Interactive Theorem Proving and Applications

Année 2023-24

Prof. Burkhart Wolff wolff@lri.fr

https://www.lri.fr/~wolff/teach-material/2023-2024/M2-CSMR/index.html

TP 1 - Introduction to Isabelle/HOL

Week 1 Jan 2024

Exercice 1 (Installation)

Install Isabelle(version 2023) from the Isabelle website https://isabelle.in.tum.de. Start Isabelle and make yourself familiar with the documentation, in particular the overview "What's in Main" where "Main" is the standard HOL library we base our exercises on.

Exercice 2 (Editing, Type-Checking, Searching)

Use the Isabelle commands, typ, term and prop to enter types, terms and propositions into the system, thus using the parser and type-checker of Isabelle.

Start an anonymous session with isabelle jedit and create an anonymous session with

theory Scratch imports Main begin

Questions

1. Enter, parse and type-check (if possible) some types, terms, and propositions. The result should look similar to this : Change types, terms and props at your guise though.

Scratch.thy (~/)		
φ	1	theory Scratch
L	2	imports Main
φ	З	begin
	4	
	5	<pre>section < TD1 ></pre>
	6	
	7	typ <nat <math="">\Rightarrow nat list></nat>
	8	
	9	term $\langle \lambda x. x \rangle$
	10	
	11	$ prop < A \implies B \implies C > $
	12	

FIGURE 1 – example caption

2. Enter, parse and type-check (if possible) the term

$$(\lambda x.\lambda y.(\lambda z.(\lambda x.z \ x)(\lambda y.z \ y))(x \ y))$$

(It might be helpful to add spaces ...) Note how the system represents bound and free variables.

3. Define via a number of definitions the Church Numerals of the slides of class 1. The syntax is :

definition $const_name$:: typ where "eqn"

Which type do Church-Numerals have in the typed λ -calculus?

4. axiomatize the Y-combinator, i.e. enter "Y f = f(Y f)" as axiom into the system. The syntax is :

axiomatization $const_name :: typ$ where $ax_name : "eqn"$

Which (external) type has to be given to the Y-combinator for this axiomatization?

- 5. use find_theorems to browse your theory so far! You will need this possibility later on !
- 6. Prove that, according to your definitions, *PLUS TWO THREE* is indeed *FIVE*. Hint : state a lemma for this equation, unfold the definitions, and apply the simplification method by simp

Exercice 3 (OPTIONAL : Report (IN CASE THAT YOU WANT TO HAVE IT GRADED :))

1. Write a little report answering all questions above, note the difficulties you met, add some screenshots if appropriate. 3 pages max.