from external files, which are frequently
modified by the user, and have to be reloaded. Yet, systematic replay is to our
knowledge never supported on the level of the GUIL.

Functional Design and Implementation of GUI’s 249

2.3 Construction Objects

For certain objects, manipulation without regard to their internal structure, and
hence their history, is insufficient. For instance, we want to admit editing of text ob-
jects in our simple example. The history of such editing operations will then consist
of a protocol of operations like delete "javelin" at position 1.12 or insert
"spear" at position 1.12. Navigating forward and backward in this history cor-
responds to undoing and replay.

These objects will be called construction objects. They can be opened by double-
clicking, which leads to the creation of two new windows, namely the construction
area and the history navigation window (see Fig.2). Both windows have a focus, i.e.
a mark on some position in the text, and some position in the history, respectively.
The history focus controls the content of the construction area.

] Edit text: Textl -

Bring me my spear of burning gold - - =
Bring me the arrows of desire, i i History Window

Bring me my bow, 0 clouds unfold, delete "javelin® 1.12
Bring me my chariot of fire. insert "spear’ 1.12

-5

. Close] Cmil i

Fig. 2. Construction area and history navigation window.

When closing a construction object, the current value of the construction object
is bound to the object which was opened (i.e. to the icon that was double-clicked).
The reason for this behaviour is that the notepad would hopelessly clutter up if a
new object was created for each step in the history. Objects depending on a closed
construction object are marked as outdated.

Note that the replay of the history may fail. For example, the semantics of the
delete "javelin" operation may be undefined if no "javelin" occurs in the text
as a consequence of an external change and a reload of the object.

There are more forms of interaction between the notepad window and the con-
struction area or the history window. Objects on the notepad may be dragged on
the focus set in the object value field, e.g. replacing the text selected in the focus.
Vice versa, the selected text of the focus may be extracted and form an object on
the notepad.

2.4 IsaWin — A Functional Graphical User Interface for Isabelle

We will now explain how theorem proving fits into the concepts described in the
previous sections by describing our GUI IsaWin for the theorem prover Isabelle
(Paulson, 1994). Isabelle is just the example at hand; we expect no principal dif-
ficulties in developing analogous interfaces for other LCF-style prover based on
SML.

250 Christoph Liith and Burkhart Wolff

2.4.1 Accommodating Basic Theorem Proving into the Notepad

The object types of IsaWin are a subset of those provided by Isabelle, as shown
on the left of Fig. 3: in the first row two theorems and a theory, in the second
row, two different types of rule sets, called simplifier sets and classical rule sets in
Isabelle parlance, and an ongoing proof, or more precisely the proof script which
we will identify with a proof throughout this paper. Theorems have four modes,
they can be introduction rules (as in Fig. 3), elimination rules, destruction rules
and equations (which are not shown).

el
ral [ra] @B ol D
all el rith DRELSE RTAC
{l=r} {";‘A} "f +e e
HOL_s3 HOL_¢s Trst Attemp REPEAT Fitac exl £ exlI OREL

Fig. 3. The Objects of IsaWin: to the left, basic objects; to the right, tactical objects

The binary operations in this instance include the forward resolution of two
theorems: unifying the conclusion of one theorem with the hypothesis of another
one. This corresponds to dropping a theorem object onto another theorem. Note
that this may not succeed — the operation is partial. E.g. if the theorem add_o0 :
0 4+ ¢ = c is dropped onto the theorem sym: s =t =t = s, a new theorem t =0+ ¢
is produced by forward resolution; but vice versa the operation fails. Simplifier sets
are sets of rewriting rules. If a theorem is dropped on a simplifier set, a new simplifier
set is produced with the theorem included. Classical logics support another type
of rule sets. These classical rule sets come in two modes, safe and unsafe, since
theorems can be added to a classical rule set in two ways (this distinction makes a
difference for a decision procedure of Isabelle, the so-called classical reasoner). If a
theorem is dropped on a classical rule set, depending on the mode of the rule set,
it is either added as a safe rule or as an unsafe rule.

Reloading an external theory file results in outdating all depending objects, like
included theories or theorems depending on them.

2.4.2 Accommodating Tactical Programming into the Notepad

Contrary to a common prejudice against GUI’s for theorem provers, it is quite
straightforward to embed basic tactic script construction into the notepad metaphor.
First, we provide object types corresponding to certain Isabelle types, tac_op (for
tactical operations), tactics and tacticals. Second, we provide objects of type tac_op
corresponding to backward resolution or simplification, basic tactics like proof by
assumption as objects of type tactic, and the usual connectives REPEAT, THEN
and ORELSE on tactics as objects of type tactical. Third, we set up the binary

Functional Design and Implementation of GUI’s 251

operations by embedding Isabelle’s tactical algebra into our world of object types,
objects and binary operations. We are now able to construct, for example, an ob-
ject corresponding to the Isabelle tactic REPEAT o ((rtac exI) ORELSE’ (rtac
allIl)) which by repeated backward resolution with the quantifier introduction
theorems ezl and alll will eliminate an arbitrary sequence of outermost quantifiers
on a subgoal. Fig. 3 shows the constructed tactic in the lower left corner, together
with tacticals ORELSE and REPEAT, the tactical operation RTAC and the tactic
Rtac ezl

2.4.8 Accommodating Backward Proof into Construction Objects.

In LCF-style provers, the main proof method is by backward proof: if we want to
prove a goal ¢ in this style, a proof state is initialized with the formula ¢ = ¢. With
a theorem A = B = ¢, the proof state can be refined to A = B = ¢ by forward
resolution. The premises left from the rightmost implication, hence A and B, are
called subgoals. If as a consequence of further proof steps no subgoals are left, the
proof state can be converted into the theorem ¢.

&) TEaWin Front e ment proot
State History View
Tactic 1o Show [COPY << SYTEW £
settings

subgoals

u. right ulx -> fix ACOPY
4. right ulx —> COBY <<
% > ack->€st £ix Ap. (1

auto

no inst

rewrite_goals

asm_simp
fast

_tac cont_ss
[SYSTEH_def]
[l _def1
© reurite_go [Let_def]
14. ALLGOALS o ac setf_ss
15. UNFOLD_AT_PATH 210
knaster_tarski 1
assumption 16. ALLGOALS asn_sinp_tac cont_ss
17. UNFOLD_AT_PATH 22112120

arsk

strip_tac | cnds IALLGOALS asm_simp_tac cont_ss

induct

"
INFOLD_AT_PATH 222120
naster_tarski 2

19. ALLGOALS

ac setf_ss
c cont_ss

Close |

Fig. 4. IsaWin’s construction area

It is convenient to declare backward proofs as construction objects and the proof
steps performed by tactical operations as their history. When dragging objects
from the notepad window to the construction area, the GUI will perform tactical
operations, depending on the mode of the dragged object, the settings of the buttons
and and the focus set by the user. If a theorem lemmal has the mode introduction
rule, and the focus is set to the second subgoal, the drag&drop gesture will trigger
the Isabelle operations by (rtac lemmal 2). Further, dragging a simplifier set down
into the construction area will cause Isabelle’s rewriting machine to execute the
rewrites in it. If there are no subgoals left to be proven, the construction area can
be closed to yield a theorem object on the notepad. Figure 4 shows the construction
area of the IsaWin interface. The most prominent part is the display of the subgoals,
and the main goal to be proven.

252 Christoph Liith and Burkhart Wolff

3 System Design Issues

As mentioned in the introduction, we want to provide a family of user interfaces
for different applications, let it be for different theorem provers or different tools
built on them. Hence, our system architecture has to be generic. It depends on an
abstract characterisation of the application; this parameter is discussed in Sect. 3.1
and leads to the data model described in Sect. 3.2. This view is complemented by the
process model in Sect. 3.3, where the communication of the different components
is presented.

3.1 An Abstract View of Functional User Interfaces

At an abstract level, we consider the theorem prover, or the encoded formal method
to be an application which is a structure with the following characteristics:

e It has objects, each of which has type. The type determines the possible modes,
and both determine which operations are applicable to this object, and both
were indicated by the object’s icon.

e There are partial operations which can be applied to objects, namely unary
operations which take exactly one argument, and binary operations which take
two arguments. Unary operations are selected from the pop-up menu bound
to each object, whereas binary operations are triggered by drag&drop.

Thus, an application has a set S of types, a set Q of operations which have
certain arity (i.e. an operation w € 2 takes exactly one or two arguments of specific
types), a set Ag of the possible values of objects of type s, and a way to apply
operations w from {2 to elements of As. In other words, an application is given by
a signature ¥ = (5,), and a partial Y-algebra A. This separation of the syntax of
the application (given by a signature) from its semantics (given by an algebra) is
essential in being able to handle replay, as we will see below.

The modes — and similarly, the settings in the construction area — only serve
to disambiguate which operation w is going to be applied. Once the operation has
been selected, its evaluation is independent of modes, settings or any other user
input.

Technically, we can denote this characterisation by an SML signature APPL_SIG,
making the generic interface an SML functor which when instantiated with an
application yields a graphical user interface for that application; we will elaborate
on this in section 4.2 below.

3.2 The Data Model

The metaphor developed in the previous section was based on the representation
of values by icons on a notepad, and application of operations on these objects.
Representation on the notepad corresponds to naming an object— the object can
be referred to, and operations can be applied to it.

As an application is given by a signature ¥ and a partial X-algebra A, the history
of an object is given by composition of operations, or in other words by a term t

Functional Design and Implementation of GUI’s 253

from the term algebra T (X), built over a set X of variables (where the role of the
variables is taken by the external identifiers). Then, given a mapping of the variables
to values in A, (i.e. a way to evaluate external objects), every term evaluates to
an element of A; (MacLane & Birkhoff, 1967). So in order to be able to replay the
construction of an object, every object is represented internally as a pair (a,t) with
a € A, t € Ts(X)s, where a is the current optional value of the object (if it exists),
and t is the history.

Since objects can be referred to, a single object can be used more then once. The
data model has to take into account that kind of sharing, since otherwise replay
would become unnecessarily expensive. In proof scripts, this sharing is achieved
by binding the theorem to an identifier. In our data model, it is implemented by
representing all terms representing the history of the objects in a directed acyclic
term graph, representing the global data state of the system.

The vertices of the term graph correspond to the pairs (a,t); every vertex may
be associated to an icon on the notepad. The edges correspond to operations. If
the value a does not exist, the object is called outdated. Recall that outdating can
occur in two ways: an external object is changed (i.e. re-evaluated; for example, a
file is being reread into the system), or an operation is applied to a construction
object.

The notion of history used here is linear, like Archer, Conway and Schneider’s
script model (Archer et al., 1984). When we go back in the history, there is a se-
quence of operations which can be applied by going forward again (the pending
operations). If after going back we apply a different operation, these pending op-
erations are lost and cannot be referred to anymore. This is a design decision to
make navigating the history easy. With the data model, it would be easy to imple-
ment a history which is not a linear script, but a graph (like Vitter’s US&R, model
(1984)), where applying new operations is possible while still pending ones are kept
in another branch of the history.

3.3 The Process Model

The components of the architecture comprise the notepad and the construction area
which have already been introduced above. Additionally, the application may pro-
vide communicating components such as a file selector, or a theorem chooser; these
typically serve to import external objects into the system. Construction area and
notepad are closely coupled, because they exchange values of objects under con-
struction. The notepad and all other components communicate with each other via
a clipboard, and with an external environment, exchanging external representations
of the history of objects.

Figure 5 shows the process view of the system. The components Si,...,Sy are
the application-specific components; their communication with the environment is
optional (hence the dashed arrows). Except for the environment and the clipboard,
each component is associated to a widget or a window visualizing its process state in
the GUI (construction area and history navigation have one each for convenience).

Our design goal of pervasive direct manipulation is reflected by the communica-

254 Christoph Liith and Burkhart Wolff

Iy

‘ Environment ‘

Fig. 5. The Process View of the Architecture Scheme.

tion vertices that connect all components with the clipboard. The arrow pointing
into the clipboard represent drag-events (parameterized with the object), while the
arrow pointing from the clipboard represent drop-events.

Our design goal of persistence is reflected by the arrows connecting the notepad
to the environment. Both of these components have an internal state which we have
to be able to save into the environment, and read back from there. The application-
specific selector components may have an internal state, and thus may need to
communicate with the environment as well.

In Fig. 5, more than one instantiation of the interface can be connected, by
sharing the same environment, and by connecting the clipboards. This requires
conversion functions between the objects of the different instantiations. This gives
us a way to build Formal Software Development Environments as a consequence of
the genericity of our architecture. A prototypical implementation of this scheme,
centred around tools for the specification language Z, is discussed in (Liith et al.,
1998).

