

The ANR Project
Paral-ITP

Background,
Goals & Scientific Challenges,

First Results
 Burkhart Wolff
Project Coordinator
Université Paris-Sud, LRI, Nov 2011

ANR-11-INSE-001

Overview
● Motivation
● Background
● The Research Challenges
● First Results

The Consortium:
● U-PSud/ ForTesSE (M. Wenzel, B. Wolff / Isabelle)
● INRIA Roquencourt (Hugo Herbelin, Damien Dogliez)
● INRIA Saclay (Bruno Barras, Enrico Tassi)

Motivation
● Boosting ITP Technology

– Profiting from more Computer-Power
– New IDE's for Theory Development

● Transforming ITP's into Frameworks
for Domain-Specific Formal Languages

(“The Eclipse of Formal Methods Tools”)

Background
● ITP vs. ATP Design
● The LCF Paradigm and its Development

– prover architecture (example: Isabelle)
– kernel architecture (example: Isabelle)

● The Document Model Challenge
● The Parallelization Challenge

– logically safe, programmable kernel
– asynchronous computation at kernel level

The “Automated Theorem Prover”
Research Programme

● 1960 : Davis / Putnam Procedure (Resolution-based)
● 1962 : Davis–Putnam–Logemann–Loveland (DPLL)

 algorithm i.e. for solving the CNF-SAT problem.
● 1965 : Robinson: Unification & Resolution
● 1980 : McCune: Otter
● 2004 : Ganzinger, Hagen, Nieuwenhuis:

 DPLL(X) Concept
● 2006-7: Z3 (Microsoft Research Development of

 a DPLL(X) prover for static analysis, test
 and program verification

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem

The “Interactive Theorem Prover”
Research Programme

● 1968 : Automath
● 1975 : Stanford LCF

 LISP based Goal-Stack, orientation vs.
 functional Programming, Invention:
 Parametric Polymorphism

● 1984/5 : Cambridge LCF
● 1986 : Isabelle
● 1986-90 : HOL-88, Coq

Historic Overviews:
http://www.cambridge.org/catalogue/catalogue.asp?ISBN=9780521395601
http://www.cl.cam.ac.uk/~mjcg/papers/HolHistory.pdf

http://www.cambridge.org/catalogue/catalogue.asp?ISBN=9780521395601

ITP vs. ATP's
● ATP Design one-way-compilation of “input”:

● Core implemented in complex,
highly efficient data-structures (usually C)

● several million inferences per second
● untyped formula representation,

originally without binding, presentation unimportant
● logical theories (“background”) unique and small
● after source modification: simply reprove from scratch

Parser Pre-proc CNF DPLL yes / no

ITP vs. ATP's
● ITP Design two-ways: INTERACTION

● Core implemented in simple, universal
typed data-structures (usually ML)

● several thousand* inferences per second

kernel inferences

Parser Parse-
Transl. term cterm

Presenta-
tion Pretty term cterm

ITP vs. ATP's
● ITP Design two-ways: INTERACTION

● logical theories very large
● source modification: UNDO,

incremental algorithms, functional design
● the document and proofs become important.

kernel inferences

Parser Parse-
Transl. term cterm

Presenta-
tion Pretty term cterm

The ITP Research Programme

and
The Evolution of the
Isabelle Architecture

Isabelle Architecture (2012)

micro-kernel
Proof-
objects

LCF-style proof procedures
(simp, fast, blast, auto, etc...),
ISAR Machine.

components:
datatype,
record, fun, ...

integrators
edge, smt

ATP
E, Z3, ...

PIDE - Framework
(parral. Formal Content checking)

jedit

Web-
client

code-
gen

Scala System Interface

integrators
sledge, smt

ML running on multi-core

C1 C2 C3 C4

Isabelle Architecture (2012)

micro-kernel
Proof-
objects

LCF-style proof procedures
(simp, fast, blast, auto, etc...),
ISAR Machine.

components:
datatype,
record, fun, ...

integrators
edge, smt

ATP
E, Z3, ...

