

L3 Mention Informatique
Parcours Informatique et MIAGE

Génie Logiciel Avancé Advanced Software Engineering UML with MOAL-Contracts

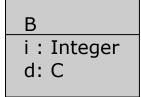
Burkhart Wolff wolff@Iri.fr

Recall:

- MOAL is a logic used to make UML diagrams more precise
- it comprises
 - typed sets, lists, and some base types
 - classes and objects from UML class diagrams
 - subtyping and casts
 - a semantics for path navigation and associations.

Recall: Object Attributes

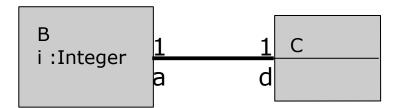
 Objects represent structured, typed memory in a state σ. They have attributes.



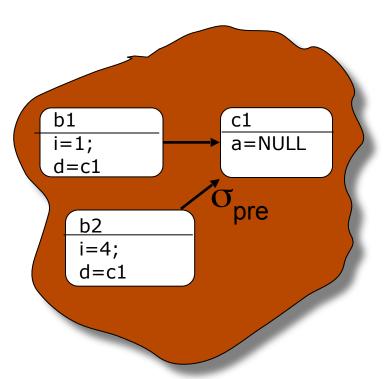
C a:B

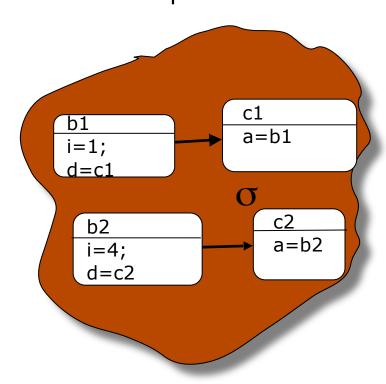
They can have class types.

 Reminder: In class diagrams, this situation is represented traditionally by Associations (equivalent)



Syntax and Semantics of Object Attributes





Recall Navigation

- Object assessor functions are "dereferentiations of pointers in a state"
- Accessor functions of class type are strict wrt. NULL.
 - NULL.d = NULL
 NULL.a = NULL
 - Recall that navigation expressions depend on their underlying state:

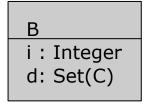
b1.d(
$$\sigma_{pre}$$
).a(σ_{pre}).d(σ_{pre}).a(σ_{pre}) = NULL
b1.d(σ).a(σ).d(σ).a(σ) = b1 !!!
(cf. Object Diagram pp 28)

Recall Object Attributes

- Object assessor functions are "dereferentiations of pointers in a state"
- Accessor functions of class type are strict wrt. NULL.
 - NULL.d = NULL
 NULL.a = NULL
 - \succ The σ convention allows to write :

Recall Object Attributes

Attibutes can be List or Sets of class types:

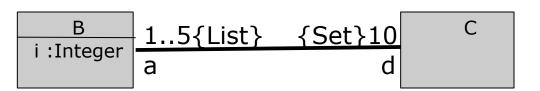


 Reminder: In class diagrams, this situation is represented traditionally by Associations (equivalent)

In analysis-level Class Diagrams, the type information is still omitted; due to overloading of $\forall x \in X$. P(x) etc. this will not hurt ...

Recall Cardinalities vs Invariants

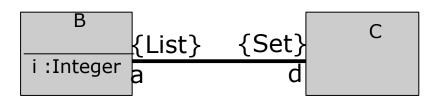
Cardinalities in
 Associations can
 be translated
 canonically into
 MOCL invariants:



- > definition card_{B,d} ≡ \forall x**∈**B. |x.d|= 10
- ► definition card_{C.a} $\equiv \forall x \in \mathbb{C}$. $1 \le |x.a| \le 5$

Strictness of Collection Attributes

 Accessor functions are defined as follows for the case of NULL:



- NULL.d = {}
 - -- mapping to the neutral element
- NULL.a = []
- -- mapping to the neural element.