4 Implementation

In this section, we will give an overview of the implementation, briefly touching on
all components of the system (Fig. 6) in turn. The system is implemented entirely
in Standard ML. The instances discussed throughout the paper are based on the
theorem prover Isabelle. Since Isabelle essentially consists of a collection of ML types
for objects such as theorems, proofs and rule sets, and ML functions to manipulate
these objects, organised into a collection of ML structures and functors, one can
conservatively extend Isabelle by writing ML functions, using the abstract datatypes
provided by Isabelle, without corrupting the logical core of Isabelle

To implement the graphical user interface, we have developed a functional encap-
sulation of the interface description and command language Tcl/Tk (Ousterhout,
1994) into Standard ML, called sml_tk (Liith et al., 1996). This package provides
abstract ML datatypes for the Tcl/ Tk objects, thus allowing the programmer to use
the interface-building library Tk without having to program the control structures
of the application in the untyped, interpretative language Tcl.

Functional Design and Implementation of GUI’s 255

Isabelle/HOL
—
smi_tk
-

Standard ML

Fig. 6. Module Architecture

4.1 Direct Manipulation of Formulas and Annotation Issues

The problem of representing terms and formulas is ubiquitous in a GUI for a the-
orem prover. With few exceptions based on a dag-like representation (Kahl, 1998),
terms are represented essentially text-based, enriched by mathematical or some
graphical notation like square roots or sum signs. In a GUI, there is a potential
for novel user interaction such as query-by-pointing (clicking on a subterm in or-
der to get information like types) or prove-by-pointing (clicking on a subterm to
apply a tactic or rewrite) (Bertot & Théry, 1998). Finally, direct manipulation is
a straightforward idea enabling the user to drag&drop a subterm within a sum,
effecting appropriate applications of associativity and commutativity laws (going
back to the system Theorist; see also (Bertot, 1997a)) which are, at least in Isabelle,
extremely tedious to communicate in command-line style.

In a generic, language independent environment such as Isabelle, a prerequisite
of theses interactions is the generation of term annotations that allow to set a focus
in the sense of Sect. 2.3, or to point in the sense above. In this section, we describe
the necessary concepts and their implementation within the Isabelle syntax engine.

First, a mechanism to attach and manage one or more alternative external repre-
sentations of a syntax to a theory is needed. These paraphrasings allow to produce
graphical output like Vz.P instead of the conventional text output !x.P. (This
mechanism also allows the generation of other documentation formats like IXTEX).

Second, for a smooth transition from Isabelle’s text-based ouput to graphical
output, we implemented a markup-interpreter as a generic component of sml_tk. It
provides a generic parser for an SGML-style notation <tag> ... </tag> that binds
attributes or ML functions to the subtext marked by the tags; e.g. the graphical
output above is obtained from the code \"x. P.

Third, the concept of annotations has to be added. Annotations are constant
symbols with an external representation that is invisible on the screen and fully
transparent to the Isabelle printing macros and printing translations. They are
used to generate bindings to specific subtexts. For example, the focus mechanism
described above is implemented by surrounding every subterm ¢ with an annotation
<SEL p>t</SEL> where p is a representation of the path to the subterm t. The
tag SEL is bound to a function which given p extracts the subterm ¢ from the
proofstate. This annotation has to be transparent to the pretty-printing macros,
otherwise e.g. the rewriting from the internal representation x::y::[] to the external

256 Christoph Liith and Burkhart Wolff

representation [x,y] will fail. Based on these paths, it is a standard exercise in
tactical programming to provide the necessary operations for query-by-pointing
and prove-by-pointing.

In summary, a few technical extensions to Isabelle’s pretty-printing and parsing
machinery are sufficient to make Isabelle support graphical mathematical notation
and direct manipulation on terms. These extensions are fully compatible with Is-
abelle’s logical genericity, and fully backwards-compatible with existing syntactic
notations.

4.2 The Generic Graphical User Interface GenGUI

The module GenGUI uses the interface description facilities provided by sml_tk to
provide a generic graphical user interface. It is independent of Isabelle, and given
as a functor

functor GenGUI(structure appl: APPL_SIG) : GEN_GUI = ...

which returns a graphical user interface for the application appl. The abstract
characterisation of an application has already been introduced in Sect. 3.1 above;
we will now give a sketch of the ML signature APPL_SIG describing them. The real
signature of course is far more elaborate, containing in particular details about the
visual appearance (such as the size of the window, or the particulars of the icons
depicting the objects and their locations).

The ML signature can roughly be divided into four parts: typing of the objects,
operations and applying them, the construction area and external objects.

For the first part, every object has a type given by obj_type; its mode can be
changed within the modes of the object’s type, as given by modes. Objects of type
construction_obj are construction objects, which can be opened and manipulated
in the construction area:

signature APPL_SIG =

sig
type object (* The type of all objects *)
eqtype objtype (* The type of object types *)
eqtype mode (* The type of modes *)
val obj_type : object -> objtype
val modes : objtype-> mode list
val mode_name : mode-> string
val initial_mode : object-> mode

val construction_obj : objtype

For the second part, there is a type modelling the operations, and an operation
with which to apply it. Application is partial, and so the result of an application is
either a new object (variant OK), or failure (variant Error, the string argument is
an error message to be displayed):

datatype object_result = OK of object | Error of string

Functional Design and Implementation of GUI’s 257

type opn

val apply : opn* object list-> object_result

val mon_ops : objtype-> ((object* (opn->unit)-> unit)* string) list
val bin_ops : (objtypex mode)* (objtype* mode)-> opn option

For every object type mon_ops gives the unary operations as a list of pairs of
functions and strings. The string is the name under which the operation will appear
in the pop-up menu; the function implements the operation. It gets passed the actual
object as its first argument, and a continuation which is used to apply operations.
The reason for passing a continuation is that a unary operation may require further
user interaction (e.g. when starting a proof in a theory, we first have to enter some
goal to be proven).

The binary operations are given by bin_ops and come into effect by drag&drop.
For every type and mode of a target object (the one being dropped onto) and type
and mode of objects being dropped, this function gives an option of an operation;
if this option is empty then no operation is available for this drag&drop situation.

The construction area shows the delicate interplay between the application and
GenGUI. Because the generic user interface implements the history and commands
such as undo, the application cannot provide these. But since the layout of the con-
struction area is given by the application, there needs to be a way to call functions
which navigate the history, in order to bind them to graphical control elements. So
we model the construction area by a functor, which takes the history navigation
functions given by the signature HISTORY_SIG (omitted here), and implements the
following export signature:

functor ConArea (structure H : HISTORY_SIG):
sig val open_area : object*H.history->TkTypes.Widget list
val drop_ops : objtype*mode->object list->(opn->unit)->unit
end

The construction area provides the functions open_area which takes an object, and
its history, and returns a list of widgets making up the construction area. For every
type and mode of an object being dropped from the notepad into the construction
area, drop_obs gives the operation to be applied. Like mon_ops, its arguments are
the objects and a continuation to allow further user interaction.

The last part of the application deals with external objects. They are referred to
by an identifier of type external_id. Given such such a reference, we may obtain
an object from that by get_external_obj. The prime example here are file names;
get_external_obj loads the contents of the given file. The application may specify
dependencies between external objects (see below).

eqtype external_id

val ext_obj_depends_on : external_id* external_id-> bool

val get_external_obj : external_id-> object_result
end

The export interface shows a representation of the data model introduced in

258 Christoph Liith and Burkhart Wolff

Sect. 3.2. The type obj_label represents vertices of the term graph. objects is
a representation of the term graph as a list of pairs (I,e), where [is a label and
e an expression, consisting of applied operations, external objects or references to
previous labels.

signature GEN_GUI= sig

type obj_label

datatype obj_hist = External of external_id

| AppliedOp of opn* obj_hist list

| Result of obj_label
(obj_label* obj_hist) list
(obj_label* TkTypes.Coord) list
type gui_state = objects* notepad

type objects

type notepad

val change_external_obj : external_id-> unit
end

The notepad contains representations of vertices in the term graph on the screen,
given as pairs of obj_label and Coord; we only need the coordinates, since the
rest of the visual representation will be computed from other information (the type
of the object etc.). Then the state of the whole system is given by the term graph
and the notepad. Incidentally, this state is represented as a global reference; in
Haskell it would be implemented more elegantly as a monad. We do not show the
functions used to control the start and restart of the GenGUI, but importantly there
is a function change_external_id by which an external application can signal
that the value of an external object has changed. GenGUI then reevaluates the
corresponding external object, and all external objects depending on it (as specified
by ext_obj_depends_on), and moreover outdates all objects constructed from these
external objects.

Note how the functional nature of the interface is reflected in the typing: all op-
erations, given by mon_ops, bin_ops and drop_ops, can only produce new objects.
The application cannot delete objects.

As a final detail, the clipboard is implemented by sharing a common struc-
ture CLIPBOARD, which exports two functions, get: unit-> obj_hist and put:
obj_hist-> unit; if (and only if) put is called with the history of an object, the
next call to get will return this history.

5 A Different Instantiation of the Generic Architecture

In this section we will demonstrate how instantiations of our generic architecture
can be used to build a special purpose tool by encapsulating a formal method into
Isabelle. The tool will be the transformation system TAS similar in spirit to win-
dow inferencing (Grundy, 1991) as realized for example in the system TkWinHOL
(Langbacka et al., 1995), and related to systems such as Prospectra (Hoffmann &
Krieg-Briickner, 1993).

Functional Design and Implementation of GUI’s 259

5.1 Concepts of TAS

In this section, we will briefly sketch the basic principles of modelling transforma-
tional program developments in an LCF-style prover, following the lines of Kolyang,
Santen and Wolff (1996a). A transformational development can be described as a
sequence of correctness-preserving refinement steps

SP; ~ ...~ SP,

One can abstractly view the SP; as arbitrary formulae and ~» as a transitive,
reflexive and monotone relation. Every development step SP; ~ SP;;1 is given by
applying transformation rules, ranging from simple logical rules to complex ones
that convert a certain design pattern into an algorithmic scheme, such as Global
Search or Divide & Congquer.

The basic idea of the Transformation Application System TAS is to separate the
logical core of a transformation from the pragmatics of its application, its tactical
sugar, driving the concrete application in a development context. A logical core
theorem has the following general form

VP,,...,Py. A= T~ 0

where Py,..., P, are the parameters of the rule, A the applicability condition, I
the input pattern and O the output pattern. By proving the logical core theorem, a
transformation is proven correct. When applying a transformation, the applicability
conditions result in proof obligations which are proven externally, by other interfaces
to Isabelle (like IsaWin) or by decision procedures (e.g. model-checkers).

The Transformation Application System is designed to hide this implementation
in the prover from the user. Since the proof obligations can be deferred to a later
stage, the user of a transformation system can concentrate on the main design
decisions of transformational program development: which transformation to apply,
and how to instantiate its parameters.

5.2 TAS as an Instantiation of the Generic GUI

We will show how to set up TAS as an application in the sense of Sect. 3.1 above. We
have to define object types, and operations. The construction objects of TAS will be
transformational program developments, with a history of the transformation rules
which have been applied. The object types are transformational program develop-
ments, transformation rules with none, some or all of their parameters instantiated,
parameter instantiations, texts, and theories. Fig. 7 shows a screen shot of TAS with
some objects on the notepad, and a transformational development currently open in
the construction area. The operations include instantiating a transformation rule by
dropping an instantiation on a transformation rule, and applying a transformation
rule by dragging it into the construction area.

260 Christoph Liith and Burkhart Wolff

rl‘ UniForM Transformation Application System

File Edit Settings Help

. Sl ol

ERETORI g soFC |Unfold [Fold

[TAs_HOL
% T

G5 Subst GlobalSearch Commute [Comrmute 41
A 2 D JJ/
4 = |-
] Q
ffmep.pec fimep.spec GlobalSearth
1
rﬂ UniForM Transformation Application System fmap.spec 3t

Level: 2 Proof Obligations: 5

(400.V). U : Fin U & ¥ : Fin ¥} (& B} - i}
(P Fys. [(REC Fgs (4. (#(U.¥]. U : Fin U & ¥ : Fin ¥) (A, B)) |
(204 |

split (%5, %(T,M). S Un T =U & S Int T = {} & M : (Map (S, WI))) |

(4N, split (5. S(T.Ml. T = {} & H = M)} |

(fu. %u. (5(U,V). %N. N : iMap (U, ¥W)1] (A, Bl M)

(2o |

split |

155, %(T.M). |

split |

(857 #(I°.M"). |

?a ?bhb. |

FiiaTig
b Ve |
[s', (I°, M) = |
(5 Un (insert a {}]. (T - (insert a |}, M <+ {la :=hI}H11))) & |
fin maps (A, Bl M = Fgs Px0 (8(U.v). (4}, (U0, 11100 2xB 3200 ,“

< History > | Chse |

Fig. 7. The Graphical User Interface of TAS

6 Evaluation, Related Work and Conclusions

In this final section, we will discuss a metric evaluation of IsaWin, briefly review
related work and close with a summary of our results and an outlook on future
work.