PIDE - Framework
(parral. Formal Content checking)

jedit

Web-
client

code-
gen

Scala System Interface

integrators
sledge, smt

ML running on multi-core

C1 C2 C3 C4
 L = C | V | lV. L | L L

Isabelle Architecture (2012)

micro-kernel
Proof-
objects

LCF-style proof procedures
(simp, fast, blast, auto, etc...),
ISAR Machine.

components:
datatype,
record, fun, ...

integrators
edge, smt

ATP
E, Z3, ...

PIDE - Framework
(parral. Formal Content checking)

jedit

Web-
client

code-
gen

Scala System Interface

integrators
sledge, smt

ML running on multi-core

C1 C2 C3 C4

datatype term =
 Const of string * typ |
 Free of string * typ |
 Var of indexname * typ |
 Bound of int |
 Abs of string * typ * term |
 $ of term * term

Isabelle Architecture (2012)

micro-kernel
Proof-
objects

LCF-style proof procedures
(simp, fast, blast, auto, etc...),
ISAR Machine.

components:
datatype,
record, fun, ...

integrators
edge, smt

ATP
E, Z3, ...

PIDE - Framework
(parral. Formal Content checking)

jedit

Web-
client

code-
gen

Scala System Interface

integrators
sledge, smt

ML running on multi-core

C1 C2 C3 C4

Isabelle Architecture (2012)

micro-kernel
Proof-
objects

LCF-style proof procedures
(simp, fast, blast, auto, etc...),
ISAR Machine.

components:
datatype,
record, fun, ...

integrators
edge, smt

ATP
E, Z3, ...

PIDE - Framework
(parral. Formal Content checking)

jedit

Web-
client

code-
gen

Scala System Interface

integrators
sledge, smt

ML running on multi-core

C1 C2 C3 C4

datatype term =
 Const of string * typ |
 Free of string * typ |
 Var of indexname * typ |
 Bound of int |
 Abs of string * typ * term |
 $ of term * term

The Project Goals at a Glance
● Paral ITP:

nano-kernel
+ kernel PO

decision
procedures ...

...

PIDE jEdit
Scala System Interface

...

PolySML multi-core
C1 C2 C3 C4

.

.

.
nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

PIDE jEdit

Coq Scala System Interface

...

Parallal OCaml Engine

.

.

.

C2 C1C16C15 C1 C2 C1C16C15

The Project Goals at a Glance
● Paral ITP:

nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

Coq Scala System Interface

...

Parallal OCaml Engine

.

.

.

C2 C1C16C15 C1 C2 C1C16C15

PIDE jEdit

Topic Prover Architecture (PA)
- parallel ML
- parallel inference kernel
- parallel transactions over immutable contexts

The Project Goals at a Glance
● Paral ITP:

nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

Coq Scala System Interface

...

Parallal OCaml Engine

.

.

.

C2 C1C16C15 C1 C2 C1C16C15

PIDE jEdit

Topic Document Model (DM)
- Development of Formal, Generic DM
- Concurrent Changes
- Evaluation Strategies
- Persistent History
- Formal Content

The Project Goals at a Glance
● Paral ITP:

nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

Coq Scala System Interface

Parallal OCaml Engine

.

.

.

C2 C1C16C15 C1 C2 C1C16C15

PIDE jEdit

Topic Front-end technology (FT)
- Generic GUI Technology
- User Interactions (Rich Client, Web)
- Asynchronous Agents

The Project Goals at a Glance
● Paral ITP:

nano-kernel
+ kernel PO

parallel
Isabelle
decision
procedures ...

...

Isa Scala System Interface

...

PolySML multi-core

C1

.

.

.
Parallel Coq
 kernel PO

parallelized
Coq
decision
procedures ...

...

Coq Scala System Interface

Parallal OCaml Engine

.

.

.

C2 C1C16C15 C1 C2 C1C16C15

PIDE jEdit

Transversal activity.