Syntax and Semantics of Object Attributes

Cardinalities in
 Associations can
 be translated
 canonically into
 MOCL invariants:



- ► definition card_{B.d} $\equiv \forall x \in B$. |x.d| = 10
- ► definition card_{c.a} $\equiv \forall x \in \mathbb{C}$. $1 \le |x.a| \le 5$

Operation Contracts

Operation Contracts

- Many UML diagrams talk over a sequence of states (not just individual global states)
- This appears for the first time in so-called contracts for (Class-model) methods:

i : Integer

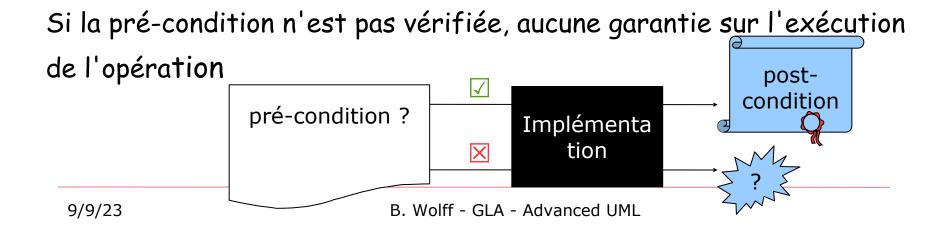
m(k:Integer) : Integer

The « method » m can be seen as a « transaction » of a B object transforming the underlying pre-state $\sigma_{\rm pre}$ in the state « after » m yielding a post-state σ .

Pré et post-conditions (piqué de Delphine!)

Principe de la conception par contrats : contrat entre l'opération appelée et son appelant

- Appelant responsable d'assurer que la pré-condition est vraie
- Implémentation de l'opération appelée responsable d'assurer la terminaison et la post-condition à la sortie, si la précondition est vérifiée à l'entrée



 Syntactically, contracts are annotated like this (in MOAL convention):

Client

solde: Integer

withdraw(k:Integer) : Integer

operation b.withdraw(k): pre: old(b.solde) - k >= 0

post: b.solde = old(b.solde) - k

... or like this (OCL-ish):

Client

solde: Integer

withdraw(k:Integer) : Integer

context b.withdraw(k):

pre: b.solde@pre - k >= 0

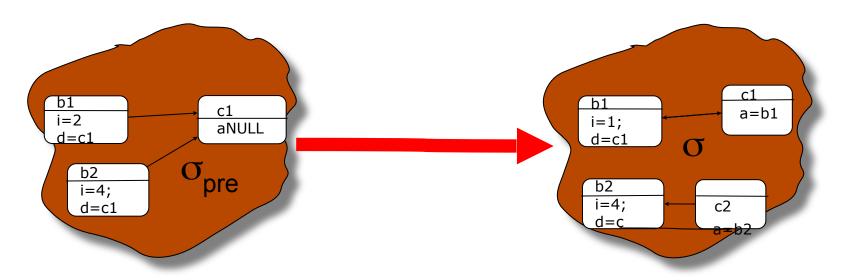
post: b.solde = b.solde@pre - k

Operations in UML and MOAL Contracts

 This appears for the first time in so-called contracts for (Class-model) methods: B i : Integer add(k:Integer) : Integer

The « method » add can be seen as a « transaction » of a B object transforming the underlying pre-state σ_{pre} in the state « after » add yielding a post-state σ .

Again: This is the view of a transaction (like in a database), it completely abstracts away intermediate states or time. (This possible in other models/calculi, like the Hoare-calculus, though).



Consequence:

- The pre-condition is a formula referring to the σ_{pre} and the method arguments b1, $a_1, ..., a_n$ only.
- the post-condition is only assured if the pre-condition is satisfied
- otherwise the method
 - ...may do anything on the state and the result,
 may even behave correctly , may non-terminate!
 - raise an exception
 (recommended in Java Programmer Guides for public methods to increase robustness)

Consequence:

- The post-condition is a formula referring to both $\sigma_{\rm pre}$ and σ , the method arguments b1, a_1 , ..., a_n and the return value captured by the variable result.
- any transition is permitted that satisfies the postcondition (provided that the pre-condition is true)

Consequence:

The semantics of a method call:

$$b1.m(a_1, ..., a_n)$$
 is thus:
$$pre_m(b1, a_1, ..., a_n) \ (\sigma_{pre})$$

$$\longrightarrow \\ post_m(b1, a_1, ..., a_n, result) \ (\sigma_{pre}, \sigma)$$

- > Note that moreover all global class invarants have to be added for both pre-state $\sigma_{\rm pre}$ and post-state σ !
- For a successful transition, the following must hold:

$$Inv(\sigma_{pre}) \land pre_{m}(b1,a_{1},...,a_{n})(\sigma_{pre}) \land post(b1,a_{1},...,a_{n},r)(\sigma_{pre},\sigma) \land Inv(\sigma)$$

Example:

class invariant:

c.solde >= 0 for all clients c.

Client

solde: Integer

withdraw(k:Integer)

operation c.withdraw(k):

pre: $k \ge 0 \land old(c.solde) - k \ge 0$

post: c.solde = old(c.solde) - k

- ⇒ definition inv_{Client}(σ) ≡ \forall c∈Client(σ). 0≤c.solde(σ)
- ⇒ definition pre_{withdraw}(c, k)(σ) ≡ c∈Client(σ) ∧ $0 \le k$ ∧ $0 \le c.$ solde(σ)-k
- ⇒ definition post_{withdraw}(c, k,result)(σ_{pre} , σ) = c.solde(σ)=c.solde(σ_{pre})-k

Notation:

In order to relax notation, we will refine the σ convention by the old-notation:

```
ightharpoonup Client just becomes Client
```

$$\succ$$
 c.solde(σ) just becomes c.solde

- Client(
$$\sigma_{pre}$$
) becomes old(Client)

$$\succ$$
 c.solde(σ_{pre}) becomes old(c.solde)

Example (revised):

class invariant: c.solde $\geq = 0$ for all clients c.

Client

<u>solde : Integer</u>

withdraw(k:Integer)

```
operation c.withdraw(k):
```

pre: $k \ge 0 \land old(c.solde) - k \ge 0$ post: c.solde = old(c.solde) - k

- > definition inv_{Client} $\equiv \forall c \in Client$. 0≤c.solde
- - solde = old(c.solde)-k

Alternative Example:

Client

solde: Integer

withdraw(k:Integer) : {ok,nok}

```
class invariant:
c.solde >= 0 for all clients c.
```

What are the differences between these contracts?

Answer:

```
operation c.withdraw(k) :
  pre: true
  post:
  if k >= 0 \land old(c.solde) - k =0
  then c.solde = old(c.solde) - k
  \land result = ok
  else result = nok
```

"withdraw" is now always defined; in case of illegal arguments it yields an error

Semantics of MOAL Contracts

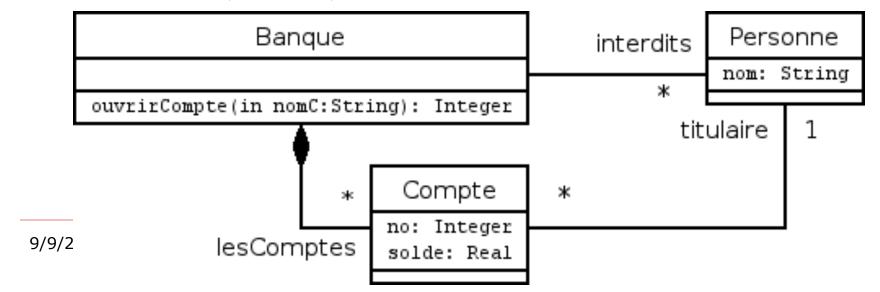
- Two predicates are helpful when defining contracts. They exceptionally refer to both (σ_{pre}, σ)
 - $\begin{array}{ll} > & \text{isNew } (\textbf{p}) \, (\sigma_{\text{pre}}, \sigma) & \text{is true only if object p of class C} \\ & \text{does not exist in } \sigma_{\text{pre}} \, \text{but exists in } \sigma \end{array}$
 - ightharpoonup modifiesOnly(S)(σ_{pre} , σ) is only true iff
 - all objects in σ_{pre} are except those in S identical in σ
 - all objects exist either in σ are or are contained in S

With this predicate, one can express: "and nothing else changes". It is also called "framing condition"

A Revision of the Example: Bank

Opening a bank account. Constraints:

- there is a blacklist
- no more overdraft than 200 EUR
- there is a present of 15 euros in the initial account
- account numbers must be distinct.