6.1 Metric Evaluation of IsaWin

Card, Moran, and Newell (1983) proposed the goals, operators, methods and se-
lection rules (GOMS) model and related it to the keystroke-level model (KLM).
They postulate that the users formulate goals (e.g. prove lemma) and subgoals (e.g.
push operator outermost) which they achieve by using methods (press key, move
mouse, recall theorem name, etc.). The selection rules are the control structures for
choosing among several methods available for accomplishing a goal — statistical
assumptions about the deviation of these choices form the basis for a translation
into the keystroke-level model. KLM attempts to predict performance times for
error-free expert performance of tasks by summing up the time for key-stroking,
pointing, drawing, thinking, and waiting for the system. Kieras and Polson (1985),
and Elkerton and Palmiter (1991) refined the approach.

The original model, but to a lesser extent also its successors, “concentrate on ex-
pert users and error-free performance, and place less emphasis on learning, problem
solving, error handling, subjective satisfaction and retention” (Shneiderman, 1998).

Functional Design and Implementation of GUI’s 261

Given these fundamental constraints, it is not clear that the GORM model and its
variants apply to theorem proving. Of course, what can be done at least is a rough
comparison on the KLM-level of IsaWin interaction with pure command-line inter-
action, perhaps supported by a text-based editor with a short-cut facility. The proof
script in Fig. 4 is generated by 47 elementary user-interactions like set focus, drag-
object, etc. This contrasts substantially with the interaction necessary to produce
a proof script of 233 characters by a command-line interface, even assuming editor
short cuts. Further, the counterpart of proof-by-pointing and query-by-pointing in
command-line interfaces, require the construction of substitutions, which is both
tedious and extremely error-prone. The situation is also favourable for IsaWin if
we take replay into account, which allows a much finer analysis of which proofs are
affected by a change than the conventional rerunning of scripts which fails at the
first problem.

Of course, the value of such taxonomic data is strictly limited, also because it ig-
nores issues such as the flexibility of a rich tactical language. At present, claims like
“GUI’s improve productivity over command-line editors in some formal method”
can not be founded on such data, although some first studies (Jackson, 1997) sug-
gest this, at least for a particular prover and GUI. It may actually be the case that
a GUI precisely because it is easier to use does not encourage purposeful planning
to the extent which is necessary for the successful use of a theorem prover (Mer-
riam & Harrison, 1997). Then again, it may be that a GUI makes the alternatives
the user faces clearer and easier to invoke (Bornat & Sufrin, 1998). The question
remains open until more systematic studies have been conducted; for IsaWin, the
prototypical status of the implementation has until now precluded such studies.

6.2 Related Work
6.2.1 Generic Architectures and Abstract GUI Descriptions

Design patterns have recently received a lot of attention in the field of object-
oriented programming (Gamma et al., 1990; Cooper, 1998). Also motivated by
reusability, some techniques (e.g. templates roughly corresponding to functors) are
similar to our generic system architecture. However, important aspects of these
patterns are described completely informal, resulting in a sometimes intransparent
mixture of meta-language, C++ code and pragmatics. In contrast, work on “archi-
tecture styles” (Abowd et al., 1993; Allen & Garlan, 1994) aims at a fully formal
description of generic architectures. However, for the moment, the emphasis of this
research lays on foundation, description and analysis and less on implementation.
Hence, we consider this work as complementary.

In the HCI literature, there is a large body of work applying formal methods,
for the modelling of GUI’s, based on temporal logic, Z or process algebras; see
(Dix et al., 1998) for a survey. Interface components can be described as processes
exchanging events in a process algebra like CSP (Dix et al., 1998, pp 320). A similar
modelling in CSP could be done for our generic system architecture; then even the
dialogue behaviour of the application can be described and specified formally.

262 Christoph Liith and Burkhart Wolff

6.2.2 GUI’s for Theorem Provers

GUT’s for computer algebra systems such as Maple, Mathematica or MuPad all
offer mathematical editing facilities and some of them even direct manipulation of
formulae (e.g. rewrite by drag&drop). Typically, this kind of direct manipulation is
only available without genericity. These systems are built for a fixed syntax (with
emphasis on arithmetics or differential equations), a fixed logic and on the basis of
a non-generic system architecture. This also holds for the special purpose theorem
prover CADiIZ (Toyn, 1996).

In contrast, most recent theorem proving environments are generic, and some also
offer proof support for direct manipulation. JAPE (Bornat & Sufrin, 1996) is generic
in the logic and offers an interface with different styles of proof layout, graphical
pretty-printing, and supports proof by direct manipulation, so-called “gestures”. It
is a lightweight prover, which has not been used yet to encapsulate a formal method.
JAPE’s gestures are similar to CtCoq (Bertot & Bertot, 1996), where they are called
proof-by-pointing, but the basic idea remains the same. CtCoq is based on powerful
prover, Coq, which unlike Isabelle is not generic, and moreover supports graphical
output which can be configured by the user at runtime, script-based replay, and
further direct manipulation like rewriting by drag&drop, Coq, which on the other
hand is not generic.

CtCoq is actually part of a larger initiative, in spirit similar to ours, to provide
generic interfaces for a family of provers (Bertot & Théry, 1998). The generic in-
terface is implemented using the Centaur system (Borras et al., 1988). In contrast
to our architecture, the system is distributed (prover and interface can run on dif-
ferent machines) and heterogeneous (prover and interface need not be implemented
in the same language). In our view, despite practical advantages, this does not lead
to a better system architecture; and the close interaction between interface and
prover possible because both are implemented in the same language leads to better
support of direct manipulation and in particular, replay.

6.3 Results

In this paper, we have demonstrated how ideas of functional programming ap-
plied to user interface design gives rise to a new functional visualization metaphor,
the notepad. The metaphor serves as vehicle to make the data structures of these
provers accessible to pervasive direct manipulation.

The notepad allows for abstract manipulation of wvalues represented by icons.
The functional paradigm allows the recording of the construction history of every
object, which is the key for a systematic replay.

A fundamental design decision in the implementation was to use the Tk toolkit,
encapsulated into Standard ML by sml_tk. The encapsulation sml_tk helped us
to survive the evolution of Tk in the recent years while taking advantage of its
portability. As table 1 shows, sml_tk is largest chunk of code. Building on that,
TAS and IsaWin can be kept fairly compact. To put these statistics into context,
pure Isabelle has about 17500 lines of ML code. The code as produced by the

Functional Design and Implementation of GUI’s 263

Module Code size (lines of SML)
sml_tk 9900
GenGUI 2600
IsaWin 4800
TAS® 4500

¢ TAS and IsaWin share about 1400 lines of code.

Table 1. Size of Code

Standard ML of New Jersey compiler offers satisfactory response times, but shows
a voracious appetite for memory. A running system will need at least 32 MB of
memory, and to compile TAS and IsaWin 64 MB or more are required (on a Sun
SPARC or UltraSPARC workstation). These numbers are mostly due to Isabelle and
rise substantially with elaborate encodings like HOL-CSP; sml_tk itself compiles on
far smaller machines.

Implementing the interface in a typed language with powerful modularization
concepts rather than an untyped scripting language like Tcl or Lisp results in
a clean, generic system architecture. We have presented two instantiations of this
architecture, the interface IsaWin for the theorem prover Isabelle, and the transfor-
mation system TAS. As a consequence, we expect that our interface components can
reused for a certain range of similar applications. In particular, this gives a blueprint
for the construction of tools with graphical user interface for formal methods en-
coded into a theorem prover. We have in turn instantiated TAS with CSP and Z, two
prominent formal methods for which encodings into Isabelle have been developed.

In a restricted area of interaction with Isabelle, our instantiations seem to sub-
stantially facilitate user interaction. This holds in particular for point-and-query,
point-and-prove interactions and for global replay activities.

6.4 Future Work

TAS and IsaWin are still prototypical user interfaces that still need work in details.
We would like to allow cut-copy-paste manipulation of the history; in particular
the conversion of selected parts of the history to tactic objects would pave the way
for powerful techniques of interactive reuse. Further, goals and substitutions are
presently read as standard text and parsed via Isabelle’s parsing machinery. This
should be extended by a suitable mixture with structure-oriented editing facilities
as in CtCoq, or mouse-supported input as in JAPE.

A far more involved subject is to scale up the systematic replay towards automatic
reuse of former proof attempts. The most evolved replay and reuse techniques we are
aware of are realized in the KIV-system (Reif et al., 1997). KIV also provides direct
manipulation on the history and moreover automatic support of reuse by detecting
unaffected subparts of the proof which can still be used after failed replay. The

264 Christoph Liith and Burkhart Wolff

authors claim that the productivity of this system is essentially due to its reuse
techniques (Reif & Stenzel, 1992).

However, this feature is based on a very specialized logic. Extending it for a
generic theorem prover on the one hand and embedding it into our generic notion
of history will represent a substantial challenge, but we believe that the deep in-
corporation of history both on the system level and on the generic interface level
provides a good starting point.

References

Abowd, G., Allen, R., & Garlan, D. (1993). Using style to understand descriptions of
software architecture. Proceedings ACM SIGSOFT’93. ACM Press.

Allen, R., & Garlan, D. (1994). Formalizing architectural connection. Proceedings 16th
conf. software engineering. ACM Press.

Archer, J. E., Conway, R., & Schneider, F. B. (1984). User recovery and reversal in
interactive systems. ACM trans. on progr. languages and systems., 6(1), 1- 10.

Bertot, J., & Bertot, Y. (1996). The CtCoq experience. In: (Merriam, 1996).

Bertot, Y. (1997a). Direct manipulation of algebraic formulae in interactive proof systems.
In: (Bertot, 1997b).

Bertot, Y. (ed). (1997b). User interfaces for theorem provers UITP’97. INRIA
Sophia Antipolis. Electronic proceedings at http://www.inria.fr/croap/events/
uitp97-papers.html.

Bertot, Y., & Théry, L. (1998). A generic approach to building user interfaces for theorem
provers. Journal for symbolic computation, 25(2), 161 194.

Bornat, R., & Sufrin, B. (1996). Jape’s quiet interface. In: (Merriam, 1996).

Bornat, R., & Sufrin, B. (1998). Using gestures to disambiguate unification. User interfaces
for theorem provers UITP’98.

Borras, P., Clément, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., & Pascual, V.
(1988). Centaur: the system. 3rd symposion on software development environments.
(also as INRIA Report No. 777).

Bowen, J. P., & Gordon, M. J. C. (1994). Z and HOL. Pages 1/1- 167 of: Bowen, J. .P.,
& Hall, J. A. (eds), Z users workshop. Workshops in Computing. Springer.

Card, S. K., Moran, T. P.;, & Newell, A. (1983). The psychology of human-computer
interaction. Lawrence Erlbaum Associates.

Cooper, J. W. (1998). Using design patterns. Comm. of the ACM., 41(6), 65— 68.

Dix, A, Finley, J., Abowd, G., & Beale, R. (1998). Human-computer interaction. Prentice-
Hall.

Elkerton, J., & Palmiter, S. (1991). Designing help using a GOMS model: an information
retrieval evaluation. Human factors, 33(2), 185— 204.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1990). Design patterns: Elements of
reusable object-oriented software. Addison-Wesley.

Gordon, M. J. C., & Melham, T. M. (1993). Introduction to HOL: A theorem proving
environment for higher order logics. Cambridge University Press.

Grundy, J. (1991). Window inference with the HOL system. M. Archer, J. J. Joyce,
Leveitt, K. N., & Windley, P. J. (eds), International workshop on the HOL theorem
proving system and its applications. IEEE Computer Society Press.

Hoffmann, B., & Krieg-Briickner, B. (1993). PROSPECTRA: program development by
specification and transformation. LNCS, no. 690. Springer.

Functional Design and Implementation of GUI’s 265

Jackson, M. (1997). A pilot study of an automated theorem prover. In: (Bertot, 1997b).

Kahl, W. 1998 (Feb.). The Higher Order Programming System — user manual for
HOPS. Universitat der Bundeswehr Miinchen. URL http://diogenes.informatik.
unibw-muenchen.de:8080/kahl/HOPS/.