Topic Formal Analysis (FA)
- Key Algorithms in Kernel
 (Context Transfer Check)
- Analysis of Persistent
 DM Algorithms
- Test-Generation
 of GUI Elements

First Results

Front-End Technologies
● Isabelle: PIDE / jedit is meanwhile robust and

stable and part of the Isabelle Distribution.

In Version 2013: probably the default
interface.

● Support for advanced (nested) tool-tipping
and hypertexting in the entire session.

● experiments with JAVA-Browsers.
● Coq: First Proof-of-Technologies

to replace CoqIde available.

Prover Architecture
● Isabelle: Substantial Performance Boost:

Prover Architecture
● Isabelle: Substantial Performance Boost

The only parallel symbolic computing
environment that scales to 8 cores
(as far as we know).

● Coq: First Kernel renovation. Controlled
side-effects, more elements in structured
proof language, first experiments in
concurrent validation of sub-proofs.

Parallel fine-
grained
validation
of structured
proofs in

in the

jEdit - PIDE

(Isabelle2012-D)

Prover Architecture
● Isabelle: Local Subproof-Parallelization works

in current developper release reliably.

Prover Architecture
● Isabelle: Substantial Performance Boost

The only parallel symbolic computing
environment that scales to 8 cores
(as far as we know).

● Isabelle:

Document Model
● Isabelle: Implementation in Scala supports

entire “sessions” as DM's.
● Own experience: I will never ever will use

Proof-General again !!! An IDE-like approch
brings (at least for me) a sensible boost in
productivity.

● Coq: First Formal Document Models on basis
of HOAS under consideration.

The ISAR Document Model

theory AVL_def
imports Testing Main
begin

datatype 'a tree = ET | MKT 'a "'a tree" "'a tree"

fun height :: "'a tree ⇒ nat"
where
 "height ET = 0"
| "height (MKT n l r) = 1 + max (height l) (height r)"

fun is_in :: " 'a ⇒ 'a tree ⇒ bool"
where
 "is_in k ET = False"
| "is_in k (MKT n l r) = (k=n ∨ is_in k l ∨ is_in k r)"

T
3 - 3

T
3 - 2

T
3 - 1

T
3 - 0

- hierarchy of “documents” (theory files)
- atoms (units of text)
- syntax reconfigurable
- can be combined with SML code referring to kernel operations

● document hierarchies,
● updates, and versions ...

command

command

command

The ISAR Document Model

command

command

command
command

command

command

command
command

command

command

● document hierarchies,
● updates, and versions ...

command

command

command

The ISAR Document Model

user
update

command

command

command
command

command

command

command

command

command
command

command

command

command

command

command

command
command

command

command

command

command

command
command

command

The ISAR Document Model
● … and its validation by the Isabelle Kernel
● … profits from asynchronous parallelism
● … task redirecting

T
3

T
0

T
3 - 2

T
3 - 1

“semantic”
evaluation
by the
kernel

T
3

T
0

T
3 - 2

T
3 - 1

“semantic”
evaluation
by the
kernel

command

command

command

command

command

command
command

command

command

command
command

command

command

The ISAR Document Model
● … and its validation by the Isabelle Kernel
● … profits from asynchronous parallelism
● … task redirecting

T
3

T
0

T
3 - 2

T
3 - 1

“semantic”
evaluation
by the
kernel

T
3

T
0

T
3 - 2

T
3 - 1

“semantic”
evaluation
by the
kernel

+ prover geberated markup
- for types
- values for code-pieces
- proof-states
- ...

command

command

command

command

command

command
command

command

command

command
command

command

command

Formal Analysis
● First Formal Kernel Model under Development.

Achieved: Formal Theory term, typ, and cterm
(including type inference with Type
Constructors)

Goal: Relative Correctness Proof of the
asynchonous Kernel wrt. to synchronous one:
Whenever an parallelized proof (with all
“promises” “fulfilled”) exists, it corresponds to
a conventional “non-parallel” proof.

Conclusion

Conclusion
● The research challenges:

– Parallelized Prover Kernels
– Parallelized API's for Symbolic Computing
– Prover IDE's for Formal Mathematics and

Large Program Verifications
– Generic Prover IDE's for

Domain-Specific Formal Languages

have been attacked an various levels, and
at least on the Isabelle-side there is visible
impact for end-users.