A Revision of the Example: Bank (2)

```
definition pre<sub>ouvrirCompte</sub> (b:Banque, nomC:String) ≡
                            \forall_p \in Personne. p.nom \neq nomC
definition post<sub>ouvrirCompte</sub> (b:Banque, nomC:String, r:Integer) ≡
Now we can understand the gomplex looking
contract of partohle intromfor the Barker (p)
      \Lambda | {c∈Compte | c.titulaire.nom = nomC} | = 1
      \Lambda ∀c∈Compte. c.titulaire.nom = nomC → c.solde = 15
                                                  ∧ c.isNew()
      ↑ b.lesComptes=old(b.lesComptes)U
                       {cECompte | c.titulaire.nom = nomC}
      ↑ b.interdits=old(b.interdits)U
                       {p ∈ Personne | p.nom = nomC}
      Λ modifiesOnly({b}U{c∈Compte c.titulaire.nom = nomC}
                       U {p E Personne | p.nom = nomC})
```

A more complete example at a glance:
 (still ignoring framing conditions)

```
Client
solde: Integer
deposit(k:Integer): {ok,nok}
withdraw(k:Integer): {ok,nok}
solde(): Integer
```

```
b.deposit(k) operation:

pre: k >= 0

post: b.solde = old(b.solde) + k

post: result = ok

b.withdraw(k) operation:

pre: old(b.solde) - k >= 0

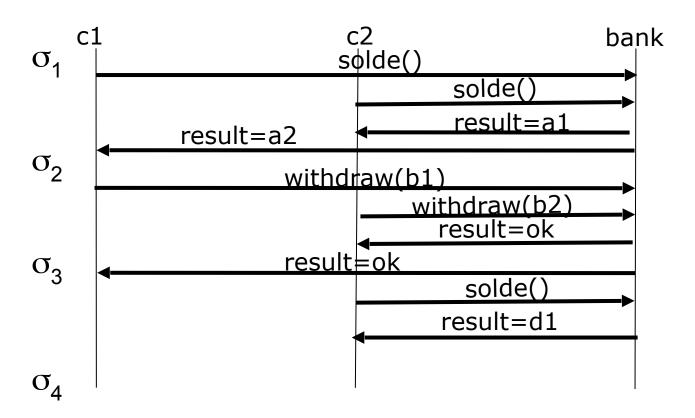
post: b.solde = old(b.solde) - k

post: result = ok
```

b.solde() query:

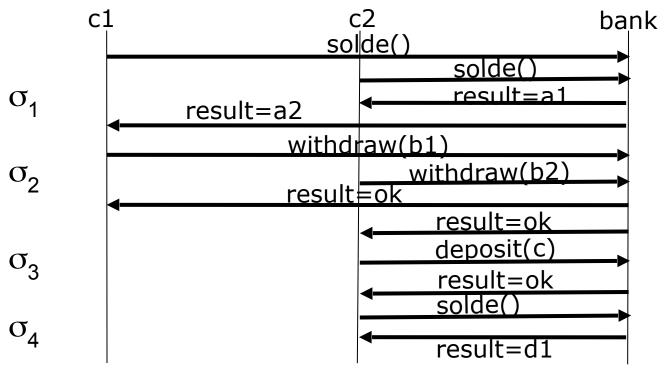
post: result = old(b.solde)

Abstract Concurrent Test Scenario:



Assume that this scenario was valid, i.e. all conditions were satisfied: what do we know in σ_{a} ?

Abstract Concurrent Test Scenario:



Any instance of b1 and a1 is a test! This is a "Test Schema"!

Note: b1 can be chosen dynamically during the test!

Summary

- MOAL makes the UML to a "formal" specification language
- MOAL can be used to annotate Class Models,
 Sequence Diagrams and State Machines
- Working out, making explicit the constraints of these Diagrams is an important technique in the transition from
 - Cahier de charge to Analysis
 - From Analysis to Designs and Tests.