Kieras, D. E., & Polson, P. G. (1985). An approach to the formal analysis of user com-
plexity. International journal of man-machine studies, 22, 365— 394.

Kolyang, Santen, T., & Wolff, B. (1996a). Correct and user-friendly implementations of
transformation systems. Pages 629— 648 of: Gaudel, M. C., & Woodcock, J. (eds),
Formal methods europe FME’96. LNCS, no. 1051. Springer.

Kolyang, Santen, T., & Wolff, B. (1996b). A structure preserving encoding of Z in Isabelle.
Pages 283 — 298 of: von. Wright, J., Grundy, J., & Harrison, J. (eds), Theorem proving
in higher order logics. LNCS, no. 1125. Springer.

Langbacka, T., Ruksenas, R., & v. Wright, J. (1995). TkWinHOL: A tool for doing
window-inferencing in HOL. Pages 245- 260 of: Higher order logic theorem proving and
its applications. LNCS, no. 971. Springer.

Liith, C., Westmeier, S., & Wolff, B. (1996). sml_tk: Functional programming for graphical
user interfaces. Tech. rept. 7/96. Universitdt Bremen. See also the sml_tk home page
at http://www.informatik.uni-bremen.de/~cx1/sml_tk/.

Lith, C., Karlsen, E. W., Kolyang, Westmeier, S., & Wolff, B. (1998). Hol-Z in the
UniForM-workbench — a case study in tool integration for Z. Pages 116—134 of: Bowen,
J. P., Fett, A., & Hinchey, M. G. (eds), ZUM’98: The Z formal specification notation.
LNCS, vol. 1493. Springer.

MacLane, S., & Birkhoff, G. (1967). Algebra. New York: Macmillan.

Merriam, N. (ed). (1996). User interfaces for theorem provers UITP ’96.
Technical Report. University of York. Electronic proceedings available at
http://www.cs.york.ac.uk/ nam/uitp96/proceedings.html.

Merriam, N., & Harrison, M. (1997). What is wrong with GUIs for theorem provers? In:
(Bertot, 1997b).

Nipkow, Tobias, & von Oheimb, David. (1998). Javagign: is type-safe — definitely. Pages
161-170 of: Proc. 25th ACM symp. principles of programming languages. ACM Press.

Ousterhout, J. K. (1994). Tel and the Tk toolkit. Addison-Wesley.

Paulson, L. C. (1994). Isabelle - a generic theorem prover. LNCS, no. 828. Springer.

Regensburger, F. (1994). HOLCF': Eine konservative Finbettung von LCF in HOL. Ph.D.
thesis, Technische Universitat Miinchen.

Reif, W., & Stenzel, K. (1992). Reuse of proofs in software verification. Technischer
Bericht 26/92. Universitat Karlsruhe, Fachbereich Informatik.

Reif, W., Schellhorn, G., & Stenzel, K. (1997). Proving system correctness with KIV. Pages
859 862 of: Bidoit, M., & Dauchet, M. (eds), TAPSOFT ’97: Theory and practice of
software development. LNCS, no. 1214. Springer.

Shneiderman, B. (1982). The future of interactive systems and the emergence of direct
manipulation. Behaviour and information technology, 1(3), 237— 256.

Shneiderman, B. (1998). Designing the user interface. 3 edn. Addison-Wesley.

Tej, H., & Wolff, B. (1997). A corrected failure-divergence model for CSP in Isabelle/HOL.
Pages 318-3837 of: Fitzgerald, J., Jones, C. B., & Lucas, P. (eds), Formal Methods Europe
FME 97 LNCS, no. 1313. Springer.

Thimbleby, H. (1990). User interface design. ACM Press Frontier Series. Addison-Wesley.

Toyn, I. (1996). Formal reasoning in Z using CADiZ. In: (Merriam, 1996).

Vitter, J. S. (1984). US&R: A new framework for redoing. IEEE software, 1(4), 39— 52.

266 Christoph Liith and Burkhart Wolff

Part 1V

Selected Papers:
Validation by Case Studies

A Verification Approach for Applied System Security

Achim D. Brucker', Burkhart Wolff?

! Information Security, ETH Ziirich, ETH-Zentrum, CH-8092 Ziirich, Switzerland, e-mail: brucker@inf .ethz.ch
2 Universitit Freiburg, George-Kohler-Allee 52, D-79110 Freiburg, Germany, e-mail: wolff@informatik.uni-freiburg.de

The date of receipt and acceptance will be inserted by the editor

Abstract. We present a method for the security anal-
ysis of realistic models over off-the-shelf systems and
their configuration by formal, machine-checked proofs.
The presentation follows a large case study based on a
formal security analysis of a CVS-Server architecture.
The analysis is based on an abstract architecture (en-
forcing a role-based access control), which is refined to
an implementation architecture (based on the usual dis-
cretionary access control provided by the POSIX envi-
ronment). Both architectures serve as a skeleton to for-
mulate access control and confidentiality properties.
Both the abstract and the implementation architec-
ture are specified in the language Z. Based on a logical
embedding of Z into Isabelle/HOL, we provide formal,
machine-checked proofs for consistency properties of the
specification, for the correctness of the refinement, and
for security properties.
Keywords: verification, security, access control, refine-
ment, POSIX, CVS, Z

1 Introduction

These days, the Concurrent Versions System (CVS) is a
widely used tool for version management in many indus-
trial software development projects, and plays a key role
in open source projects usually carried out by highly dis-
tributed teams [3,5,4]. CVS provides a central database
(the repository) and means to synchronize local modifi-
cations of partial copies (the working copies) with the
repository. The repository can be accessed via a net-
work; this requires a security architecture establishing
authentication, access control and non-repudiation. A
further complication of the CVS security architecture
stems from the fact that the administration of authenti-
cation and access control is done via CVS itself; i.e. the

authentication table is accessed and modified via stan-
dard CVS operations.

This work emerged from our own experiences with
setting up a CVS-Server for more than 80 users world-
wide. Besides overcoming a number of security problems
(e.g. [13]), we had to develop an improved CVS-Server
configuration described in [1] meeting two system design
requirements: first, we had to provide a configuration
of a CVS-Server that enforces a role-based access con-
trol [16]; second, we had to develop an “open CVS-Server
architecture”, where the repository is part of the shared
filesystem of a local network and the server is a regular
process on a machine in this network. While such an ar-
chitecture has a number of advantages, the correctness
and trustworthiness of the security mechanisms become
a major concern. Thus, we decided to apply formal mod-
eling and analysis techniques to meet the challenge.

In this paper, we present the method we developed
for analyzing the security problems of complex systems
such as the CVS-Server and its configuration. As a re-
sult, we provide the following contributions:

1. a modeling technique that we call architectural mod-
eling, which has an abstraction level in-between the
usual behavioral modeling used in protocol analysis
and code verification,

2. a technique to use system architecture models for
defining security requirements,

3. the presentation of the mapping from security re-
quirements to concrete security technologies as a data
refinement problem,

4. mechanized proof-techniques for refinements and se-
curity properties over system transitions, and

5. reusable models for widely used security technologies.

In particular, we provide means to model a certain type
of security policies, and show how security analysis can
be performed not only on the abstract, but also on the
concrete level.

270 Achim D. Brucker and Burkhart Wolff

CVS client 1
cvs login

| add

| update

working
copy

CVS-Server
-

Tepository

| commit

CVS client n

cvs login
| add
| update
| commit

(a) “system”

login
| add

| update
| commit

login
| add
| update

| commit
filesystem

copy, mv, chmod, chown, ... repository
and

working copy

copy, mv, chmod, chown, ...

(b) “implementation”

Fig. 1. The different CVS-Server architectures

The paper is organized as follows: After introducing
some background material, e.g. CVS, our chosen specifi-
cation formalism Z and the architectural modeling style,
we present the model of the abstract system architec-
ture. We proceed with the model of the POSIX filesys-
tem as an infrastructure for the implementation archi-
tecture, and present the implementation architecture it-
self. Then, we describe the refinement relation between
the system architecture and the implementation archi-
tecture, and the analysis of security properties at the
different layers based on formal proofs in an interactive
theorem prover.

2 Background

2.1 The CVS Operations

For the purpose of this paper, it is sufficient to mention
only the most common CVS commands (initiated by the
client). These are: login for client authenticating, add for
registering files or directories for version control, commit
for transferring local changes to the repository, and up-
date for incorporating changes from the repository (e.g.
fetching the latest version from the repository) into the
working copy. Additionally, CVS provides functionality
for accessing the history, for branching, for logging in-
formation which is out of the scope of this paper, and a
mechanism for conflict resolution (e.g. merging the dif-
ferent versions) which is only modeled as an abstract
operation. Further, in order to facilitate both the refine-
ment and the security analysis, we will include in our
CVS model a operation which is strictly speaking not
part of CVS but of the operating system: the operation
modify. This operation models changes of the working
copy, e.g. by editing a file.

2.2 Z and Isabelle/HOL-Z

As our specification formalism, we chose Z [19] for the
following reasons: first, Z fits our modeling problem since
the complex states of our components suggest to use
a formalism with rich theories for data-structures. Sec-
ond, syntax and semantics of Z are specified in an ISO-
standard [9]; for future standardization efforts of operat-
ing system libraries (e.g. similar to the POSIX [20] model
in Sec. 3.3.2), Z is therefore a likely candidate. Third, Z
comes with a data-refinement notion [19, p. 136], which
provides a correctness notion of the underlying “security
technology mapping” between the two architectures and
a means to compute the proof obligations. We assume a
rough familiarity with Z (the interested reader is referred
to excellent textbooks on Z such as [19,21]).

As our modeling and theorem-proving environment,
we chose Isabelle/HOL-Z [2], which is an integrated doc-
umentation, type-checking, and theorem-proving envi-
ronment for Z specifications, which is built on top of Is-
abelle/HOL. Isabelle [11] is a generic theorem prover, i.e.
new object logics can be introduced by specifying their
syntax and inference rules. Isabelle/HOL is an instance
of Isabelle with Church’s higher-order logic (HOL) [8],
a classical logic with equality. Isabelle/HOL-Z is a con-
servative embedding of Z into HOL (which is seman-
tically isomorphic to Z). As a result, Isabelle/HOL-Z
combines up-to-date theorem proving technology with
a widespread, standardized specification formalism, and
powerful documentation facilities.

2.8 Architectural Modeling

As a means to identify conceptual entities of the prob-
lem domain and to structure the overall specification, we
found it useful to describe the architecture of the sys-
tem on several abstraction layers. Following Garlan and

A Verification-Approach for Applied System Security 271

system security
architecture

correct refinement
attack security technologies
& safety requirements

Fig. 2. Refining Security Architectures

security properties
(access control policy)

implementation
architecture

Shaw’s approach [7,18], architectures are composed by
components (such as clients, servers or stores like the
filesystem) and connectors (like channels, shared vari-
ables, etc). In this terminology it is straight forward
to make the mentioned architectures more precise (as
implementation architecture, we present the intended
“open server architecture”, see Fig. 1). We assume for
each operation (such as add) a shared variable as con-
nector that keeps all necessary information that goes to
and from the components. This paves the way to formal-
ize this architecture by describing the transition relation
of the combined system by the parallel composition of
the local transition relations of the components synchro-
nized over the corresponding shared variable. Since such
transition relations can be represented in Z [9] by oper-
ation schemas, we can thus define, for example:

CVS_add = Client_add
A Server_add \ addgphared variable

where A is the schema-conjunction and \ the hiding op-
erator (i.e. an existential quantifier). Throughout this
paper, we will only present combined operation schemas
and model properties over the transitive closure of their
transition relations.

2.4 Architecture Refinement

When analyzing security architectures one can separate
an abstract security architecture (see Sec. 3.2), which
is merely a framework for describing the security re-
quirements, from an implementation architecture (see
Sec. 3.3) where a mapping to security mechanisms is
described (see Fig. 2). By connecting the abstract and
the concrete layer formally, it is possible to reason about
safety and security properties on the abstract level. Such
a connection between abstract and more concrete views
on a system and their semantic underpinning is well-
known under the term refinement, and security technol-
ogy mappings can be understood as a special case of this.
Various refinement notions have been proposed [21,14];
in our setting, we chose to use only a simple data refine-
ment notion following Spivey [19].

2.5 Security Models vs. Security Technologies

Many security models distinguish between objects (e.g.
data) and subjects (e.g. users). Using role-based access

control (RBAC) [16] one assigns each subject at least one
role (e.g. the role “administrator”), and access of objects
is granted or denied by the role a subject is acting in.
Further, roles can be hierarchically ordered, e.g. subjects
in the role “administrator” are allowed to do everything
other roles are allowed to. Our CVS-Server uses such a
hierarchic RBAC model.