Conclusion
● Isabelle is at the moment slightly advanced

in parallelization issues, ...
● ... on the other hand, the project has 2 years

to go !
● Beyond practical evidence, theoretical

evidence has to be provided that
the logically safe, LCF-Kernel-based
reliability of these systems is maintained ...

The Project Goals at a Glance
● Paral ITP:

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge

(From the Beginning Specific forIsabelle 88)

Γ H
Θ
ϕ

Meaning: ϕ can be derived from Γ in the global context Θ

where:

Γ : local context, assumptions, premisses, ...
ϕ : conclusion
Θ: global context, the „theory“ (Σ,A)consisting
 of the „signature Σ“ and the „Axioms A“

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge

„Θ“ thy = { ancestors : thy list ,
 sign : Signature ,
 axms : thm list}

„Γ H
Θ
ϕ“ thm = {context : thy,

 hyps : term list,
 prop : term}

_ _⊆ subthy : thy thy => bool∗

Invariant: is a partial ordering (no cycles)⊆

The inclusion ordering ⊆ is critically used for the transfer of judgements („thm“s):

 Γ H
Θ1
ϕ implies Γ H

Θ 2
ϕ if T

1
 ⊆ T

2

The Classical LCF Kernel:
Typical Programming Interface

„ϕ H
Θ
ϕ“ trivial Θ „ϕ“ :: thm

„Γ H
Θ
ϕ ξ  åΕ“ instantiate:: ... => thm => thm

„forward- bi_compose :: thm => thm => thm
 chaining“

„backward- type tactic = thm => seq thm
chaining“

rtac , etac, dtac, ...

In Cambridge LCF: elementary rules of the HOL-logic as
 basic operators on thm's, in Isabelle the elementary
 rules of an intuitionistic fragment of HOL called „Pure“

prf prf

T
1 T

2

T
3

T
4

proof skripts using
lemmas valid in glo-
bal context T

1
 via

transfer

prf

prf
merge

T
0

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge

(Isabelle 89 ... 94-4, ...)

The Classical LCF Kernel:
Coarse grained global context transition with branch and merge

(Isabelle 89 ... 94-4, ...)

Explicit proof contexts turn the Kernel into a “transaction
machine” where the proofs can be executed interleaved
(The following was essentially already possible in 98):

goal A.thy “<lemma1>”
by(rtac …) by(dtac …)
val P1 = push_proof ()

goal B.thy “<lemma1>”
by(dtac …)
val P2 = push_proof ()

pop_proof(P1)
by(simp_tac …)
val thm1 = result()

pop_proof(P2)
by(simp_tac …)
val thm2 = result()

prf prf

T
1

T
2 T

4

proof skripts using
lemmas valid in glo-
val context T

1
 via

re-load of prf 1

T
0

Comparison: The “Minimal” LCF Kernel:
Fine grained global context transition without branch and merge

Global Contexts implicit in the top-level ML shell
no transfer - import by reproving (HOL-Light, HOL-88, HOL4)

The Extended LCF Kernel:
Internalising again the Name-Management and the plug-in

Data into the Kernel (ca. Isabelle 98, ...)

„Θ“ thy = {id:Id,
 ancestors : thy list ,
 sign: Signature,

 axms: thm list,
 ...}

„Γ H
Θ
ϕ“ thm = {context:thy,

 hyps:term list,
 prop:term}

„_ _“ ⊆ subthy: thy × thy bool→

The Global Context becomes an „Extensible Record“ where
Plugins can register their local state. (Used for configuration
data of automated provers (simpset, claset, etc.), but rapidly
for other stuff like a global Thm-Database, oracles, and proof-terms.
Consequence: Plugin-Infrastructure with merge, provided that
plugins were consequently parameterized wrt. Θ

The Extended LCF Kernel:
Internalising again the Name-Management and the plug-in

Data into the Kernel (ca. Isabelle 98, ...)