In an RBAC model, the decision, which roles may
have access to which objects is done during system de-
sign and cannot be changed by regular users. In con-
trast, in a discretionary access control (DAC) model,
every object belongs to a specific subject (its owner),
and the owner is allowed to change the access policies
at any time, hence “discretionary”. For example a DAC
implementation that also allows grouping users is the
Unix/POSIX filesystem layer [20] access control.

Based on a DAC that supports groups, one can ‘im-
plement’ an RBAC model by a special setup [15]. We
use a similar technique to implement a hierarchic RBAC
model for our CVS-Server on top of the POSIX filesys-
tem layer, which is described in Sec. 3.3.3. However, we
will analyze the concrete form in which DAC is imple-
mented in POSIX and not a conceptual model thereof.

3 The CVS-Server Case Study

The Z specification of the CVS-Server [1] consists of
more than 120 pages, and the associated proof scripts
are about 13000 lines of code. The organization of the
Z-sections follows directly the overall scheme presented
in Fig. 3. The Z-sections AbsState and AbsOperations are
describing the abstract system architecture of the client
and the server components. The Z-section SysConsis-
tency contains the consistency conditions (conservatism
of axiomatic definitions, definedness of applications, non-
blocking operation schemas) of the system architecture.
This is mirrored at the implementation architecture level
by the structures FileSystem, CVS-Server, and ImplCon-
sistency. The Z-section Refinement contains the usual
abstraction predicates relating the abstract and the con-
crete states, and also the proof obligations for this refine-
ment. The security properties, together with the corre-
sponding proof obligations, are defined in the sections
SysArchSec and ImplArchSec.

3.1 Entities of the Security Model

Following the standard RBAC model, we introduce ab-
stract types for CVS clients (users) Cvs_Uid, permissions
Cus_Perm (which are isomorphic to roles in our setting),
and CVS passwords Cvs_Passwd used to authenticate a
CVS client for a permission:

[Cus_Uid, Cvs_Perm, Cvs_Passwd|

272 Achim D. Brucker and Burkhart Wolff

AbsState

AbsOperations

II
]

SysConsistency |- —

FileSystem ’

SysArchSec
CombinedSec

[~

ImplConsistency |- | _ ?VSServer I

| ImplArchSec

Fig. 3. Organizing the Specification into Z-sections

Permissions are hierarchically organized by the re-
flexive and transitive relation cvs_perm_order (over per-
missions Cvs_Perm) with cvs_adm as greatest element:

cvs_adm, cvs_public : Cvs_Perm
cvs_perm_order : Cvs_Perm < Cvs_Perm

cvs_perm_order = cvs_perm_order™
YV : Cvs_Perm o (z,cvs_adm) € cvs_perm_order
YV : Cvs_Perm e (cvs_public,z) € cvs_perm_order
Vz : Cvs_-Perm o (z # cvs_adm) =

(cvs_adm, z) ¢ cvs_perm_order
YV : Cvs_Perm o (z # cvs_public) =

(z, cvs_public) ¢ cvs_perm_order
Va: Cvs_Perm o 3y : Cvs_Perm e

(z,y) € cvs_perm_order

We turn now to the security entities and mechanisms
of the CVS-Server and the clients: first we have to model
the working copies and the repositories as maps assign-
ing abstract names Abs_Name to data Abs_Data (both
types are abstract in our model):

[Abs_Name, Abs_Data]
ABS_DATATAB = Abs_Name - Abs_Data

A CVS-Server provides an authorization table, which
is used to control access within the repository. The server
stores for each file in the repository the required permis-
sion. These tables are modeled as follows:

AUTH_TAB = Cws_Uid x Cvs_Passwd
- Cvs_Perm

ABS_PERMTAB = Abs_Name -+ Cuvs_Perm

Clients possess in their working also a table that as-
signs to each abstract name a CVS client and another
map that associates each CVS client to the password
previously used during the cvs login procedure. The in-
terplay of these tables will be discussed later, here we
just define them:

ABS_UIDTAB = Abs_Name + Cvs_Uid
PASSWD_TAB = Cvs_Uid + Cvs_Passwd

3.2 The System Architecture

In this section, we give a brief overview on how we model
the system architecture, which is divided into: the state
of the server (including the repository), the state of the
client (including the working copy), and a set of CVS
operations working over both of them.

It is a distinguishing feature of a CVS-Server to store
the authentication data inside the repository such that
it can be accessed and modified with CVS operations.
This implies certain formal prerequisites: we require an
abstract name abs_cvsauth to be associated with data,
which can be converted into an authentication table via
a postulated function authtab.

abs_cvsauth : Abs_Name

abs_auth_of : Abs_Data + AUTH_TAB
abs_data_of : AUTH_TAB — Abs_Data
authtab : ABS_DATATAB - AUTH_TAB

ran(abs_data_of) C dom(abs_auth_of)
YV z : dom abs_auth_of e
abs_data_of (abs_auth_of) = x
Vo :AUTH_TABe
abs_auth_of (abs_data_of) = z
Vr: ABS_DATATAB e abs_cvsauth € dom(r) =
authtab(r) = abs_auth_of (r abs_cvsauth)

Modeling the server’s state as a Z schema is straight
forward. The state contains the repository rep and the
map rep_permtab containing the required permissions for
each file. Accessing the authentication table inside rep
will require to have the role cvs_adm. RepositoryState is
modeled as follows:

— RepositoryState
rep : ABS_DATATAB
rep_permtab : ABS_PERMTAB

abs_cvsauth € dom rep

dom rep = dom rep_permtab
rep_permtab(abs_cvsauth) = cvs_adm
rep(abs_cvsauth) € dom abs_auth_of

A Verification-Approach for Applied System Security 273

The state of the client component contains the work-
ing copy we, the wc_uidtab assigning a CVS client to
each file and a password table abs_passwd with creden-
tials (passwords) used in previous CVS login operations
(abs_passwd models the file .cvspass). Thus, for any data
in the working copy and whenever an access to it may
be processed, an individual role may be generated and
validated by the server with respect to its current reposi-
tory state. Further, there is a set of abstract names wfiles
which is used as filter in update and commit operations.
This filter corresponds to the concept of the working di-
rectory in the implementation, i.e. the effects of these
operations are restricted to files stored within the work-
ing directory:

ClientState
we : ABS_DATATAB
we_uidtab : ABS_UIDTAB
abs_passwd : PASSWD_TAB
wfiles : P Abs_Name

In the following, we define the abstract CVS opera-
tions that model combined state transitions of the client
and the repository. Due to space reasons, we only present
login and commit.

The login operation simply stores the authentication
data on the client-side. This is used to authenticate a
CVS user for a permissions of the client. The A and
= notation is used in Z to import the schemas in two
variants; one variant as a copy, the other by replacing all
variables by corresponding stroked variables (e.g. wc’)
describing the successor state. The = also introduces
equalities enforcing that the components of the previous
state are equal to the post state components.

— abs_login
AClientState
Z RepositoryState
passwd? : Cvs_Passwd
wid? : Cvs_Uid

(uid?, passwd?) € dom(authtab rep)
abs_passwd’ = abs_passwd ® {uid? — passwd?}
we' = we

we_uidtab’ = we_uidtab

wfiles’ = wfiles

The commit (ci) operation usually takes a set of files
as arguments (here denoted by files?). The case that no
arguments may be passed is modeled by the possibility
to set files? to the set of all files ABS_NAME.

Now we address the core of our hierarchic RBAC
model of the system architecture, the has_access predi-
cate. As a prerequisite, we define the shortcut is_valid_in
for checking that a CVS client, together with a creden-
tial (password), represents a valid role with respect to
the current repository:

_is_valid_in _: (Cus_Uid x Cvs_Passwd)
—ABS_DATATAB
Y role : Cvs_Uid; pwd : Cvs_Passwd;
rep : ABS_DATATAB e
(role, pwd) is_valid_in rep
< (role, pwd) € dom(authtab(rep))

Further, the has_access predicate ensures is_valid_in
and that the permissions resulting from these credentials
are sufficient to access the requested file according to the
role hierarchy:

has_access _ : P(ABS_PERMTAB
x ABS_DATATAB x PASSWD_TAB
x Abs_Name x Cvs_Uid)

Vrep_pt : ABS_PERMTAB; rep : ABS_DATATAB;
pwtb : PASSWD_TAB; file : Abs_Name;
role : Cvs_Uid e
has_access(rep_pt, rep, pwtb, file, role)
< (role, pwtb(role)) is_valid_in rep
A (rep_pt(file), authtab(rep)(role, pwtb(role)))
€ cus_perm_order

The commit operation consists of the construction
of a new repository rep’ and a new table with required
permissions rep_permtab’ which were constructed via the
override operator @ from previous states of these tables.
For rep’, three cases can be distinguished: (i) either a
file in the repository does not occur in the working copy,
then it is unchanged, or (ii) it occurs in the working
copy but not in the repository, then it is copied provided
a valid permission is available in the we_uid_tab of the
working copy, or (iii) the file exists both in working copy
and repository, then the working copy file overrides the
repository file whenever the client has access:

— abs_ci
Z ClientState
ARepositoryState
files? : P Abs_Name

(wfiles N files?) C dom we
rep’ = rep @ ({n : wfiles N files? | n ¢ dom rep
A n € dom we_uidtab
(we_uidtab(n), abs_passwd(wc_uidtab n))
is_valid_in rep} < wc)
®({n : wfiles N files? | n € dom rep
A n € dom we_uidtab
A has_access(rep_permtab, rep,
abs_passwd, n, we_uidtab(n))
} < we)
rep_permtab’ = rep_permtab & {n : wfiles N files? |
n ¢ domrep A n € dom we_uidtab
A (we_uidtab(n), abs_passwd(wc_uidtab n))
€ dom(authtab rep) o
n +— authtab(rep)(wc_uidtab(n),
abs_passwd(wc_uidtab n))}

274 Achim D. Brucker and Burkhart Wolff

The table rep_permtab’ is extended by permissions
for files that are new in the repository (based on the
permissions used for committing these files). Further,
the table wc_uid_tab is updated by the add operation,
which we omit here.

In addition to these abstract models of the CVS op-
erations, we provide a modify operation which explicitly
models interactions of users with their files via modifying
the files of the working copy of the client state.

3.3 The Implementation Architecture

The implementation architecture of CVS-Server is in-
tended to model realistically the security mechanisms
used to achieve the security goals formalized in the previ-
ous system architecture. Therefore, it captures the rele-
vant operating system environment methods, i.e. POSIX
methods in our case, for accessing files and changing
their access attributes. We derived our POSIX model by
formalizing the specification documents [20] and detailed
system descriptions [6] and by validating it by carefully
chosen tests and by inspections of critical parts of the
system sources. In this POSIX model, the CVS Filesys-
tem will be embedded, i.e. a repository is described as
some area in the filesystem, where file attributes are set
in a suitable way.

3.3.1 Modeling Basic Data Structures

We declare basic abstract sorts for POSIX user IDs,
group IDs, data (file contents left abstract in this model),
elementary filenames and file paths.

[Uid, Gid, Data, Name)]
Path = seq Name

We assume a static table groups that assigns to each
user a set of groups he belongs to. We also describe a
special user ID root, modeling the system administra-
tor. As we will show later, all security goals can only be
achieved for all users except root, because root is allowed
to do (almost) everything.

groups : Uid — P Gid
root : Uid

3.3.2 Modeling the POSIX Filesystem Access Control

Within POSIX, every file belongs to a unique pair of
owner (user) and group, and file access is divided into
access by the user (owner), the group or other (world).
The POSIX discretionary access control (DAC) distin-
guishes access for reading (r), writing (w), and executing
(x). We also model the “set group id” (sg) on directo-
ries, which affects the default group of newly created files
within that directory (see [6] for more technical details
about the Unix/POSIX DAC):

Perm ::=1u | wu | 2u | rg | wg | zg | ro| wo | zo|sg

The filesystem consists of a map from a file path
to file content (which is either Data for regular files or
Unit for directories!) and of file attributes (assigning to
each file or directory the permissions?, the user ID of
the owner and the group it belongs to). Our concept
of file attributes may easily be extended by adding new
components to its records.

Unit ::= Nil

FILESYS_TAB = Path + (Data + Unit)
FILEATTR = [perm : P Perm; wid : Uid; gid : Gid]
FILEATTR_TAB = Path + FILEATTR

We use type sums for modeling the FILESYS_TAB
which are not part of the Z standard. Type sums can
simulate enumerations in Z free type definitions on the
fly. The two functions Inl : X — (X + Y) and Inr :
Y — (X + Y) are provided for building type sums.

For testing if a directory contains a specific entry
(either a file or a directory) we provide the function is_in.
Further, we provide functions that test for regular files
(isfile_in) and for directories (is_dir_in); their definitions
are straight forward:

_is_in _: Path < (Path + (Data + Unit))
_is_dir_in _: Path < (Path + (Data + Unit))
_is_file_in _: Path < (Path + (Data + Unit))

Y fs : (Path - (Data + Unit)); f : Pathe
(fis-in fs) < f € dom fs
Y fs : (Path + (Data + Unit)); d : Pathe
(d is_dir_in fs) < (d is_in fs)
A (Bu: Unit o fs(d) = Inr(u))
Y fs : (Path + (Data + Unit)); f : Pathe
(f isfile_in fs) < (f is_in fs) A = (f is_dir_in fs)

At this point we are ready to model the filesystem
state, which mainly describes the map of (name) paths
to their attributes. As mentioned, we require that all de-
fined paths must be “prefix-closed”, i.e. all prefix paths
must be defined in the filesystem (thus constituting a
tree) and point to directories.

— FileSystem
files : FILESYS_TAB
attributes : FILEATTR_TAB
Vp : dom files o (p =)

V (front(p) is_dir_in files)
dom files = dom attributes

In addition to the filesystem state, we introduce a
state schema ProcessState for client related information,

1 We do not consider special files, like devices, named pipes or
process files.

2 The terms attributes and permissions are used interchange-
ably.

A Verification-Approach for Applied System Security 275

namely the current user and group ID, the client’s umask
(which is used to set the initial file attributes on new
files) and current working directory (wdir). The work-
ing directory is often used as an implicit parameter to
filesystem and CVS operations:

ProcessState
uid : Uid
gid : Gid
umask : P(Perm \ {sg})
wdir : Path

As a prerequisite for describing functions that do
modifications on the file system, we need to model the
POSIX DAC in detail. Therefore we first introduce a
function has_attrib, which decides whether the attributes
(read, write and execute) of a file are set with respect to a
specific user (and the groups he is a member of). Within
this function, a crucial detail of the POSIX access model
is formalized, namely that file access is checked by se-
quentially testing the following conditions (leading to an
overall failure if the first condition fails):

1. If the user owns the file, he can only access the file if
the access attributes for users grant access.

2. If the user is a member of the group owning the file,
he can only access the file if the access attributes for
the group grant access.

3. Last, the access attributes for others are checked.

These requirements may lead to some unexpected conse-
quences, e.g. assume a user u being member of the group
g and owner of a file with the permissions (perm ==
{rg,ro},uid == wu,gid == g |). Curiously, file access
will be denied for him, while granted for all others in his
group, because the rights specified for the user precede
the rights given for the group.

has_attrib _ : P(Uid x Path x FILEATTR_TAB
x Perm x Perm x Perm)

YV uid : Uid; fa : FILEATTR_TAB;
pu, pg, po : Perm o ¥ p : dom(fa) e
has_attrib(uid, p, fa, pu, pg, po) <
((utd = root) V
(Ym : P Perm; diruid : Uid; dirgid : Gid |
(| perm = m, wid = diruid, gid = dirgid |)

= fa(p)e
(diruid = wid N\ pu € m) V
(diruid # wid A dirgid € groups(uid)
A pg € m)V
(diruid # wid N\ dirgid ¢ groups(uid)
A po € m)))

Based on has_attrib we introduce shortcuts for check-
ing read, write and execute attributes (e.g. has_w_attrib)
of files and directories as well as definitions for checking
the read, write and execute access (e.g. has_w_access).

has_w_attrib_ : P(Uid x Path x FILEATTR_TAB)
has_r_attrib_ : P(Uid x Path x FILEATTR_TAB)
has_z_attrib_: P(Uid x Path x FILEATTR_TAB)

Yuid : Uid; p : Path; fa: FILEATTR_TAB e
has_w_attrib(uid, p, fa)
< has_attrib(uid, p, fa, wu, wg, wo)

has_w_access - : P(Uid x Path x FILEATTR_TAB)
has_r_access - : P(Uid x Path x FILEATTR_TAB)
has_z_access _: P(Uid x Path x FILEATTR_TAB)

Yuid : Uid; p : Path; fa: FILEATTR_TAB e
has_w_access(uid, p, fa) <
(V pref : Path | pref prefix (front p) e
has_z_attrib(uid, pref, fa))
A has_w_attrib(wid, front p, fa)

As an example for our approach to specify POSIX
operations, we present the (shortened) file remove spec-
ification [20], which corresponds to unlink():

The unlink() function shall fail and shall not unlink

the file if:

— A component of path does not name an existing
file or path is an empty string.

— Search permission is denied for a component of
the path prefix, or write permission is denied on
the directory containing the directory entry to be
removed.

This text is formalized by a Z operation schema rm as
follows: The first condition in the body is common for
most filesystem operations and requires the path of the
file must be a valid one in the filesystem table. The sec-
ond condition requires that the client has write permis-
sions on the file and the working directory (“the directory
containing the directory entry to be removed”), which is
checked via the has_w_access predicate:

— T
AFileSystem
Z ProcessState
u? : Name

(wdir ™ (u?)) isfile_in files
has_w_access(uid, wdir, attributes)

A has_w_access(uid, wdir ™ (u?), attributes)
files' = {wdir ™ (u?)} < files
A attributes’ = attributes

The definitions for the remaining filesystem opera-
tions are similar, see [1] for details.

3.3.3 Mapping CVS Access Control onto POSIX DAC

We turn now to a crucial aspect of the implementation of
the security goals by security mechanisms provided from

276 Achim D. Brucker and Burkhart Wolff

standard POSIX DAC: any CVS role will be mapped to
a particular pair of system owner and a set of system
groups. This mapping has the consequence of an inheri-
tance mechanism for generating default roles when creat-
ing new objects in the repository. Additionally, there is a
mechanisms to “down-scale” and “up-scale” the permis-
sions in the repository for the CVS administrator (not
described here).

For every CVS operation, the server determines the
CVS role according to the client’s CVS ID and password.
These roles are then mapped to POSIX user and group
IDs, and these are compared to the file attributes of
the files and directories the operations operates on. This
translation is done by the two functions cvsperm2uid
and cusperm2gid.

cvsperm2uid : Cvs_Perm — Uid
cusperm2gid : Cvs_Perm — Gid
users : P Uid
root ¢ ran cvsperm2uid
ran cvsperm2uid N users = &
ran cusperm2gid N U{:p : users o groups(z)} =<
ran cusperm2uid < groups = {x : Cvs_Perm e
cvsperm2uid x —
{¢: Cvs_Perm | (¢, x) € cvs_perm_order o
cusperm2gid c}}

It is important to notice that CVS IDs (Cuvs_Uid) are
independent of POSIX IDs (Uid) and that the POSIX
IDs which are used by CVS are disjoint from “normal”
POSIX user IDs, i.e. it is impossible to login with such
a special POSIX ID.

From these distinctness constraints follows that the
POSIX system administrator and the CVS administra-
tor may be different. Moreover, we require that the group
table (administrated by the system administrator and
nobody else) is compatible with cvs_perm_order. These
requirements have to be assured during installation of a
CVS server.

The CVS repository is a subtree of the normal filesys-
tem; its root is denoted by the absolute path cvs_rep
and all paths inside the repository are relative to the
root cvs_rep. Further, the administrative files of CVS
are stored in the CVSROOT directory, which is a sub-
directory of cws_rep, and the file that contains all au-
thentication information is called cvsauth and is located
inside CVSROOT.

cvs_rep : Path

CVSROOT : Name

cvsauth : Name

auth_of : Data ~ AUTH_TAB
data-of : AUTH_TAB — Data

ran data_of C dom auth_of
Yz : dom auth_of e data_of (auth_of z) =z
Vz: AUTH_TAB e auth_of (data-of) = x

3.3.4 Modeling the CVS Filesystem

A major design decision for our specification is to enrich
the FileSystem state by new state components relevant
to CVS, or more precisely, the combined client/server
component of CVS. In CVS, working copies contain spe-
cific attributes assigned to the files; we restrict ourselves
to security relevant attributes, i.e. the CVS client ID and
password, and the path rep where the file is located in
the repository. This information is kept in an own table
implicitly associated to the working copies.

CVS_ATTR = [rep : Path; f_uid : Cvs_Uid]
CVS_ATTR_TAB = Path +~ CVS_ATTR

Due to the space reasons, we only show some require-
ments of the combined POSIX and CVS filesystem:

— working copies and the repository are distinct areas
of the filesystem.

— the repository contains a special directory that con-
tains the administrative data of CVS. Certain restric-
tive access permissions must be ensured to this direc-
tory and its contents to preserve the system integrity.

— requirements on file attributes within the repository:

— since the owners of files must be POSIX user IDs
that are disjoint from “regular” POSIX user IDs,
and the group IDs must be legal with respect to
the CVS role hierarchy. This guarantees that reg-
ular users only have the rights described by the
file attributes for others. Thus, our initial invari-
ant for the base directory of the repository implies
that such a user cannot do anything, using only
POSIX operations, within the repository.

— read, write and execute permissions are the same
for user and group. Together with our group setup
this ensures that the initial CVS role and all roles
with higher precedence have the same rights to
access that file.

These invariants are formally described in the ax-
iomatic definition:

attr_in_rep _: P FileSystem
attr_in_root _ : P FileSystem
attr_outside_root _ : P FileSystem

Y fs : FileSystem e attr_in_rep(fs) <
(Vp : dom fs.files | (cvs_rep prefix p) e
(((fs.attributes p).uid) € ran cvsperm2uid
A ((fs.attributes p).gid)
€ groups((fs.attributes p).uid) A

(ru € ((fs.attributes p).perm) < rg
€ (fs.attributes p).perm) A

(wu € ((fs.attributes p).perm) < wyg
€ (fs.attributes p).perm) A

(zu € ((fs.attributes p).perm) < xg
€ (fs.attributes p).perm)))

A Verification-Approach for Applied System Security 277

We turn now to a formal description of the repository
within the filesystem. This invariant of the system is
captured in the state schema Cuvs_FileSystem:

— Cs_FileSystem

FileSystem; wes_attributes : CVS_ATTR_TAB
cvs_passwd : PASSWD_TAB

dom wes_attributes C dom files
(cvs_rep ™ (CVSROOT, cvsauth) isfile_in files)
attributes(cvs_rep) =
(| perm = {ru, wu, Tu, g, sg},
wid = cvsperm2uid(cvs-adm),
gid = cvsperm2gid(cvs_public) |)
attr_in_rep(0 FileSystem)
((attributes(cvs_rep ~ (CVSROOT))).gid)
= cusperm2gid(cvs_adm)
attr_in_root (0 FileSystem)
A attr_outside_root (6 FileSystem)

Additionally to rep_attributes, we impose similar re-
quirements for the administrative area of the repository
by the predicate attr_in_root. Further, we describe in
the predicate attr_outside_root the requirements for the
data in the repository, i.e. files that are subject to version
control. Both axiomatic definitions are omitted here.

Now we have established a basis for the operations
on the combined POSIX and CVS environment. As in
Sec. 3.2, we present the login and commit operations in
order to compare the two different architecture levels.

Before we describe the operations of the CVS-Server
we need to model the access to the CVS authentica-
tion table (get_auth_tab) that is part of the cvs_rep ™
CVSROOT directory and underlies the standard access
discipline of CVS-Server. In particular, the authentica-
tion table is only modifiable by the CVS administrator,
but not by any other client of the system.

get_auth_tab : FILESYS_TAB — AUTH_TAB

The login operation updates the variable cvs_passwd,
provided that for the combination of user ID and pass-
word the authentication will succeed.