„Θ“ thy = {id:Id,
 ancestors : thy list ,
 sign: Signature,

 axms: thm list,
 ...}

„Γ H
Θ
ϕ“ thm = {context:thy,

 hyps:term list,
 prop:term}

„_ _“ ⊆ subthy: thy × thy bool→

The Global Context becomes an „Extensible Record“ where
Plugins can register their local state. (Used for configuration
data of automated provers (simpset, claset, etc.), but rapidly
for other stuff like a global Thm-Database, oracles, and proof-terms.
Consequence: Plugin-Infrastructure with merge, provided that
plugins were consequently parameterized wrt. Θ

The Extended LCF Kernel:
Internalising again the Name-Management and the plug-in

Data into the Kernel (ca. Isabelle 98, ...)

„Θ“ thy = {id:Id,
 ancestors : thy list ,
 sign: Signature,

 axms: thm list,
 ...}

„Γ H
Θ
ϕ“ thm = {context:thy,

 hyps:term list,
 prop:term}

„_ _“ ⊆ subthy: thy × thy bool→

The Global Context becomes an „Extensible Record“ where
Plugins can register their local state. (Used for configuration
data of automated provers (simpset, claset, etc.), but rapidly
for other stuff like a global Thm-Database, oracles, and proof-terms.
Consequence: Plugin-Infrastructure with merge, provided that
plugins were consequently parameterized wrt. Θ

The Extended LCF Kernel:
Internalising again the Name-Management and the plug-in

Data into the Kernel (ca. Isabelle 98, ...)

„Θ“ thy = {id:Id,
 ancestors : thy list ,
 sign: Signature,

 axms: thm list,
 ...}

„Γ H
Θ
ϕ“ thm = {context:thy,

 hyps:term list,
 prop:term}

„_ _“ ⊆ subthy: thy × thy bool→

The Global Context becomes an „Extensible Record“ where
Plugins can register their local state. (Used for configuration
data of automated provers (simpset, claset, etc.), but rapidly
for other stuff like a global Thm-Database, oracles, and proof-terms.
Consequence: Plugin-Infrastructure with merge, provided that
plugins were consequently parameterized wrt. Θ

record exten-
sions for Isabelle
Components
(rewriter, data-
type package...)
which must be
functional

T
1 T

2

T
3

T
4

proof skripts using
lemmas valid in glo-
bal context T

1
 via

transfer

merge

T
0

The Extended LCF Kernel:
fine-grained global context transition with branch and merge

proofs are global transitions, mixed with other extensions
(Isabelle 98, ..., but also Nano-Kernels Isabelle2005)

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...

Name-Management done inside proofscripts by
Global Context-Management, NOT by SML.
Requires get_thm(the_context(), „add_commute“),
later antiquotation „{@thm add_commute}“ in proof scripts.
Mixture between Signature extensions and proofs
facilitated programming of packages and automated provers.

The Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

(used since Isabelle2005)

Classical Kernel: Naming (and therefore referencing to
thm's) left to the SML-toplevel, Kernel
talks of logic-specific items (terms, hyps,...)

Nano-Kernel: Naming and Referencing is at the heart
of the design; keeping _ _ acyclic is the⊆
key invariant. From the perspective of
the Nano-Kernel, thm's and sign's are just
“data”.

The Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

(used since Isabelle2005)

context = {id : Id,
 ancestors : Id list,

 ...}
„Θ“ thycontext = context + {

 sign : Signature,
 thm_db : name ß thm,

 ...}
„Γ H

Θ
ϕ“ thm = {certificate : CertId,

 hyps : term,
 prop : term}

CertificateTable : CertId ß thycontext

„_ _“ ⊆ subthy: thycontext × thycontext bool→

The Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

(used since Isabelle2005)

proofcontext = context + {
 theory_of_proof : CertId,
 fixes : string list,
 assumes : term list,
 ...}

Proof-Contexts are data-structures to capture
local information like fixes, assumptions, abbreviations
etc., their names and their prover-configuration ...

In particular all local data relevant for the interfacing
between sub-proofcontexts to their supercontexts...