— cvs_login
ACvs_FileSystem
= ProcessState
cvs_uid? : Cvs_Uid
cvs_pwd? : Cvs_Passwd

(cvs_uid?, cvs_pwd?) € dom(get_auth_tab files)
cvs_passwd’ = cvs_passwd

®{cvs_uid? — cvs_pwd?}
wes_attributes’ = wes_attributes
0 FileSystem = 0(FileSystem)’

In the commit operation, the current working direc-
tory wdir can be restricted by the parameter p? to just
one file or directory. All files below p? for which the
client has access will be committed. We use the function
cutPath to remove a given prefix from a path.

cutPath : (Path x Path) + Path

Va,b,c: Path e cutPath(a,b)=c&a=b""¢

In contrast to the system architecture specification
we also must determine the POSIX file attributes of the
files. The particularity of the update and the commit
operation is the use of rep_access which computes the

paths into the repository to which the client has read
access according to his CVS role.

rep_access : Cvs_FileSystem — Path — P Path
Y cfs : Cvs_FileSystem; p : Path e
rep_access(cfs)(p) = {q : Path | p prefix ¢

A cvs_rep q € dom cfs.files

A (Fidpwd : cfs.cvs_passwd e
idpwd € dom(get_auth_tab(cfs.files))

A (has_r_access(cvsperm2uid(
get_auth_tab(cfs.files)(idpwd)),
cvs_rep " q, cfs.attributes)

V (has_z_access(cvsperm2uid (
get_auth_tab(cfs.files)(idpwd)),
cvs_rep " q, cfs.attributes)

A cvs_rep 7 g is_dir_in cfs.files)))}

The schema cvs_ci (see Fig. 4) models the commit
command. We require that the client has read access for
the file or directory in the current working directory and
sufficiently high-ranked role to modify the repository.

4 Formal Analysis

A formal model, even if successfully type-checked, is in
itself not a value of its own: it must be validated, e.g.
by testing techniques or by formal proof activities as in
our approach. In this section, we present a formal consis-
tency check of the specifications, and we show that the
implementation architecture is, in a formal sense, a re-
finement of the abstract system architecture. We specify
and prove security properties of the type “no combina-
tion of user-commands will enable a user to write into
the repository, except he has the required access rights”.

4.1 Checking the Consistency
Two types of “sanity checks” are useful and have been
carried out with HOL-Z [2] routinely:

— definedness checks for all applications of partial func-
tions in their context, as undefined applications usu-

278 Achim D. Brucker and Burkhart Wolff

—— CUS_Ct
ACvs_FileSystem
Z ProcessState
p? : Path

has_r_access(uid, wdir ™ p?, attributes)
wdir € dom wes_attributes

D}
wes_attributes’ = wes_attributes
cvs_passwd' = cvs_passwd

files' = files ® {q : rep_access(0 Cvs_FileSystem)((wcs_attributes wdir).rep ~ p?) |
has_r_access(uid, wdir ™ cutPath(q, (wes_attributes wdir).rep), attributes) o
cvs_rep q — files(wdir © cutPath(q, (wes_attributes wdir).rep))}
attributes’ = attributes ® {q : rep_access(6 Cvs_FileSystem)((wes_attributes wdir).rep ™ p?) |
has_r_access(uid, wdir ™ cutPath(q, (wes_attributes wdir).rep), attributes) o
cvs_rep ™ q — (| perm = {ru,rg},

uid = cvsperm2uid(get_auth_tab(files)((wes_attributes q).f -uid,

cvs_passwd ((wes_attributes q).f —uid))),

gid = cusperm2gid(get_auth_tab(files)((wcs_attributes q).f -uid,

cvs_passwd ((wes_attributes q).f —uid)))

Fig. 4. The specification of the commit command (implementation architecture)

ally indicate that some part of the precondition of a
schema context is missing, and

— checking the state invariant of all operation schemas;
in particular, we require that in a schema, all syntac-
tic preconditions (i.e. the conjuncts in the predicate
part that contain occurrences of variables without
stroke “/” and “!” suffix) suffice to show that a suc-
cessor state exists.

Violating these conditions does not result in logical in-
consistencies but in unprovable statements or operation
definitions with undesired semantical effects.

4.2 Establishing the Refinement

To prove that the concrete implementation architecture
correctly implements the abstract system architecture,
we have to define an abstraction schema R which relates
the components of the abstract state to the components
of the concrete state. In particular, we must map ab-
stract names and data to paths and files in the sense of
the POSIX filesystem, and the working copies and repos-
itories of the abstract model must be related to certain
areas of the filesystem, the authentication tables must
be related, the user must not be root (the refinement
simply does not work otherwise) and the file attributes
in the concrete filesystem must be convertible along the
mapping discussed in Sec.3.3.3.

Due to limited space, we will only show two con-
straints of R formally. As a prerequisite, let us define a
function Rname2path, which maps abstract names, to

file paths in the implementation model. One constraint
is that abs_cvsauth is mapped to the right path and that
the authentication tables in both models are equal:

Rname2path(abs_cvsauth) = cvs_rep
~(CVSROOT, cvsauth)
authtab(rep) = get_auth_tab(files)

The last constraint we present here enforces the ab-
stract working copy to have a counterpart in the imple-
mentation working copy:

Rname2path(dom wel) = dom wes_attributes

To verify the refinement relation R, following Spivey
in [19], we must prove two refinement conditions for each
operation on the abstract state and its corresponding op-
eration on the concrete state: Condition (a) ensures that
a concrete operation terminates whenever their corre-
sponding abstract operation is guaranteed to terminate,
condition (b) ensures that the state after the concrete op-
eration represents one of those abstract states in which
the abstract operation could terminate.

As an example of the refinement, we show the in-
stantiation of conditions (a) and (b) for the CVS login
operation. The refinement conditions, though, as defined
in [19], assume that both operations have the same input
parameters, but since we define them differently in our
two models, we introduce an additional schema Asm,
which is used to insert further assumptions into the re-
finement proofs (the effect could also have been achieved
by a suitable renaming):

A Verification-Approach for Applied System Security 279

— Asm

passwd?, cvs_pwd? : Cvs_Passwd
wid?, cvs_uid? : Cvs_Uid
passwd? = cvs_pwd?

wid? = cvs_uid?

In the case of the login operation, these assumptions
are simple since the parameters are of the same type but
differ in name. Instantiating condition (a) and (b) for the
login operation and adding the assumption schema Asm
leads to the following two proof obligations:

login, =V ClientState; RepositoryState;
ProcessState; Cvs_FileSystem;
passwd?, cvs_pwd? : Cvs_Passwd; uid?,
cvs_uid? : Cvs_Uid ®
Asm A pre abs_login A R = pre cvs_login
loginy, =V ClientState; RepositoryState;
ProcessState; Cvs_FileSystem;
ProcessState’; Cvs_FileSystem'; passwd?,
cvs_pwd? : Cvs_Passwd; uid?
cvs_uid? : Cvs_Uid e
Asm A pre abs_login A R N\ cvs_login
= (3 ClientState’; RepositoryState’ o
R" A abs_login)

The obligations for the other operations are defined
analogously. So far, we proved these obligations formally
for the refinement of login, add and update. These proofs
considerably helped us to identify subtle side-conditions
in our model and thus to get our real CVS configuration
“right”.

4.8 Security Properties in Architecture Layers

Specifying the security properties motivates a Z-section
for the system architecture and one for the implemen-
tation architecture, both containing a classical behav-
ioral specification. In SysArchSec we investigate security
properties of the system architecture. In ImplArchSec we
investigate the same properties and additional ones that
are specific to the implementation architecture.

4.3.1 The General Scheme of Security Properties

As an interface between the operation schemas of the two
architecture layers and the behavioral part allowing to
specify safety properties, we convert suitably restricted
operation schemas of both system layers into explicit
relations over the underlying state. The purpose of these
restrictions is to provide a slot for side-conditions that
are related to the security model and not the functional
model described in the previous sections:

ropy = op1 N\ Ry

rOPn opn N\ Ry,

where each rop; represents the operation schema op;
constrained by the restriction schema R;. Further the
schema disjunction step represents the overall step rela-
tion of the system, which is converted into a transitively
closed relation trans:

step = rop; V...V rop,
trans = {step | (Ostate,Ostate’)}*

In the literature, three types of properties can be dis-
tinguished: One may formalize properties over the set of
reachable states, the set of possible transitions or the set
of possible sequences of states (traces) of a system. While
the first two types are only sufficient for classical safety
invariants (“something bad will never happen”), the lat-
ter two allow for the specification of liveness properties
(“eventually something good will happen”). The general
scheme for properties over reachable states and possi-
ble transitions for safety properties and the schema for
liveness properties looks as follows:

SPrg = Vo : trans(init)) e Po
SPrr = ¥(0,0") : init < trans e P(c,0”)
LPgrr = V(0,0’) : init < transe
I(c”,0") : trans ® P(o,0’,0",0")

Note that the reachable states are restricted via the
existential image operator or the domain restriction to
the states (respectively transitions) reachable from the
set of initial states init.

4.3.2 An Instance of the General Scheme: RBAC _write

We will exemplify the scheme SPgy for a crucial security
property, namely “the user may write in the repository
only if he has RBAC-permissions”, which we will call
RBAC _write in the following. Moreover, we will outline
the inductive proof.

As a prerequisite, we postulate two arbitrary sets
knows and invents; a client “knows” a set of pairs of
roles and passwords, and “invents” only files from a given
set of pairs from names to data. We assume invents to
be closed under the merge-operation left abstract in our
model.? On this basis, we define a security policy, by
providing suitable restrictions op; R for the system oper-
ations.* For example, we restrict the add operation to el-
ements in the domain of the invents-set, we assume login
being restricted to roles and passwords the client knows
set, the modify operation and add being restricted to
data the client “invents”. While these restrictions have
a more technical nature, a more conceptual restriction
of abs_ci is as follows: in the role cvs_adm, the authen-
tication table may only be altered such that rights are

3 This is very similar to the concept of abstract crypt-functions
and the closures analz, synth and parts in [12]; see discussion

4 In practice, such security policies may be based on voluntary
self-restrictions of users or enforced by administrative means.

280 Achim D. Brucker and Burkhart Wolff

withdrawn, not granted. A typical restriction looks as
follows:

abs_loginR = abs_login
A [cvs-uid? : Cvs_Uid; passwd? :
Cvs_Passwd |
(cvs_uid?, passwd?) € Aknows]

Now we define the step-relation and its transitive clo-
sure of the system architecture layer:

step = abs_loginR V abs_addR V abs_ciR
V abs_modifyR \ abs_up V abs_cd

AbsState = ClientState N RepositoryState

trans = {step e (0 AbsState,§ AbsState’)}*

Finally, for constructing the proof goal RBAC _write,
we instantiate the P in our schema SPgrp by:

rbac_write_: ...

Vrep,rep’ : ABS_DATATAB;
Vrptab’ : ABS_PERMTAB e
rbac_write(rep, rep’, rptab’) <
(Vf:domrep' e
(rep(f) # rep'(f)
A (f,rep’(f)) € invents)
= (Im : knows e
(rptab’(f), authtab(rep’)(m))
€ cvs_perm_order))

This property reads as follows: whenever there is a
change in the repository, and the changed file stems
from the users invents-set, the user must have valid
permissions according to the RBAC-model. We observe
that rbac_write is true whenever the repository does not
change, i.e. rbac_write(r, r,rt) holds.

4.3.3 A Proof-Outline

We will now present an exemplary proof (performed with
HOL-Z) for RBAC _write. The initial proof goal stating
that RBAC _write holds is refined by unfolding elemen-
tary definitions and simplification of Z notation to the
following proof state:

[oo = (abs_passwd, rep, rep_permtab, we,
we_uidtab, wfiles);
o1 = (abs_passwd’, rep’, rep_permtabd’, wc',
we_vidtab’, wfiles’);
AbsStateoy;
AbsStateoy;
(00,01) : {step e (09,01)}"
=
o - init
= rbac_write(rep, rep’, rep_permtab’)

Over this implication, we can now apply an induction
rule over the transitive closure:

Pzy,
(x7y) e,r‘)(<7
[x edom r] [y €ran 7] (y.2)er
(a,b) € r* Prx P%/y Prz
Pab

This leads to two base cases and the induction step;
both base cases are trivially true due to observation
rbac_write(r, r, rt). Now the induction steps, which looks
after some massage as follows, remains to show:

ooo = (abs_passwdz, repx, rep_permtabz, wex,
we_uidtabz, wfilest);

oo1 = (abs_passwdy, repy, rep_permtaby, wey,
we_uidtaby, wfilesy);

010 = (abs_passwdz, repz, rep_permtabz, wez,
we_widtabz, wfilesz);

oo : init = rbac_write(repz, repy, rep_permtaby);

*.

(000, 001) = {step o (00,01)}";
(c00,010) : {step ® (00,01)}
]] = 0qo : tnit

= rbac_write(repz, repz, rep_permtabz)

Here, the point of proof refinement is the assumption
(000, 001) : {step ® (00, 01)}*, which can be decomposed
via the definition of step into a disjunction of schemas,
where the input variables are existentially quantified. A
generic tactic strips away the disjunctions and the exis-
tential quantifiers in the assumption. The result is a case
split over all operations of the system architecture and
universally quantified input parameters of all operations
under consideration. Now, the observation is crucial that
all operations except abs_ci do not change the repository,
and, as a consequence of observation rbac_write(r, r, rt),
imply the truth of the step. We can therefore focus on
the case abs_ci:

(900, 001) : {step ® (00,01)}";
rbac_write(repzx, repy, rep_permtaby);
abs_ci(abs_passwdy, abs_passwdz, filesq, repy, repz,
rep_permtaby, rep_permtabz, wey, wez,
we_uidtaby, we_uidtabz, wfilesy, wfilesz)
(c00) : init;
| = rbac_write(repz, repz, rep_permtabz)

This is the core part of an invariance proof: the sys-
tem made a transition from an initial system state (with
repz) to another (with repy) performing an arbitrary
combination of operations and the system behaved well
(i.e. rbac_write(repz, repy, rep_permtaby)). Now a com-
mit operation (abs_ci) occurs, and the question is if the

A Verification-Approach for Applied System Security 281

resulting state (with repz) will also fulfill our safety prop-
erty.

The core of this subproof is, of course, a case distinc-
tion following the definition of abs_ci shown in Sec. 3.2:
a file may be

1. in the repository and not in the working copy: then
abs_ci will change nothing,

2. in the working copy and not in the repository: then
abs_ci will only change the latter if the current cre-
dentials are is_valid_in which implies write_correct as
the rep_permtab was changed accordingly,

3. both in the working copy and the repository: then
abs_ci will only change the file in the repository if the
current credentials allow for has_access which implies
write_correct.

The interested reader may note that the overall scheme
of the proof follows the structure of the general scheme
of the property descriptions, which allows for automated
tactic support that copes with Z-related technicalities,
the choice of the inductions, the decomposition of the
specification and the systematic derivation of state com-
ponents remaining invariant. Obviously, there is a high
potential of automation for this type of proofs, such that
the proof developer may be guided rather automatically
to the critical questions in the induction step.

4.3.4 Other Examples

The verification of the analogous property RBAC _read
is straight forward; files in the working copy of a client
are either invented by him (via the operation modify)
or stem from the repository, where the client knows a
password to obtain sufficient permissions.

An important, but quite obvious liveness property
in the LPpp-scheme is RBAC _do_write: Provided the
client has access, it can change a file arbitrarily and
perform operations leaving the repository changed ac-
cordingly; the proof immediately boils down to abs_ci
which is designed to fulfill this property. At first sight,
RBAC _do_write looks very similar to RBAC _write, how-
ever, note that both properties are independent: one
could model an absolutely secure CVS-Server that never
changes the repository. Such a model trivially fulfills
RBAC _write, but is ruled out by RBAC _do_write.

So far, RBAC _write is formalized for a single-user
client/server setting. Extending the analysis to a multi-
user client/server model only requires simple modifica-
tions in the definition of the step-relation; via renaming
of the working copies and the invents and knows-sets,
instances of abs_ci, abs_up and modify for each client
with individual working copy can be generated. Adding
suitable restrictions (e.g. invents and knows-sets must
be pairwise disjoint), RBAC _write and similar proper-
ties remain valid.

It is well-known that security properties are usually
not preserved under refinement (see discussion later).

The reason is that implementing one security architec-
ture by another opens the door to new types of attacks
on the implementation architecture that can be com-
pletely overlooked on the abstract level. For example,
on the implementation architecture, it is possible to re-
alize an attack on the repository by combinations POSIX
commands such as rm and setumask etc (see Sec.3.3.2).
In principle, our method can be applied for this type of
analysis of the implementation architecture as well. In
this setting, the step-relation and the init is defined as:

stepimpr = Tm V setumask V - -V chmod
V cvs_login V - - - V cvs_update
Nitimpr = ConcState
A [wes-attributes : CVS_ATTR_TAB |

wes _attributes =]

Although the proofs on the implementation architec-
ture have the same structure as on the system archi-
tecture, they are far more complex since concepts such
as paths, the distinction between files and directories,
and their permissions are involved. Moreover, they re-
quire new side-conditions (for example, the refinement
can only be established for the case that the user is not
root) which were systematically introduced by the ab-
straction predicate R.

On the other hand, the higher degree of detail on
the implementation architecture makes a formalization
of new types of security properties possible: For exam-
ple, since the crucial concept directory is present on the
implementation level and since the existence of files can
only be established by having access to all parent direc-
tories of a file, one can express confidentiality properties
such as “the user can not find out that a file with name z
exists in some directory of the repository” on this level.

5 Conclusion

5.1 Discussion

We demonstrate a method for analyzing the security in
off-the-shelve system components thus made amenable
to formal, machine-based analysis. The method proceeds
as follows: First, specify the system architecture (as a
framework for formal security properties), second, spec-
ify the implementation architecture (validated by in-
specting informal specifications or testing code), third,
set up the security technology mapping as a refinement,
and fourth, prove refinements and security properties by
mechanized proofs. The demonstration of the method
follows a case study of a security problem for a real sys-
tem, the CVS client/server architecture. We believe that
the method is applicable for a wider range of problems
such as mission-critical e-commerce applications or e-
government applications.

282 Achim D. Brucker and Burkhart Wolff

The core of our approach is based on the presentation
of the security technology mapping as data refinement
problem. In general, it has been widely recognized that
security properties can not be easily refined — actually,
finding refinement notions that preserve security prop-
erties is a hot research topic [10,17]. However, standard
refinement proof technology has still its value here since
it checks that abstract security requirements are indeed
achieved by a mapping to concrete security technology,
and that implicit assumptions on this implementation
have been made explicit. Against implementation spe-
cific attacks, we believe that specialized security prop-
erty refinement techniques will be limited to restricted
aspects. For this problem, in most cases the answer will
be an analysis on the implementation level, possibly by
reusing results from the abstract level.

In our approach, the analysis is based on interactive
theorem proving while security analysis is often based
on model-checking techniques for logics like LTL, the pu-
calculus or process algebras like CSP. While these tech-
niques offer a high degree of automation, they possess
well-known and obvious limitations: the state-space must
usually be finite and in practice be very small, and the
analysis tends to be infeasible for many models, in par-
ticular those imposed by system specifications. As a con-
sequence, proof engineers tend to develop oversimplified
and unsystematically abstracted system models. In con-
trast, in our approach technical concerns like the size
of the system state-space, aesthetic concerns like natu-
ralness of the modeling (in our example, we use archi-
tectural modeling) or methodological needs like realis-
tic treatments of system specifications do not represent
fundamental obstacles to the analysis. In particular the
latter paves the way for the reuse of standard system
models like POSIX. Moreover, we have the full flexibil-
ity of Z and HOL to express security properties at need.

5.2 Related Work

Sandhu and Ahn described in [15] a method for embed-
ding role-based access control with the discretionary ac-
cess control provided by standard Unix systems. Our
model used this construction for providing the static
roles, but extended it to a dynamic model.

Wenzel developed a specification of the basic Unix
functionality, which was done in Isabelle/HOL and is
part of the actual Isabelle [11] distribution. On the file
system part, only a simple access model, not supporting
groups and the concepts of set-id bits, is formalized.

Our behavioral analysis is based on the same founda-
tions as Paulson’s inductive method for protocol verifi-
cation [12]. Beyond the obvious difference, that Paulson
research focus is on analysis (the language of protocols
is deliberately small and restrictive) and not on mod-
eling, technical differences consist merely in some de-
tails: Paulson uses specialized induction schemes which
are automatically derived from the protocol-rules; these

are considered as inductive rules defining the set of sys-
tem traces. In contrast, we use standard induction over
transitive relations, which leads to a different organiza-
tion of the specification and the security properties and
leads to different tactic support.

5.8 Future Work

In our opinion, amazingly little work has been addressed
to the specification of the POSIX interface; due to its
often not intuitive features, its importance for security
implementations and its high degree of reuse, this is a
particularly rewarding target. We believe that our for-
malization is a starting point for a comprehensive, more
complete model of the filesystem related commands.

Clearly, the formal proofs established so far do not
represent a complete analysis of the (real) CVS-Server.
Many more security properties can be formulated, and,
by setting up different operation restrictions R;, “best-
practice” security policies can be formally investigated.
Moreover, in order to make implementation level secu-
rity analysis more feasible, it could be highly rewarding
to develop techniques and methods to reuse (abstract)
system level proofs on the more concrete levels.

Acknowlegements

We would like to thank Nicole Rauch for many valuable
discussions. Harald Hiss provided in his Diplomarbeit
most of the proof-work.

References

1. A. D. Brucker, F. Rittinger, and B. Wolff. A CVS-
Server security architecture — concepts and formal anal-
ysis. Technical Report 182, Albert-Ludwigs-Universitét
Freiburg, 2002.

2. A. D. Brucker, F. Rittinger, and B. Wolff. HOL-Z 2.0: A
proof environment for Z-specifications. Journal of Uni-
versal Computer Science, 9(2):152-172, 2003.

3. P. Cederqvist et al. Version Management with CVS,
2000. http://www.cvshome.org/docs/manual/.

4. http://www.cvshome.org.

5. K. Fogel. Open source development with CVS. The Cori-
olis Group, 1999.

6. /E. Frisch. Essential System Administration. O’Reilly,
1995.

7. D. Garlan and M. Shaw. An introduction to soft-
ware architecture. In Advances in Software Engineering
and Knowledge Engineering, pages 1-39. World Scientific
Publishing Company, 1993.

8. M. J. C. Gordon and T. F. Melham. Introduction to
HOL. Cambridge University Press, 1993.

9. Z formal specification notation — syntax, type system
and semantics, 2002. ISO/IEC 13568:2002.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A Verification-Approach for Applied System Security

. J. Jiirjens. Secrecy-preserving refinement. In Formal
Methods Europe (FME), volume 2021 of LNCS. Springer
Verlag, 2001.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL
— A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer Verlag, 2002.

L. C. Paulson. The inductive approach to verifying cryp-
tographic protocols. Journal of Computer Security, 6:85—
128, 1998.
http://wuw.cvshome.org/dev/security9706.html.

A. Roscoe. Theory and Practice of Concurrency. Pren-
tice Hall, 1998.

R. Sandhu and G.-J. Ahn. Decentralized group hier-
archies in UNIX: An experiment and lessons learned.
In National Information Systems Security Conference,
pages 486-502, 1998.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. Computer,
29(2):38-47, 1996.

T. Santen, M. Heisel, and A. Pfitzmann. Confidentiality-
preserving refinement is compositional — sometimes.
In ESORICS, volume 2502 of LNCS, pages 194-211.
Springer Verlag, 2002.

M. Shaw and D. Garlan. Software Architecture: Perspec-
tives on an Emerging Discipline. Prentice Hall, 1996.

J. M. Spivey. The Z Notation: A Reference Manual.
Prentice Hall, 1992. http://spivey.oriel.ox.ac.uk/
“mike/zrm/.

The Single UNIX Specification Version 3. The Open
Group and IEEE, 2002. This standard superseeds the
“Single UNIX Specification Version 2” (Unix 98) and the
“IEEE Standard 1003.1-2001” (POSIX.1).

J. Woodcock and J. Davies. Using Z: Specification, Re-
finement, and Proof. Prentice Hall International Se-
ries in Computer Science. Prentice Hall, 1996. http:
//wuw.usingz.com/.

283

284 Achim D. Brucker and Burkhart Wolff

Author Index

B

Brucker, Achim. D. @ 181} [205]
K

Karlsen,Einar........................ @

Kolyangooooveiiiianain.. [T43]
L

Liith, Christoph............ 163] [225]
R

Rauch, Nicole................... ... 123]

Rittinger, Frank
S

Santen,Thomas 143
T

Tej,Haykal
\%\%

Westmeier,Stefan

Wolff, Burkhart [47] [65]
Wolff,Burkhart . . 143] 1163} [225] [245)

E
H
E
B

	Introduction
	I Selected Papers:Embeddings
	A Corrected Failure-Divergence Model for CSP in Isabelle/HOL
	HOL-Z 2.0: A Proof Environment for Z-Specifications
	UML/OCL: Semantics, Calculi, and Applications in Refinement and Test
	Formalizing Java's Two's-Complement Integral Type in Isabelle/HOL

	II Selected Papers: Special Deduction for Method Support
	Correct and User-Friendly Implementation of Transformation Systems
	TAS - A Generic Window Inference System.
	Using Theory Morphisms for Implementing Formal Methods Tools
	Symbolic Test Case Generation For Primitive Recursive Functions

	III Selected Papers:Encapsulation and Tool Integration
	HOL-Z in the UniForM-Workbench - a Case Study in Tool Integration
	Functional Design and Implementation of Graphical User Interfaces for Theorem Provers

	IV Selected Papers:Validation by Case Studies
	A Verification-Approach for Applied System Security
	Author Index