T
1 T

2

T
3

T
4

merge

T
0

Nano-Kernel LCF-Architecture:
fine-grained global context transition with branch and merge

proofs are global transitions, mixed with other extensions
grouping of context transitions via Kernel re-certication

(but also Nano-Kernels Isabelle2005)

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...

T
1 T

2

T
3

T
4

merge

T
0

T
3

T
3 T

3

...
...

...

...

T
1 T

2

T
3

T
4

merge

T
0

Parallel Nano-Kernel LCF-Architecture:
coarse-grained parallelism

(Isabelle2008 in batch-mode, Isabelle2010 also in interactive mode)

T
3 - 3

T
3 - 2T

3 - 1

...
...

...

...

Parallel Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

Isabelle2009 - 10 (!)
...

„Θ“ thycontexts = contexts + {
 sign : Signature,

 thm_db : name ß thm,
 ...}

„Γ H
Θ
ϕ“ thm = {context : CertId,

 promises: name ß thm future,
 hyps : term,

 prop : term}

status :: thm => { failed : bool,
 oracle: bool,
 unfinished: bool}

 ...

Parallel Nano-Kernel LCF - Architecture:
Putting the Classical Kernel actually into Plugins ...

Isabelle2009 - 10 (!)
...

„Θ“ thycontexts = contexts + {
 sign : Signature,

 thm_db : name ß thm,
 ...}

„Γ H
Θ
ϕ“ thm = {context : CertId,

 promises: name ß thm future,
 hyps : term,

 prop : term}

status :: thm => { failed : bool,
 oracle: bool,
 unfinished: bool}

 ...

“holes” in
proofs to be
filled in asyn-
chronously
later

T
3

T
0

Parallel Nano-Kernel LCF-Architecture:
fine-grained, asynchronous parallelism

(Isabelle2009)

T
3 - 3

T
3 - 2

T
3 - 1

T#
3 - 1

T#
3 - 2 T#

3 - 3
T#

3

⊒ ⊒ ⊒ ⊒

All thm's may contain sub-thm's (promises) used in their proof whose validation is
actually left to an asynchronous thread managed in a data-stucture future. Successful
validation leads to a fulfil-ment of a promise. Merges were postponed till fulfillment
of all promises in a thm_db of a global context.

(Futures are actually grouped, can emit/receive events and can be killed).

The Evolution of
Document Models

The Role of Document Models
in the ITP Programme

● Presentation is Key in ITP Design
● The notion of document becomes the center

of ITP; theory development is document-centric!
● for common user-interfaces (like ProofGeneral)

generic document models had been developed.
● what is the document -

● a “bunch of emacs-buffers!” (David Aspinall, 03)
● a data-structure (tree - dag - graph) of

code/definitions/proofs/text/documentation
(= formal content) ?

● … textual presentation is actually accidental.

The Role of Document Models
● An early, abstract, visual document model:

the IsaWin System [Wolff, Lüth 97]
– notepad metaphor
– … and explicit, generic document model

(objects, types, operations, presentations)

The Role of Document Models
● An early, abstract, visual document model:

the IsaWin System [Wolff, Lüth 97]
– notepad metaphor
– … and explicit, generic document model

(objects, types, operations, presentations)

The Role of Document Models
● An early, abstract, visual document model:

the IsaWin System [Lüth,Wolff 97]
– notepad metaphor
– … and explicit, generic document model

(objects, types, operations, presentations)
– … implemented by an SML functor mapping the

“DM” of an application to its notepad ...

The Role of Document Models
● An early, abstract, visual document model:

the IsaWin System [Wolff, Lüth 97]
– a “DM” was:

The Role of Document Models
● The IsaWin System - why didn't it work out?

– development divergences in the
presentation layer
(code wars in the SyntaxEngine)

– too visual; textual representation needed
– no states, but versioning; ok. BUT:

naive functional evaluation model.
● no interrupts
● no asynchronous communication
● not dynamic - extensions had to be

recompiled.

The Role of Document Models
● Current Isabelle/ISAR [Wenzel 98 - 11]

– textual (perhaps even a bit too much)
(but everything you can do with Unicode)

– Prover IDE oriented:
tooltips, hovering, continuous check & build

– asynchronous, parallel
– highly dynamic and reconfigurable

(the “ISAR-language” is actually just a
 config of the Isabelle/ISAR machine)

– programming: PURELY FUNCTIONAL

Position of the Consortium
● Coq Core Developers

– DR Dr Hugo Herbelin
Coq Development Coordinator, INRIA
Roquencourt

– CR Dr Bruno Barras
 Coq CTO, Inria Saclay

– Dr Damien Dogliez
OCaml Core Developper,
 INRIA Roquencourt

Position of the Consortium
● Isabelle Core Developers

– Dr M. Wenzel: CTO of Isabelle since 99,
Initiator of Parallelization in Isabelle

– Prof. Dr Burkhart Wolff
 Developper of Tools on Isabelle-Kernel
 Expert in Formal Analysis

Working Organization
● Major Working Axes

– DR Dr Hugo Herbelin Leader DM
(coll. M. Wenzel, B. Barras, Yann Régis-Gianas, B. Wolff)

– CR Dr Bruno Barras Leader PA
(coll. M. Wenzel, Damien Dogliez)

– Dr Makarius Wenzel Leader FT
(coll. B. Barras, Yann Régis-Gianas, B. Wolff)

– Pr Dr Burkhart Wolff Leader FA
(coll. M. Wenzel, Yann Régis-Gianas)

Working Organization
● Working Axes + Smaller Work-Packages

– DR Dr Hugo Herbelin Leader DM
(coll. M. Wenzel, B. Barras, Yann Régis-Gianas, B. Wolff)
+Pierre Courtieu, Olivier Ponsm Matthieu Sozeau, Assia Mahboubi.

– CR Dr Bruno Barras Leader PA
(coll. M. Wenzel, Damien Dogliez)
 +Pierre Courtieu, Olivier Pons, Germain Faure, Assia Mahboubi.

– Dr Makarius Wenzel Leader FT
(coll. B. Barras, Yann Régis-Gianas, B. Wolff)
+Delphine Longuet, Frédéric Voisin, Pierre Courtieu, Olivier Pons.

– Pr Dr Burkhart Wolff Leader FA
(coll. M. Wenzel, Yann Régis-Gianas)
+Delphine Longuet, Frédéric Voisin, Olivier Pons,Assia Mahboubi.

The Project Organization
● project infra-structure

– repositories
● Common (archiv, pub, reports, presentations) :

https://www.lri.fr.svn.fortesse/anr-paral-itp
access already distributed

● INRIA - git for Coq - Contributions
● Munich hg for Isabelle - Contributions

– web-page (http://paral-itp.lri.fr/)
– wiki (not yet)

The Project Organization
● reporting & project output

– we are in bus distance to each other !
– regular meetings in each “Topic”
– 6 month meeting, 6 month reports
– annual software publications (Coq&Isabelle)

The Project Organization
● IPR Issues

– Longstanding Open-source tradition
for all three, independent components:

● Isabelle: TUM+UCam+”Collaborators” (us)
● Coq: INRIA
● ProofGeneral: UEdin / Replaced by Isabelle

– Open Source Licences:
“All software-components produced in the project will be published with Open Source
Licenses that are compatible with the respective prover distributions (Coq: LGPL, Isabelle:
BSD, contributing tools: BSD, LGPL, GPL). This is achieved either by using sufficient liberal
licensing from the start (BSD) and implicitly strengthen towards GPL, or by dual-licensing
of certain components. Thus the integrated systems will be usable by academic and
industrial users alike, according to established practice both in the Coq and Isabelle

communities.”

Conclusion
● To advance the ITP Programme

– more specific asynchronous
computation models were needed
to use modern parallel hardware

– more advanced generic document models
were needed

– advanced API's for using ITP's
as “Eclipse of FM Tools”

● Still, the LCF-Kernel Character needs to be
maintained ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

